android_kernel_oneplus_msm8998/arch/x86/kernel/apic/hw_nmi.c

184 lines
4.6 KiB
C
Raw Normal View History

nmi_watchdog: Add new, generic implementation, using perf events This is a new generic nmi_watchdog implementation using the perf events infrastructure as suggested by Ingo. The implementation is simple, just create an in-kernel perf event and register an overflow handler to check for cpu lockups. I created a generic implementation that lives in kernel/ and the hardware specific part that for now lives in arch/x86. This approach has a number of advantages: - It simplifies the x86 PMU implementation in the long run, in that it removes the hardcoded low-level PMU implementation that was the NMI watchdog before. - It allows new NMI watchdog features to be added in a central place. - It allows other architectures to enable the NMI watchdog, as long as they have perf events (that provide NMIs) implemented. - It also allows for more graceful co-existence of existing perf events apps and the NMI watchdog - before these changes the relationship was exclusive. (The NMI watchdog will 'spend' a perf event when enabled. In later iterations we might be able to piggyback from an existing NMI event without having to allocate a hardware event for the NMI watchdog - turning this into a no-hardware-cost feature.) As for compatibility, we'll keep the old NMI watchdog code as well until the new one can 100% replace it on all CPUs, old and new alike. That might take some time as the NMI watchdog has been ported to many CPU models. I have done light testing to make sure the framework works correctly and it does. v2: Set the correct timeout values based on the old nmi watchdog Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: gorcunov@gmail.com Cc: aris@redhat.com Cc: peterz@infradead.org LKML-Reference: <1265424425-31562-3-git-send-email-dzickus@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-05 21:47:04 -05:00
/*
* HW NMI watchdog support
*
* started by Don Zickus, Copyright (C) 2010 Red Hat, Inc.
*
* Arch specific calls to support NMI watchdog
*
* Bits copied from original nmi.c file
*
*/
#include <asm/apic.h>
#include <asm/nmi.h>
nmi_watchdog: Add new, generic implementation, using perf events This is a new generic nmi_watchdog implementation using the perf events infrastructure as suggested by Ingo. The implementation is simple, just create an in-kernel perf event and register an overflow handler to check for cpu lockups. I created a generic implementation that lives in kernel/ and the hardware specific part that for now lives in arch/x86. This approach has a number of advantages: - It simplifies the x86 PMU implementation in the long run, in that it removes the hardcoded low-level PMU implementation that was the NMI watchdog before. - It allows new NMI watchdog features to be added in a central place. - It allows other architectures to enable the NMI watchdog, as long as they have perf events (that provide NMIs) implemented. - It also allows for more graceful co-existence of existing perf events apps and the NMI watchdog - before these changes the relationship was exclusive. (The NMI watchdog will 'spend' a perf event when enabled. In later iterations we might be able to piggyback from an existing NMI event without having to allocate a hardware event for the NMI watchdog - turning this into a no-hardware-cost feature.) As for compatibility, we'll keep the old NMI watchdog code as well until the new one can 100% replace it on all CPUs, old and new alike. That might take some time as the NMI watchdog has been ported to many CPU models. I have done light testing to make sure the framework works correctly and it does. v2: Set the correct timeout values based on the old nmi watchdog Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: gorcunov@gmail.com Cc: aris@redhat.com Cc: peterz@infradead.org LKML-Reference: <1265424425-31562-3-git-send-email-dzickus@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-05 21:47:04 -05:00
#include <linux/cpumask.h>
#include <linux/kdebug.h>
#include <linux/notifier.h>
#include <linux/kprobes.h>
nmi_watchdog: Add new, generic implementation, using perf events This is a new generic nmi_watchdog implementation using the perf events infrastructure as suggested by Ingo. The implementation is simple, just create an in-kernel perf event and register an overflow handler to check for cpu lockups. I created a generic implementation that lives in kernel/ and the hardware specific part that for now lives in arch/x86. This approach has a number of advantages: - It simplifies the x86 PMU implementation in the long run, in that it removes the hardcoded low-level PMU implementation that was the NMI watchdog before. - It allows new NMI watchdog features to be added in a central place. - It allows other architectures to enable the NMI watchdog, as long as they have perf events (that provide NMIs) implemented. - It also allows for more graceful co-existence of existing perf events apps and the NMI watchdog - before these changes the relationship was exclusive. (The NMI watchdog will 'spend' a perf event when enabled. In later iterations we might be able to piggyback from an existing NMI event without having to allocate a hardware event for the NMI watchdog - turning this into a no-hardware-cost feature.) As for compatibility, we'll keep the old NMI watchdog code as well until the new one can 100% replace it on all CPUs, old and new alike. That might take some time as the NMI watchdog has been ported to many CPU models. I have done light testing to make sure the framework works correctly and it does. v2: Set the correct timeout values based on the old nmi watchdog Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: gorcunov@gmail.com Cc: aris@redhat.com Cc: peterz@infradead.org LKML-Reference: <1265424425-31562-3-git-send-email-dzickus@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-05 21:47:04 -05:00
#include <linux/nmi.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/seq_buf.h>
nmi_watchdog: Add new, generic implementation, using perf events This is a new generic nmi_watchdog implementation using the perf events infrastructure as suggested by Ingo. The implementation is simple, just create an in-kernel perf event and register an overflow handler to check for cpu lockups. I created a generic implementation that lives in kernel/ and the hardware specific part that for now lives in arch/x86. This approach has a number of advantages: - It simplifies the x86 PMU implementation in the long run, in that it removes the hardcoded low-level PMU implementation that was the NMI watchdog before. - It allows new NMI watchdog features to be added in a central place. - It allows other architectures to enable the NMI watchdog, as long as they have perf events (that provide NMIs) implemented. - It also allows for more graceful co-existence of existing perf events apps and the NMI watchdog - before these changes the relationship was exclusive. (The NMI watchdog will 'spend' a perf event when enabled. In later iterations we might be able to piggyback from an existing NMI event without having to allocate a hardware event for the NMI watchdog - turning this into a no-hardware-cost feature.) As for compatibility, we'll keep the old NMI watchdog code as well until the new one can 100% replace it on all CPUs, old and new alike. That might take some time as the NMI watchdog has been ported to many CPU models. I have done light testing to make sure the framework works correctly and it does. v2: Set the correct timeout values based on the old nmi watchdog Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: gorcunov@gmail.com Cc: aris@redhat.com Cc: peterz@infradead.org LKML-Reference: <1265424425-31562-3-git-send-email-dzickus@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-05 21:47:04 -05:00
#ifdef CONFIG_HARDLOCKUP_DETECTOR
u64 hw_nmi_get_sample_period(int watchdog_thresh)
{
return (u64)(cpu_khz) * 1000 * watchdog_thresh;
}
#endif
#ifdef arch_trigger_all_cpu_backtrace
/* For reliability, we're prepared to waste bits here. */
static DECLARE_BITMAP(backtrace_mask, NR_CPUS) __read_mostly;
static cpumask_var_t printtrace_mask;
#define NMI_BUF_SIZE 4096
struct nmi_seq_buf {
unsigned char buffer[NMI_BUF_SIZE];
struct seq_buf seq;
};
/* Safe printing in NMI context */
static DEFINE_PER_CPU(struct nmi_seq_buf, nmi_print_seq);
/* "in progress" flag of arch_trigger_all_cpu_backtrace */
static unsigned long backtrace_flag;
static void print_seq_line(struct nmi_seq_buf *s, int start, int end)
{
const char *buf = s->buffer + start;
printk("%.*s", (end - start) + 1, buf);
}
void arch_trigger_all_cpu_backtrace(bool include_self)
nmi_watchdog: Add new, generic implementation, using perf events This is a new generic nmi_watchdog implementation using the perf events infrastructure as suggested by Ingo. The implementation is simple, just create an in-kernel perf event and register an overflow handler to check for cpu lockups. I created a generic implementation that lives in kernel/ and the hardware specific part that for now lives in arch/x86. This approach has a number of advantages: - It simplifies the x86 PMU implementation in the long run, in that it removes the hardcoded low-level PMU implementation that was the NMI watchdog before. - It allows new NMI watchdog features to be added in a central place. - It allows other architectures to enable the NMI watchdog, as long as they have perf events (that provide NMIs) implemented. - It also allows for more graceful co-existence of existing perf events apps and the NMI watchdog - before these changes the relationship was exclusive. (The NMI watchdog will 'spend' a perf event when enabled. In later iterations we might be able to piggyback from an existing NMI event without having to allocate a hardware event for the NMI watchdog - turning this into a no-hardware-cost feature.) As for compatibility, we'll keep the old NMI watchdog code as well until the new one can 100% replace it on all CPUs, old and new alike. That might take some time as the NMI watchdog has been ported to many CPU models. I have done light testing to make sure the framework works correctly and it does. v2: Set the correct timeout values based on the old nmi watchdog Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: gorcunov@gmail.com Cc: aris@redhat.com Cc: peterz@infradead.org LKML-Reference: <1265424425-31562-3-git-send-email-dzickus@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-05 21:47:04 -05:00
{
struct nmi_seq_buf *s;
int len;
int cpu;
nmi_watchdog: Add new, generic implementation, using perf events This is a new generic nmi_watchdog implementation using the perf events infrastructure as suggested by Ingo. The implementation is simple, just create an in-kernel perf event and register an overflow handler to check for cpu lockups. I created a generic implementation that lives in kernel/ and the hardware specific part that for now lives in arch/x86. This approach has a number of advantages: - It simplifies the x86 PMU implementation in the long run, in that it removes the hardcoded low-level PMU implementation that was the NMI watchdog before. - It allows new NMI watchdog features to be added in a central place. - It allows other architectures to enable the NMI watchdog, as long as they have perf events (that provide NMIs) implemented. - It also allows for more graceful co-existence of existing perf events apps and the NMI watchdog - before these changes the relationship was exclusive. (The NMI watchdog will 'spend' a perf event when enabled. In later iterations we might be able to piggyback from an existing NMI event without having to allocate a hardware event for the NMI watchdog - turning this into a no-hardware-cost feature.) As for compatibility, we'll keep the old NMI watchdog code as well until the new one can 100% replace it on all CPUs, old and new alike. That might take some time as the NMI watchdog has been ported to many CPU models. I have done light testing to make sure the framework works correctly and it does. v2: Set the correct timeout values based on the old nmi watchdog Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: gorcunov@gmail.com Cc: aris@redhat.com Cc: peterz@infradead.org LKML-Reference: <1265424425-31562-3-git-send-email-dzickus@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-05 21:47:04 -05:00
int i;
int this_cpu = get_cpu();
nmi_watchdog: Add new, generic implementation, using perf events This is a new generic nmi_watchdog implementation using the perf events infrastructure as suggested by Ingo. The implementation is simple, just create an in-kernel perf event and register an overflow handler to check for cpu lockups. I created a generic implementation that lives in kernel/ and the hardware specific part that for now lives in arch/x86. This approach has a number of advantages: - It simplifies the x86 PMU implementation in the long run, in that it removes the hardcoded low-level PMU implementation that was the NMI watchdog before. - It allows new NMI watchdog features to be added in a central place. - It allows other architectures to enable the NMI watchdog, as long as they have perf events (that provide NMIs) implemented. - It also allows for more graceful co-existence of existing perf events apps and the NMI watchdog - before these changes the relationship was exclusive. (The NMI watchdog will 'spend' a perf event when enabled. In later iterations we might be able to piggyback from an existing NMI event without having to allocate a hardware event for the NMI watchdog - turning this into a no-hardware-cost feature.) As for compatibility, we'll keep the old NMI watchdog code as well until the new one can 100% replace it on all CPUs, old and new alike. That might take some time as the NMI watchdog has been ported to many CPU models. I have done light testing to make sure the framework works correctly and it does. v2: Set the correct timeout values based on the old nmi watchdog Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: gorcunov@gmail.com Cc: aris@redhat.com Cc: peterz@infradead.org LKML-Reference: <1265424425-31562-3-git-send-email-dzickus@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-05 21:47:04 -05:00
if (test_and_set_bit(0, &backtrace_flag)) {
/*
* If there is already a trigger_all_cpu_backtrace() in progress
* (backtrace_flag == 1), don't output double cpu dump infos.
*/
put_cpu();
return;
}
nmi_watchdog: Add new, generic implementation, using perf events This is a new generic nmi_watchdog implementation using the perf events infrastructure as suggested by Ingo. The implementation is simple, just create an in-kernel perf event and register an overflow handler to check for cpu lockups. I created a generic implementation that lives in kernel/ and the hardware specific part that for now lives in arch/x86. This approach has a number of advantages: - It simplifies the x86 PMU implementation in the long run, in that it removes the hardcoded low-level PMU implementation that was the NMI watchdog before. - It allows new NMI watchdog features to be added in a central place. - It allows other architectures to enable the NMI watchdog, as long as they have perf events (that provide NMIs) implemented. - It also allows for more graceful co-existence of existing perf events apps and the NMI watchdog - before these changes the relationship was exclusive. (The NMI watchdog will 'spend' a perf event when enabled. In later iterations we might be able to piggyback from an existing NMI event without having to allocate a hardware event for the NMI watchdog - turning this into a no-hardware-cost feature.) As for compatibility, we'll keep the old NMI watchdog code as well until the new one can 100% replace it on all CPUs, old and new alike. That might take some time as the NMI watchdog has been ported to many CPU models. I have done light testing to make sure the framework works correctly and it does. v2: Set the correct timeout values based on the old nmi watchdog Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: gorcunov@gmail.com Cc: aris@redhat.com Cc: peterz@infradead.org LKML-Reference: <1265424425-31562-3-git-send-email-dzickus@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-05 21:47:04 -05:00
cpumask_copy(to_cpumask(backtrace_mask), cpu_online_mask);
if (!include_self)
cpumask_clear_cpu(this_cpu, to_cpumask(backtrace_mask));
cpumask_copy(printtrace_mask, to_cpumask(backtrace_mask));
/*
* Set up per_cpu seq_buf buffers that the NMIs running on the other
* CPUs will write to.
*/
for_each_cpu(cpu, to_cpumask(backtrace_mask)) {
s = &per_cpu(nmi_print_seq, cpu);
seq_buf_init(&s->seq, s->buffer, NMI_BUF_SIZE);
}
nmi_watchdog: Add new, generic implementation, using perf events This is a new generic nmi_watchdog implementation using the perf events infrastructure as suggested by Ingo. The implementation is simple, just create an in-kernel perf event and register an overflow handler to check for cpu lockups. I created a generic implementation that lives in kernel/ and the hardware specific part that for now lives in arch/x86. This approach has a number of advantages: - It simplifies the x86 PMU implementation in the long run, in that it removes the hardcoded low-level PMU implementation that was the NMI watchdog before. - It allows new NMI watchdog features to be added in a central place. - It allows other architectures to enable the NMI watchdog, as long as they have perf events (that provide NMIs) implemented. - It also allows for more graceful co-existence of existing perf events apps and the NMI watchdog - before these changes the relationship was exclusive. (The NMI watchdog will 'spend' a perf event when enabled. In later iterations we might be able to piggyback from an existing NMI event without having to allocate a hardware event for the NMI watchdog - turning this into a no-hardware-cost feature.) As for compatibility, we'll keep the old NMI watchdog code as well until the new one can 100% replace it on all CPUs, old and new alike. That might take some time as the NMI watchdog has been ported to many CPU models. I have done light testing to make sure the framework works correctly and it does. v2: Set the correct timeout values based on the old nmi watchdog Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: gorcunov@gmail.com Cc: aris@redhat.com Cc: peterz@infradead.org LKML-Reference: <1265424425-31562-3-git-send-email-dzickus@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-05 21:47:04 -05:00
if (!cpumask_empty(to_cpumask(backtrace_mask))) {
pr_info("sending NMI to %s CPUs:\n",
(include_self ? "all" : "other"));
apic->send_IPI_mask(to_cpumask(backtrace_mask), NMI_VECTOR);
}
nmi_watchdog: Add new, generic implementation, using perf events This is a new generic nmi_watchdog implementation using the perf events infrastructure as suggested by Ingo. The implementation is simple, just create an in-kernel perf event and register an overflow handler to check for cpu lockups. I created a generic implementation that lives in kernel/ and the hardware specific part that for now lives in arch/x86. This approach has a number of advantages: - It simplifies the x86 PMU implementation in the long run, in that it removes the hardcoded low-level PMU implementation that was the NMI watchdog before. - It allows new NMI watchdog features to be added in a central place. - It allows other architectures to enable the NMI watchdog, as long as they have perf events (that provide NMIs) implemented. - It also allows for more graceful co-existence of existing perf events apps and the NMI watchdog - before these changes the relationship was exclusive. (The NMI watchdog will 'spend' a perf event when enabled. In later iterations we might be able to piggyback from an existing NMI event without having to allocate a hardware event for the NMI watchdog - turning this into a no-hardware-cost feature.) As for compatibility, we'll keep the old NMI watchdog code as well until the new one can 100% replace it on all CPUs, old and new alike. That might take some time as the NMI watchdog has been ported to many CPU models. I have done light testing to make sure the framework works correctly and it does. v2: Set the correct timeout values based on the old nmi watchdog Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: gorcunov@gmail.com Cc: aris@redhat.com Cc: peterz@infradead.org LKML-Reference: <1265424425-31562-3-git-send-email-dzickus@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-05 21:47:04 -05:00
/* Wait for up to 10 seconds for all CPUs to do the backtrace */
for (i = 0; i < 10 * 1000; i++) {
if (cpumask_empty(to_cpumask(backtrace_mask)))
break;
mdelay(1);
touch_softlockup_watchdog();
nmi_watchdog: Add new, generic implementation, using perf events This is a new generic nmi_watchdog implementation using the perf events infrastructure as suggested by Ingo. The implementation is simple, just create an in-kernel perf event and register an overflow handler to check for cpu lockups. I created a generic implementation that lives in kernel/ and the hardware specific part that for now lives in arch/x86. This approach has a number of advantages: - It simplifies the x86 PMU implementation in the long run, in that it removes the hardcoded low-level PMU implementation that was the NMI watchdog before. - It allows new NMI watchdog features to be added in a central place. - It allows other architectures to enable the NMI watchdog, as long as they have perf events (that provide NMIs) implemented. - It also allows for more graceful co-existence of existing perf events apps and the NMI watchdog - before these changes the relationship was exclusive. (The NMI watchdog will 'spend' a perf event when enabled. In later iterations we might be able to piggyback from an existing NMI event without having to allocate a hardware event for the NMI watchdog - turning this into a no-hardware-cost feature.) As for compatibility, we'll keep the old NMI watchdog code as well until the new one can 100% replace it on all CPUs, old and new alike. That might take some time as the NMI watchdog has been ported to many CPU models. I have done light testing to make sure the framework works correctly and it does. v2: Set the correct timeout values based on the old nmi watchdog Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: gorcunov@gmail.com Cc: aris@redhat.com Cc: peterz@infradead.org LKML-Reference: <1265424425-31562-3-git-send-email-dzickus@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-05 21:47:04 -05:00
}
/*
* Now that all the NMIs have triggered, we can dump out their
* back traces safely to the console.
*/
for_each_cpu(cpu, printtrace_mask) {
int last_i = 0;
s = &per_cpu(nmi_print_seq, cpu);
len = seq_buf_used(&s->seq);
if (!len)
continue;
/* Print line by line. */
for (i = 0; i < len; i++) {
if (s->buffer[i] == '\n') {
print_seq_line(s, last_i, i);
last_i = i + 1;
}
}
/* Check if there was a partial line. */
if (last_i < len) {
print_seq_line(s, last_i, len - 1);
pr_cont("\n");
}
}
clear_bit(0, &backtrace_flag);
smp_mb__after_atomic();
put_cpu();
nmi_watchdog: Add new, generic implementation, using perf events This is a new generic nmi_watchdog implementation using the perf events infrastructure as suggested by Ingo. The implementation is simple, just create an in-kernel perf event and register an overflow handler to check for cpu lockups. I created a generic implementation that lives in kernel/ and the hardware specific part that for now lives in arch/x86. This approach has a number of advantages: - It simplifies the x86 PMU implementation in the long run, in that it removes the hardcoded low-level PMU implementation that was the NMI watchdog before. - It allows new NMI watchdog features to be added in a central place. - It allows other architectures to enable the NMI watchdog, as long as they have perf events (that provide NMIs) implemented. - It also allows for more graceful co-existence of existing perf events apps and the NMI watchdog - before these changes the relationship was exclusive. (The NMI watchdog will 'spend' a perf event when enabled. In later iterations we might be able to piggyback from an existing NMI event without having to allocate a hardware event for the NMI watchdog - turning this into a no-hardware-cost feature.) As for compatibility, we'll keep the old NMI watchdog code as well until the new one can 100% replace it on all CPUs, old and new alike. That might take some time as the NMI watchdog has been ported to many CPU models. I have done light testing to make sure the framework works correctly and it does. v2: Set the correct timeout values based on the old nmi watchdog Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: gorcunov@gmail.com Cc: aris@redhat.com Cc: peterz@infradead.org LKML-Reference: <1265424425-31562-3-git-send-email-dzickus@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-05 21:47:04 -05:00
}
/*
* It is not safe to call printk() directly from NMI handlers.
* It may be fine if the NMI detected a lock up and we have no choice
* but to do so, but doing a NMI on all other CPUs to get a back trace
* can be done with a sysrq-l. We don't want that to lock up, which
* can happen if the NMI interrupts a printk in progress.
*
* Instead, we redirect the vprintk() to this nmi_vprintk() that writes
* the content into a per cpu seq_buf buffer. Then when the NMIs are
* all done, we can safely dump the contents of the seq_buf to a printk()
* from a non NMI context.
*/
static int nmi_vprintk(const char *fmt, va_list args)
{
struct nmi_seq_buf *s = this_cpu_ptr(&nmi_print_seq);
unsigned int len = seq_buf_used(&s->seq);
seq_buf_vprintf(&s->seq, fmt, args);
return seq_buf_used(&s->seq) - len;
}
kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation Use NOKPROBE_SYMBOL macro for protecting functions from kprobes instead of __kprobes annotation under arch/x86. This applies nokprobe_inline annotation for some cases, because NOKPROBE_SYMBOL() will inhibit inlining by referring the symbol address. This just folds a bunch of previous NOKPROBE_SYMBOL() cleanup patches for x86 to one patch. Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Link: http://lkml.kernel.org/r/20140417081814.26341.51656.stgit@ltc230.yrl.intra.hitachi.co.jp Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Borislav Petkov <bp@suse.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fernando Luis Vázquez Cao <fernando_b1@lab.ntt.co.jp> Cc: Gleb Natapov <gleb@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Jesper Nilsson <jesper.nilsson@axis.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Lebon <jlebon@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Matt Fleming <matt.fleming@intel.com> Cc: Michel Lespinasse <walken@google.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Seiji Aguchi <seiji.aguchi@hds.com> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-17 17:18:14 +09:00
static int
arch_trigger_all_cpu_backtrace_handler(unsigned int cmd, struct pt_regs *regs)
{
int cpu;
cpu = smp_processor_id();
if (cpumask_test_cpu(cpu, to_cpumask(backtrace_mask))) {
printk_func_t printk_func_save = this_cpu_read(printk_func);
/* Replace printk to write into the NMI seq */
this_cpu_write(printk_func, nmi_vprintk);
printk(KERN_WARNING "NMI backtrace for cpu %d\n", cpu);
show_regs(regs);
this_cpu_write(printk_func, printk_func_save);
cpumask_clear_cpu(cpu, to_cpumask(backtrace_mask));
return NMI_HANDLED;
}
return NMI_DONE;
}
kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation Use NOKPROBE_SYMBOL macro for protecting functions from kprobes instead of __kprobes annotation under arch/x86. This applies nokprobe_inline annotation for some cases, because NOKPROBE_SYMBOL() will inhibit inlining by referring the symbol address. This just folds a bunch of previous NOKPROBE_SYMBOL() cleanup patches for x86 to one patch. Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Link: http://lkml.kernel.org/r/20140417081814.26341.51656.stgit@ltc230.yrl.intra.hitachi.co.jp Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Borislav Petkov <bp@suse.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fernando Luis Vázquez Cao <fernando_b1@lab.ntt.co.jp> Cc: Gleb Natapov <gleb@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Jesper Nilsson <jesper.nilsson@axis.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Lebon <jlebon@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Matt Fleming <matt.fleming@intel.com> Cc: Michel Lespinasse <walken@google.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Seiji Aguchi <seiji.aguchi@hds.com> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-17 17:18:14 +09:00
NOKPROBE_SYMBOL(arch_trigger_all_cpu_backtrace_handler);
static int __init register_trigger_all_cpu_backtrace(void)
{
register_nmi_handler(NMI_LOCAL, arch_trigger_all_cpu_backtrace_handler,
0, "arch_bt");
return 0;
}
early_initcall(register_trigger_all_cpu_backtrace);
#endif