2017-01-10 16:47:49 -08:00
|
|
|
/*
|
|
|
|
* HEH: Hash-Encrypt-Hash mode
|
|
|
|
*
|
|
|
|
* Copyright (c) 2016 Google Inc.
|
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* Alex Cope <alexcope@google.com>
|
|
|
|
* Eric Biggers <ebiggers@google.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hash-Encrypt-Hash (HEH) is a proposed block cipher mode of operation which
|
|
|
|
* extends the strong pseudo-random permutation (SPRP) property of block ciphers
|
|
|
|
* (e.g. AES) to arbitrary length input strings. It uses two keyed invertible
|
|
|
|
* hash functions with a layer of ECB encryption applied in-between. The
|
|
|
|
* algorithm is specified by the following Internet Draft:
|
|
|
|
*
|
|
|
|
* https://tools.ietf.org/html/draft-cope-heh-01
|
|
|
|
*
|
|
|
|
* Although HEH can be used as either a regular symmetric cipher or as an AEAD,
|
|
|
|
* currently this module only provides it as a symmetric cipher. Additionally,
|
|
|
|
* only 16-byte nonces are supported.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <crypto/gf128mul.h>
|
|
|
|
#include <crypto/internal/hash.h>
|
|
|
|
#include <crypto/internal/skcipher.h>
|
|
|
|
#include <crypto/scatterwalk.h>
|
|
|
|
#include <crypto/skcipher.h>
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The block size is the size of GF(2^128) elements and also the required block
|
|
|
|
* size of the underlying block cipher.
|
|
|
|
*/
|
|
|
|
#define HEH_BLOCK_SIZE 16
|
|
|
|
|
|
|
|
struct heh_instance_ctx {
|
|
|
|
struct crypto_shash_spawn cmac;
|
2017-01-11 10:36:41 -08:00
|
|
|
struct crypto_shash_spawn poly_hash;
|
2017-01-10 16:47:49 -08:00
|
|
|
struct crypto_skcipher_spawn ecb;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct heh_tfm_ctx {
|
|
|
|
struct crypto_shash *cmac;
|
2017-01-11 10:36:41 -08:00
|
|
|
struct crypto_shash *poly_hash; /* keyed with tau_key */
|
2017-01-10 16:47:49 -08:00
|
|
|
struct crypto_ablkcipher *ecb;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct heh_cmac_data {
|
|
|
|
u8 nonce[HEH_BLOCK_SIZE];
|
|
|
|
__le32 nonce_length;
|
|
|
|
__le32 aad_length;
|
|
|
|
__le32 message_length;
|
|
|
|
__le32 padding;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct heh_req_ctx { /* aligned to alignmask */
|
|
|
|
be128 beta1_key;
|
|
|
|
be128 beta2_key;
|
|
|
|
union {
|
|
|
|
struct {
|
|
|
|
struct heh_cmac_data data;
|
|
|
|
struct shash_desc desc;
|
|
|
|
/* + crypto_shash_descsize(cmac) */
|
|
|
|
} cmac;
|
2017-01-11 10:36:41 -08:00
|
|
|
struct {
|
|
|
|
struct shash_desc desc;
|
|
|
|
/* + crypto_shash_descsize(poly_hash) */
|
|
|
|
} poly_hash;
|
2017-01-10 16:47:49 -08:00
|
|
|
struct {
|
|
|
|
u8 keystream[HEH_BLOCK_SIZE];
|
|
|
|
u8 tmp[HEH_BLOCK_SIZE];
|
|
|
|
struct scatterlist tmp_sgl[2];
|
|
|
|
struct ablkcipher_request req;
|
|
|
|
/* + crypto_ablkcipher_reqsize(ecb) */
|
|
|
|
} ecb;
|
|
|
|
} u;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get the offset in bytes to the last full block, or equivalently the length of
|
|
|
|
* all full blocks excluding the last
|
|
|
|
*/
|
|
|
|
static inline unsigned int get_tail_offset(unsigned int len)
|
|
|
|
{
|
|
|
|
len -= len % HEH_BLOCK_SIZE;
|
|
|
|
return len - HEH_BLOCK_SIZE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline struct heh_req_ctx *heh_req_ctx(struct ablkcipher_request *req)
|
|
|
|
{
|
|
|
|
unsigned int alignmask = crypto_ablkcipher_alignmask(
|
|
|
|
crypto_ablkcipher_reqtfm(req));
|
|
|
|
|
|
|
|
return (void *)PTR_ALIGN((u8 *)ablkcipher_request_ctx(req),
|
|
|
|
alignmask + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void async_done(struct crypto_async_request *areq, int err,
|
|
|
|
int (*next_step)(struct ablkcipher_request *,
|
|
|
|
u32))
|
|
|
|
{
|
|
|
|
struct ablkcipher_request *req = areq->data;
|
|
|
|
|
|
|
|
if (err)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
err = next_step(req, req->base.flags & ~CRYPTO_TFM_REQ_MAY_SLEEP);
|
|
|
|
if (err == -EINPROGRESS ||
|
|
|
|
(err == -EBUSY && (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)))
|
|
|
|
return;
|
|
|
|
out:
|
|
|
|
ablkcipher_request_complete(req, err);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Generate the per-message "beta" keys used by the hashing layers of HEH. The
|
|
|
|
* first beta key is the CMAC of the nonce, the additional authenticated data
|
|
|
|
* (AAD), and the lengths in bytes of the nonce, AAD, and message. The nonce
|
|
|
|
* and AAD are each zero-padded to the next 16-byte block boundary, and the
|
|
|
|
* lengths are serialized as 4-byte little endian integers and zero-padded to
|
|
|
|
* the next 16-byte block boundary.
|
|
|
|
* The second beta key is the first one interpreted as an element in GF(2^128)
|
|
|
|
* and multiplied by x.
|
|
|
|
*
|
|
|
|
* Note that because the nonce and AAD may, in general, be variable-length, the
|
|
|
|
* key generation must be done by a pseudo-random function (PRF) on
|
|
|
|
* variable-length inputs. CBC-MAC does not satisfy this, as it is only a PRF
|
|
|
|
* on fixed-length inputs. CMAC remedies this flaw. Including the lengths of
|
|
|
|
* the nonce, AAD, and message is also critical to avoid collisions.
|
|
|
|
*
|
|
|
|
* That being said, this implementation does not yet operate as an AEAD and
|
|
|
|
* therefore there is never any AAD, nor are variable-length nonces supported.
|
|
|
|
*/
|
|
|
|
static int generate_betas(struct ablkcipher_request *req,
|
|
|
|
be128 *beta1_key, be128 *beta2_key)
|
|
|
|
{
|
|
|
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
|
|
|
|
struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(tfm);
|
|
|
|
struct heh_req_ctx *rctx = heh_req_ctx(req);
|
|
|
|
struct heh_cmac_data *data = &rctx->u.cmac.data;
|
|
|
|
struct shash_desc *desc = &rctx->u.cmac.desc;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
BUILD_BUG_ON(sizeof(*data) != 2 * HEH_BLOCK_SIZE);
|
|
|
|
memcpy(data->nonce, req->info, HEH_BLOCK_SIZE);
|
|
|
|
data->nonce_length = cpu_to_le32(HEH_BLOCK_SIZE);
|
|
|
|
data->aad_length = cpu_to_le32(0);
|
|
|
|
data->message_length = cpu_to_le32(req->nbytes);
|
|
|
|
data->padding = cpu_to_le32(0);
|
|
|
|
|
|
|
|
desc->tfm = ctx->cmac;
|
|
|
|
desc->flags = req->base.flags;
|
|
|
|
|
|
|
|
err = crypto_shash_digest(desc, (const u8 *)data, sizeof(*data),
|
|
|
|
(u8 *)beta1_key);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
gf128mul_x_ble(beta2_key, beta1_key);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
/*****************************************************************************/
|
|
|
|
|
2017-01-10 16:47:49 -08:00
|
|
|
/*
|
2017-01-11 10:36:41 -08:00
|
|
|
* This is the generic version of poly_hash. It does the GF(2^128)
|
|
|
|
* multiplication by 'tau_key' using a precomputed table, without using any
|
|
|
|
* special CPU instructions. On some platforms, an accelerated version (with
|
|
|
|
* higher cra_priority) may be used instead.
|
2017-01-10 16:47:49 -08:00
|
|
|
*/
|
2017-01-11 10:36:41 -08:00
|
|
|
|
|
|
|
struct poly_hash_tfm_ctx {
|
|
|
|
struct gf128mul_4k *tau_key;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct poly_hash_desc_ctx {
|
|
|
|
be128 digest;
|
|
|
|
unsigned int count;
|
|
|
|
};
|
|
|
|
|
|
|
|
static int poly_hash_setkey(struct crypto_shash *tfm,
|
|
|
|
const u8 *key, unsigned int keylen)
|
2017-01-10 16:47:49 -08:00
|
|
|
{
|
2017-01-11 10:36:41 -08:00
|
|
|
struct poly_hash_tfm_ctx *tctx = crypto_shash_ctx(tfm);
|
|
|
|
be128 key128;
|
2017-01-10 16:47:49 -08:00
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
if (keylen != HEH_BLOCK_SIZE) {
|
|
|
|
crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tctx->tau_key)
|
|
|
|
gf128mul_free_4k(tctx->tau_key);
|
|
|
|
memcpy(&key128, key, HEH_BLOCK_SIZE);
|
|
|
|
tctx->tau_key = gf128mul_init_4k_ble(&key128);
|
|
|
|
if (!tctx->tau_key)
|
|
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int poly_hash_init(struct shash_desc *desc)
|
|
|
|
{
|
|
|
|
struct poly_hash_desc_ctx *ctx = shash_desc_ctx(desc);
|
2017-01-10 16:47:49 -08:00
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
ctx->digest = (be128) { 0 };
|
|
|
|
ctx->count = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
2017-01-10 16:47:49 -08:00
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
static int poly_hash_update(struct shash_desc *desc, const u8 *src,
|
|
|
|
unsigned int len)
|
|
|
|
{
|
|
|
|
struct poly_hash_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
|
|
|
|
struct poly_hash_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
|
|
unsigned int partial = ctx->count % HEH_BLOCK_SIZE;
|
|
|
|
u8 *dst = (u8 *)&ctx->digest + partial;
|
2017-01-10 16:47:49 -08:00
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
ctx->count += len;
|
2017-01-10 16:47:49 -08:00
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
/* Finishing at least one block? */
|
|
|
|
if (partial + len >= HEH_BLOCK_SIZE) {
|
2017-01-10 16:47:49 -08:00
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
if (partial) {
|
|
|
|
/* Finish the pending block. */
|
|
|
|
unsigned int n = HEH_BLOCK_SIZE - partial;
|
|
|
|
|
|
|
|
len -= n;
|
|
|
|
do {
|
|
|
|
*dst++ ^= *src++;
|
|
|
|
} while (--n);
|
|
|
|
|
|
|
|
gf128mul_4k_ble(&ctx->digest, tctx->tau_key);
|
2017-01-10 16:47:49 -08:00
|
|
|
}
|
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
/* Process zero or more full blocks. */
|
|
|
|
while (len >= HEH_BLOCK_SIZE) {
|
|
|
|
be128 coeff;
|
|
|
|
|
2017-01-10 16:47:49 -08:00
|
|
|
memcpy(&coeff, src, HEH_BLOCK_SIZE);
|
2017-01-11 10:36:41 -08:00
|
|
|
be128_xor(&ctx->digest, &ctx->digest, &coeff);
|
2017-01-10 16:47:49 -08:00
|
|
|
src += HEH_BLOCK_SIZE;
|
2017-01-11 10:36:41 -08:00
|
|
|
len -= HEH_BLOCK_SIZE;
|
|
|
|
gf128mul_4k_ble(&ctx->digest, tctx->tau_key);
|
2017-01-10 16:47:49 -08:00
|
|
|
}
|
2017-01-11 10:36:41 -08:00
|
|
|
dst = (u8 *)&ctx->digest;
|
|
|
|
}
|
2017-01-10 16:47:49 -08:00
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
/* Continue adding the next block to 'digest'. */
|
|
|
|
while (len--)
|
|
|
|
*dst++ ^= *src++;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int poly_hash_final(struct shash_desc *desc, u8 *out)
|
|
|
|
{
|
|
|
|
struct poly_hash_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
|
|
|
|
|
|
/* Finish the last block if needed. */
|
|
|
|
if (ctx->count % HEH_BLOCK_SIZE) {
|
|
|
|
struct poly_hash_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
|
|
|
|
|
|
|
|
gf128mul_4k_ble(&ctx->digest, tctx->tau_key);
|
2017-01-10 16:47:49 -08:00
|
|
|
}
|
2017-01-11 10:36:41 -08:00
|
|
|
|
|
|
|
memcpy(out, &ctx->digest, HEH_BLOCK_SIZE);
|
|
|
|
return 0;
|
2017-01-10 16:47:49 -08:00
|
|
|
}
|
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
static void poly_hash_exit(struct crypto_tfm *tfm)
|
|
|
|
{
|
|
|
|
struct poly_hash_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
|
|
|
|
|
|
|
|
gf128mul_free_4k(tctx->tau_key);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct shash_alg poly_hash_alg = {
|
|
|
|
.digestsize = HEH_BLOCK_SIZE,
|
|
|
|
.init = poly_hash_init,
|
|
|
|
.update = poly_hash_update,
|
|
|
|
.final = poly_hash_final,
|
|
|
|
.setkey = poly_hash_setkey,
|
|
|
|
.descsize = sizeof(struct poly_hash_desc_ctx),
|
|
|
|
.base = {
|
|
|
|
.cra_name = "poly_hash",
|
|
|
|
.cra_driver_name = "poly_hash-generic",
|
|
|
|
.cra_priority = 100,
|
|
|
|
.cra_ctxsize = sizeof(struct poly_hash_tfm_ctx),
|
|
|
|
.cra_exit = poly_hash_exit,
|
|
|
|
.cra_module = THIS_MODULE,
|
|
|
|
},
|
|
|
|
};
|
|
|
|
|
|
|
|
/*****************************************************************************/
|
|
|
|
|
2017-01-10 16:47:49 -08:00
|
|
|
/*
|
|
|
|
* Split the message into 16 byte blocks, padding out the last block, and use
|
|
|
|
* the blocks as coefficients in the evaluation of a polynomial over GF(2^128)
|
|
|
|
* at the secret point 'tau_key'. For ease of implementing the higher-level
|
|
|
|
* heh_hash_inv() function, the constant and degree-1 coefficients are swapped
|
|
|
|
* if there is a partial block.
|
|
|
|
*
|
|
|
|
* Mathematically, compute:
|
|
|
|
* if (no partial block)
|
|
|
|
* k^{N-1} * m_0 + ... + k * m_{N-2} + m_{N-1}
|
|
|
|
* else if (partial block)
|
|
|
|
* k^N * m_0 + ... + k^2 * m_{N-2} + k * m_N + m_{N-1}
|
|
|
|
*
|
|
|
|
* where:
|
|
|
|
* t is tau_key
|
|
|
|
* N is the number of full blocks in the message
|
|
|
|
* m_i is the i-th full block in the message for i = 0 to N-1 inclusive
|
|
|
|
* m_N is the partial block of the message zero-padded up to 16 bytes
|
2017-01-11 10:36:41 -08:00
|
|
|
*
|
|
|
|
* Note that most of this is now separated out into its own keyed hash
|
|
|
|
* algorithm, to allow optimized implementations. However, we still handle the
|
|
|
|
* swapping of the last two coefficients here in the HEH template because this
|
|
|
|
* simplifies the poly_hash algorithms: they don't have to buffer an extra
|
|
|
|
* block, don't have to duplicate as much code, and are more similar to GHASH.
|
2017-01-10 16:47:49 -08:00
|
|
|
*/
|
2017-01-11 10:36:41 -08:00
|
|
|
static int poly_hash(struct ablkcipher_request *req, struct scatterlist *sgl,
|
|
|
|
be128 *hash)
|
2017-01-10 16:47:49 -08:00
|
|
|
{
|
2017-01-11 10:36:41 -08:00
|
|
|
struct heh_req_ctx *rctx = heh_req_ctx(req);
|
|
|
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
|
2017-01-10 16:47:49 -08:00
|
|
|
struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(tfm);
|
2017-01-11 10:36:41 -08:00
|
|
|
struct shash_desc *desc = &rctx->u.poly_hash.desc;
|
|
|
|
unsigned int tail_offset = get_tail_offset(req->nbytes);
|
|
|
|
unsigned int tail_len = req->nbytes - tail_offset;
|
2017-01-10 16:47:49 -08:00
|
|
|
be128 tail[2];
|
2017-01-11 10:36:41 -08:00
|
|
|
unsigned int i, n;
|
|
|
|
struct sg_mapping_iter miter;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
desc->tfm = ctx->poly_hash;
|
|
|
|
desc->flags = req->base.flags;
|
2017-01-10 16:47:49 -08:00
|
|
|
|
|
|
|
/* Handle all full blocks except the last */
|
2017-01-11 10:36:41 -08:00
|
|
|
err = crypto_shash_init(desc);
|
|
|
|
sg_miter_start(&miter, sgl, sg_nents(sgl),
|
|
|
|
SG_MITER_FROM_SG | SG_MITER_ATOMIC);
|
|
|
|
for (i = 0; i < tail_offset && !err; i += n) {
|
|
|
|
sg_miter_next(&miter);
|
|
|
|
n = min_t(unsigned int, miter.length, tail_offset - i);
|
|
|
|
err = crypto_shash_update(desc, miter.addr, n);
|
|
|
|
}
|
|
|
|
sg_miter_stop(&miter);
|
|
|
|
if (err)
|
|
|
|
return err;
|
2017-01-10 16:47:49 -08:00
|
|
|
|
|
|
|
/* Handle the last full block and the partial block */
|
|
|
|
scatterwalk_map_and_copy(tail, sgl, tail_offset, tail_len, 0);
|
|
|
|
|
|
|
|
if (tail_len != HEH_BLOCK_SIZE) {
|
|
|
|
/* handle the partial block */
|
|
|
|
memset((u8 *)tail + tail_len, 0, sizeof(tail) - tail_len);
|
2017-01-11 10:36:41 -08:00
|
|
|
err = crypto_shash_update(desc, (u8 *)&tail[1], HEH_BLOCK_SIZE);
|
|
|
|
if (err)
|
|
|
|
return err;
|
2017-01-10 16:47:49 -08:00
|
|
|
}
|
2017-01-11 10:36:41 -08:00
|
|
|
err = crypto_shash_final(desc, (u8 *)hash);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
be128_xor(hash, hash, &tail[0]);
|
|
|
|
return 0;
|
2017-01-10 16:47:49 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Transform all full blocks except the last.
|
|
|
|
* This is used by both the hash and inverse hash phases.
|
|
|
|
*/
|
|
|
|
static int heh_tfm_blocks(struct ablkcipher_request *req,
|
|
|
|
struct scatterlist *src_sgl,
|
|
|
|
struct scatterlist *dst_sgl, unsigned int len,
|
|
|
|
const be128 *hash, const be128 *beta_key)
|
|
|
|
{
|
|
|
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
|
|
|
|
struct blkcipher_desc desc = { .flags = req->base.flags };
|
|
|
|
struct blkcipher_walk walk;
|
|
|
|
be128 e = *beta_key;
|
|
|
|
int err;
|
|
|
|
unsigned int nbytes;
|
|
|
|
|
|
|
|
blkcipher_walk_init(&walk, dst_sgl, src_sgl, len);
|
|
|
|
|
|
|
|
err = blkcipher_ablkcipher_walk_virt(&desc, &walk, tfm);
|
|
|
|
|
|
|
|
while ((nbytes = walk.nbytes)) {
|
|
|
|
const be128 *src = (be128 *)walk.src.virt.addr;
|
|
|
|
be128 *dst = (be128 *)walk.dst.virt.addr;
|
|
|
|
|
|
|
|
do {
|
|
|
|
gf128mul_x_ble(&e, &e);
|
|
|
|
be128_xor(dst, src, hash);
|
|
|
|
be128_xor(dst, dst, &e);
|
|
|
|
src++;
|
|
|
|
dst++;
|
|
|
|
} while ((nbytes -= HEH_BLOCK_SIZE) >= HEH_BLOCK_SIZE);
|
|
|
|
err = blkcipher_walk_done(&desc, &walk, nbytes);
|
|
|
|
}
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The hash phase of HEH. Given a message, compute:
|
|
|
|
*
|
|
|
|
* (m_0 + H, ..., m_{N-2} + H, H, m_N) + (xb, x^2b, ..., x^{N-1}b, b, 0)
|
|
|
|
*
|
|
|
|
* where:
|
|
|
|
* N is the number of full blocks in the message
|
|
|
|
* m_i is the i-th full block in the message for i = 0 to N-1 inclusive
|
|
|
|
* m_N is the unpadded partial block, possibly empty
|
|
|
|
* H is the poly_hash() of the message, keyed by tau_key
|
|
|
|
* b is beta_key
|
|
|
|
* x is the element x in our representation of GF(2^128)
|
|
|
|
*
|
|
|
|
* Note that the partial block remains unchanged, but it does affect the result
|
|
|
|
* of poly_hash() and therefore the transformation of all the full blocks.
|
|
|
|
*/
|
|
|
|
static int heh_hash(struct ablkcipher_request *req, const be128 *beta_key)
|
|
|
|
{
|
|
|
|
be128 hash;
|
|
|
|
unsigned int tail_offset = get_tail_offset(req->nbytes);
|
|
|
|
unsigned int partial_len = req->nbytes % HEH_BLOCK_SIZE;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
/* poly_hash() the full message including the partial block */
|
2017-01-11 10:36:41 -08:00
|
|
|
err = poly_hash(req, req->src, &hash);
|
|
|
|
if (err)
|
|
|
|
return err;
|
2017-01-10 16:47:49 -08:00
|
|
|
|
|
|
|
/* Transform all full blocks except the last */
|
|
|
|
err = heh_tfm_blocks(req, req->src, req->dst, tail_offset, &hash,
|
|
|
|
beta_key);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
/* Set the last full block to hash XOR beta_key */
|
|
|
|
be128_xor(&hash, &hash, beta_key);
|
|
|
|
scatterwalk_map_and_copy(&hash, req->dst, tail_offset, HEH_BLOCK_SIZE,
|
|
|
|
1);
|
|
|
|
|
|
|
|
/* Copy the partial block if needed */
|
|
|
|
if (partial_len != 0 && req->src != req->dst) {
|
|
|
|
unsigned int offs = tail_offset + HEH_BLOCK_SIZE;
|
|
|
|
|
|
|
|
scatterwalk_map_and_copy(&hash, req->src, offs, partial_len, 0);
|
|
|
|
scatterwalk_map_and_copy(&hash, req->dst, offs, partial_len, 1);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The inverse hash phase of HEH. This undoes the result of heh_hash().
|
|
|
|
*/
|
|
|
|
static int heh_hash_inv(struct ablkcipher_request *req, const be128 *beta_key)
|
|
|
|
{
|
|
|
|
be128 hash;
|
|
|
|
be128 tmp;
|
|
|
|
struct scatterlist tmp_sgl[2];
|
|
|
|
struct scatterlist *tail_sgl;
|
2017-01-11 10:36:41 -08:00
|
|
|
unsigned int tail_offset = get_tail_offset(req->nbytes);
|
2017-01-10 16:47:49 -08:00
|
|
|
struct scatterlist *sgl = req->dst;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The last full block was computed as hash XOR beta_key, so XOR it with
|
|
|
|
* beta_key to recover hash.
|
|
|
|
*/
|
|
|
|
tail_sgl = scatterwalk_ffwd(tmp_sgl, sgl, tail_offset);
|
|
|
|
scatterwalk_map_and_copy(&hash, tail_sgl, 0, HEH_BLOCK_SIZE, 0);
|
|
|
|
be128_xor(&hash, &hash, beta_key);
|
|
|
|
|
|
|
|
/* Transform all full blocks except the last */
|
|
|
|
err = heh_tfm_blocks(req, sgl, sgl, tail_offset, &hash, beta_key);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Recover the last full block. We know 'hash', i.e. the poly_hash() of
|
|
|
|
* the the original message. The last full block was the constant term
|
|
|
|
* of the polynomial. To recover the last full block, temporarily zero
|
|
|
|
* it, compute the poly_hash(), and take the difference from 'hash'.
|
|
|
|
*/
|
|
|
|
memset(&tmp, 0, sizeof(tmp));
|
|
|
|
scatterwalk_map_and_copy(&tmp, tail_sgl, 0, HEH_BLOCK_SIZE, 1);
|
2017-01-11 10:36:41 -08:00
|
|
|
err = poly_hash(req, sgl, &tmp);
|
|
|
|
if (err)
|
|
|
|
return err;
|
2017-01-10 16:47:49 -08:00
|
|
|
be128_xor(&tmp, &tmp, &hash);
|
|
|
|
scatterwalk_map_and_copy(&tmp, tail_sgl, 0, HEH_BLOCK_SIZE, 1);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int heh_hash_inv_step(struct ablkcipher_request *req, u32 flags)
|
|
|
|
{
|
|
|
|
struct heh_req_ctx *rctx = heh_req_ctx(req);
|
|
|
|
|
|
|
|
return heh_hash_inv(req, &rctx->beta2_key);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int heh_ecb_step_3(struct ablkcipher_request *req, u32 flags)
|
|
|
|
{
|
|
|
|
struct heh_req_ctx *rctx = heh_req_ctx(req);
|
|
|
|
u8 partial_block[HEH_BLOCK_SIZE] __aligned(__alignof__(u32));
|
|
|
|
unsigned int tail_offset = get_tail_offset(req->nbytes);
|
|
|
|
unsigned int partial_offset = tail_offset + HEH_BLOCK_SIZE;
|
|
|
|
unsigned int partial_len = req->nbytes - partial_offset;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Extract the pad in req->dst at tail_offset, and xor the partial block
|
|
|
|
* with it to create encrypted partial block
|
|
|
|
*/
|
|
|
|
scatterwalk_map_and_copy(rctx->u.ecb.keystream, req->dst, tail_offset,
|
|
|
|
HEH_BLOCK_SIZE, 0);
|
|
|
|
scatterwalk_map_and_copy(partial_block, req->dst, partial_offset,
|
|
|
|
partial_len, 0);
|
|
|
|
crypto_xor(partial_block, rctx->u.ecb.keystream, partial_len);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Store the encrypted final block and partial block back in dst_sg
|
|
|
|
*/
|
|
|
|
scatterwalk_map_and_copy(&rctx->u.ecb.tmp, req->dst, tail_offset,
|
|
|
|
HEH_BLOCK_SIZE, 1);
|
|
|
|
scatterwalk_map_and_copy(partial_block, req->dst, partial_offset,
|
|
|
|
partial_len, 1);
|
|
|
|
|
|
|
|
return heh_hash_inv_step(req, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void heh_ecb_step_2_done(struct crypto_async_request *areq, int err)
|
|
|
|
{
|
|
|
|
return async_done(areq, err, heh_ecb_step_3);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int heh_ecb_step_2(struct ablkcipher_request *req, u32 flags)
|
|
|
|
{
|
|
|
|
struct heh_req_ctx *rctx = heh_req_ctx(req);
|
|
|
|
unsigned int partial_len = req->nbytes % HEH_BLOCK_SIZE;
|
|
|
|
struct scatterlist *tmp_sgl;
|
|
|
|
int err;
|
|
|
|
unsigned int tail_offset = get_tail_offset(req->nbytes);
|
|
|
|
|
|
|
|
if (partial_len == 0)
|
|
|
|
return heh_hash_inv_step(req, flags);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Extract the final full block, store it in tmp, and then xor that with
|
|
|
|
* the value saved in u.ecb.keystream
|
|
|
|
*/
|
|
|
|
scatterwalk_map_and_copy(rctx->u.ecb.tmp, req->dst, tail_offset,
|
|
|
|
HEH_BLOCK_SIZE, 0);
|
|
|
|
crypto_xor(rctx->u.ecb.keystream, rctx->u.ecb.tmp, HEH_BLOCK_SIZE);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Encrypt the value in rctx->u.ecb.keystream to create the pad for the
|
|
|
|
* partial block.
|
|
|
|
* We cannot encrypt stack buffers, so re-use the dst_sg to do this
|
|
|
|
* encryption to avoid a malloc. The value at tail_offset is stored in
|
|
|
|
* tmp, and will be restored later.
|
|
|
|
*/
|
|
|
|
scatterwalk_map_and_copy(rctx->u.ecb.keystream, req->dst, tail_offset,
|
|
|
|
HEH_BLOCK_SIZE, 1);
|
|
|
|
tmp_sgl = scatterwalk_ffwd(rctx->u.ecb.tmp_sgl, req->dst, tail_offset);
|
|
|
|
ablkcipher_request_set_callback(&rctx->u.ecb.req, flags,
|
|
|
|
heh_ecb_step_2_done, req);
|
|
|
|
ablkcipher_request_set_crypt(&rctx->u.ecb.req, tmp_sgl, tmp_sgl,
|
|
|
|
HEH_BLOCK_SIZE, NULL);
|
|
|
|
err = crypto_ablkcipher_encrypt(&rctx->u.ecb.req);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
return heh_ecb_step_3(req, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void heh_ecb_full_done(struct crypto_async_request *areq, int err)
|
|
|
|
{
|
|
|
|
return async_done(areq, err, heh_ecb_step_2);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The encrypt phase of HEH. This uses ECB encryption, with special handling
|
|
|
|
* for the partial block at the end if any. The source data is already in
|
|
|
|
* req->dst, so the encryption happens in-place.
|
|
|
|
*
|
|
|
|
* After the encrypt phase we continue on to the inverse hash phase. The
|
|
|
|
* functions calls are chained to support asynchronous ECB algorithms.
|
|
|
|
*/
|
|
|
|
static int heh_ecb(struct ablkcipher_request *req, bool decrypt)
|
|
|
|
{
|
|
|
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
|
|
|
|
struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(tfm);
|
|
|
|
struct heh_req_ctx *rctx = heh_req_ctx(req);
|
|
|
|
struct ablkcipher_request *ecb_req = &rctx->u.ecb.req;
|
|
|
|
unsigned int tail_offset = get_tail_offset(req->nbytes);
|
|
|
|
unsigned int full_len = tail_offset + HEH_BLOCK_SIZE;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Save the last full block before it is encrypted/decrypted. This will
|
|
|
|
* be used later to encrypt/decrypt the partial block
|
|
|
|
*/
|
|
|
|
scatterwalk_map_and_copy(rctx->u.ecb.keystream, req->dst, tail_offset,
|
|
|
|
HEH_BLOCK_SIZE, 0);
|
|
|
|
|
|
|
|
/* Encrypt/decrypt all full blocks */
|
|
|
|
ablkcipher_request_set_tfm(ecb_req, ctx->ecb);
|
|
|
|
ablkcipher_request_set_callback(ecb_req, req->base.flags,
|
|
|
|
heh_ecb_full_done, req);
|
|
|
|
ablkcipher_request_set_crypt(ecb_req, req->dst, req->dst, full_len,
|
|
|
|
NULL);
|
|
|
|
if (decrypt)
|
|
|
|
err = crypto_ablkcipher_decrypt(ecb_req);
|
|
|
|
else
|
|
|
|
err = crypto_ablkcipher_encrypt(ecb_req);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
return heh_ecb_step_2(req, req->base.flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int heh_crypt(struct ablkcipher_request *req, bool decrypt)
|
|
|
|
{
|
|
|
|
struct heh_req_ctx *rctx = heh_req_ctx(req);
|
|
|
|
int err;
|
|
|
|
|
|
|
|
/* Inputs must be at least one full block */
|
|
|
|
if (req->nbytes < HEH_BLOCK_SIZE)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
err = generate_betas(req, &rctx->beta1_key, &rctx->beta2_key);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
if (decrypt)
|
|
|
|
swap(rctx->beta1_key, rctx->beta2_key);
|
|
|
|
|
|
|
|
err = heh_hash(req, &rctx->beta1_key);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
return heh_ecb(req, decrypt);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int heh_encrypt(struct ablkcipher_request *req)
|
|
|
|
{
|
|
|
|
return heh_crypt(req, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int heh_decrypt(struct ablkcipher_request *req)
|
|
|
|
{
|
|
|
|
return heh_crypt(req, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int heh_setkey(struct crypto_ablkcipher *parent, const u8 *key,
|
|
|
|
unsigned int keylen)
|
|
|
|
{
|
|
|
|
struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(parent);
|
|
|
|
struct crypto_shash *cmac = ctx->cmac;
|
|
|
|
struct crypto_ablkcipher *ecb = ctx->ecb;
|
|
|
|
SHASH_DESC_ON_STACK(desc, cmac);
|
|
|
|
u8 *derived_keys;
|
|
|
|
u8 digest[HEH_BLOCK_SIZE];
|
|
|
|
unsigned int i;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
/* set prf_key = key */
|
|
|
|
crypto_shash_clear_flags(cmac, CRYPTO_TFM_REQ_MASK);
|
|
|
|
crypto_shash_set_flags(cmac, crypto_ablkcipher_get_flags(parent) &
|
|
|
|
CRYPTO_TFM_REQ_MASK);
|
|
|
|
err = crypto_shash_setkey(cmac, key, keylen);
|
|
|
|
crypto_ablkcipher_set_flags(parent, crypto_shash_get_flags(cmac) &
|
|
|
|
CRYPTO_TFM_RES_MASK);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Generate tau_key and ecb_key as follows:
|
|
|
|
* tau_key = cmac(prf_key, 0x00...01)
|
|
|
|
* ecb_key = cmac(prf_key, 0x00...02) || cmac(prf_key, 0x00...03) || ...
|
|
|
|
* truncated to keylen bytes
|
|
|
|
*/
|
|
|
|
derived_keys = kzalloc(round_up(HEH_BLOCK_SIZE + keylen,
|
|
|
|
HEH_BLOCK_SIZE), GFP_KERNEL);
|
|
|
|
if (!derived_keys)
|
|
|
|
return -ENOMEM;
|
|
|
|
desc->tfm = cmac;
|
|
|
|
desc->flags = (crypto_shash_get_flags(cmac) & CRYPTO_TFM_REQ_MASK);
|
|
|
|
for (i = 0; i < keylen + HEH_BLOCK_SIZE; i += HEH_BLOCK_SIZE) {
|
|
|
|
derived_keys[i + HEH_BLOCK_SIZE - 1] =
|
|
|
|
0x01 + i / HEH_BLOCK_SIZE;
|
|
|
|
err = crypto_shash_digest(desc, derived_keys + i,
|
|
|
|
HEH_BLOCK_SIZE, digest);
|
|
|
|
if (err)
|
|
|
|
goto out;
|
|
|
|
memcpy(derived_keys + i, digest, HEH_BLOCK_SIZE);
|
|
|
|
}
|
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
err = crypto_shash_setkey(ctx->poly_hash, derived_keys, HEH_BLOCK_SIZE);
|
|
|
|
if (err)
|
2017-01-10 16:47:49 -08:00
|
|
|
goto out;
|
|
|
|
|
|
|
|
crypto_ablkcipher_clear_flags(ecb, CRYPTO_TFM_REQ_MASK);
|
|
|
|
crypto_ablkcipher_set_flags(ecb, crypto_ablkcipher_get_flags(parent) &
|
|
|
|
CRYPTO_TFM_REQ_MASK);
|
|
|
|
err = crypto_ablkcipher_setkey(ecb, derived_keys + HEH_BLOCK_SIZE,
|
|
|
|
keylen);
|
|
|
|
crypto_ablkcipher_set_flags(parent, crypto_ablkcipher_get_flags(ecb) &
|
|
|
|
CRYPTO_TFM_RES_MASK);
|
|
|
|
out:
|
|
|
|
kzfree(derived_keys);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int heh_init_tfm(struct crypto_tfm *tfm)
|
|
|
|
{
|
|
|
|
struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
|
|
|
|
struct heh_instance_ctx *ictx = crypto_instance_ctx(inst);
|
|
|
|
struct heh_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
struct crypto_shash *cmac;
|
2017-01-11 10:36:41 -08:00
|
|
|
struct crypto_shash *poly_hash;
|
2017-01-10 16:47:49 -08:00
|
|
|
struct crypto_ablkcipher *ecb;
|
|
|
|
unsigned int reqsize;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
cmac = crypto_spawn_shash(&ictx->cmac);
|
|
|
|
if (IS_ERR(cmac))
|
|
|
|
return PTR_ERR(cmac);
|
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
poly_hash = crypto_spawn_shash(&ictx->poly_hash);
|
|
|
|
err = PTR_ERR(poly_hash);
|
|
|
|
if (IS_ERR(poly_hash))
|
|
|
|
goto err_free_cmac;
|
|
|
|
|
2017-01-10 16:47:49 -08:00
|
|
|
ecb = crypto_spawn_skcipher(&ictx->ecb);
|
|
|
|
err = PTR_ERR(ecb);
|
|
|
|
if (IS_ERR(ecb))
|
2017-01-11 10:36:41 -08:00
|
|
|
goto err_free_poly_hash;
|
2017-01-10 16:47:49 -08:00
|
|
|
|
|
|
|
ctx->cmac = cmac;
|
2017-01-11 10:36:41 -08:00
|
|
|
ctx->poly_hash = poly_hash;
|
2017-01-10 16:47:49 -08:00
|
|
|
ctx->ecb = ecb;
|
|
|
|
|
|
|
|
reqsize = crypto_tfm_alg_alignmask(tfm) &
|
|
|
|
~(crypto_tfm_ctx_alignment() - 1);
|
2017-01-11 10:36:41 -08:00
|
|
|
reqsize += max3(offsetof(struct heh_req_ctx, u.cmac.desc) +
|
|
|
|
sizeof(struct shash_desc) +
|
|
|
|
crypto_shash_descsize(cmac),
|
|
|
|
offsetof(struct heh_req_ctx, u.poly_hash.desc) +
|
|
|
|
sizeof(struct shash_desc) +
|
|
|
|
crypto_shash_descsize(poly_hash),
|
|
|
|
offsetof(struct heh_req_ctx, u.ecb.req) +
|
|
|
|
sizeof(struct ablkcipher_request) +
|
|
|
|
crypto_ablkcipher_reqsize(ecb));
|
2017-01-10 16:47:49 -08:00
|
|
|
tfm->crt_ablkcipher.reqsize = reqsize;
|
2017-01-11 10:36:41 -08:00
|
|
|
|
2017-01-10 16:47:49 -08:00
|
|
|
return 0;
|
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
err_free_poly_hash:
|
|
|
|
crypto_free_shash(poly_hash);
|
2017-01-10 16:47:49 -08:00
|
|
|
err_free_cmac:
|
|
|
|
crypto_free_shash(cmac);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void heh_exit_tfm(struct crypto_tfm *tfm)
|
|
|
|
{
|
|
|
|
struct heh_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
|
|
|
|
crypto_free_shash(ctx->cmac);
|
2017-01-11 10:36:41 -08:00
|
|
|
crypto_free_shash(ctx->poly_hash);
|
2017-01-10 16:47:49 -08:00
|
|
|
crypto_free_ablkcipher(ctx->ecb);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void heh_free_instance(struct crypto_instance *inst)
|
|
|
|
{
|
|
|
|
struct heh_instance_ctx *ctx = crypto_instance_ctx(inst);
|
|
|
|
|
|
|
|
crypto_drop_shash(&ctx->cmac);
|
2017-01-11 10:36:41 -08:00
|
|
|
crypto_drop_shash(&ctx->poly_hash);
|
2017-01-10 16:47:49 -08:00
|
|
|
crypto_drop_skcipher(&ctx->ecb);
|
|
|
|
kfree(inst);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Create an instance of HEH as a ablkcipher.
|
|
|
|
*
|
|
|
|
* This relies on underlying CMAC and ECB algorithms, usually cmac(aes) and
|
|
|
|
* ecb(aes). For performance reasons we support asynchronous ECB algorithms.
|
|
|
|
* However, we do not yet support asynchronous CMAC algorithms because CMAC is
|
|
|
|
* only used on a small fixed amount of data per request, independent of the
|
|
|
|
* request length. This would change if AEAD or variable-length nonce support
|
|
|
|
* were to be exposed.
|
|
|
|
*/
|
|
|
|
static int heh_create_common(struct crypto_template *tmpl, struct rtattr **tb,
|
|
|
|
const char *full_name, const char *cmac_name,
|
2017-01-11 10:36:41 -08:00
|
|
|
const char *poly_hash_name, const char *ecb_name)
|
2017-01-10 16:47:49 -08:00
|
|
|
{
|
|
|
|
struct crypto_attr_type *algt;
|
|
|
|
struct crypto_instance *inst;
|
|
|
|
struct heh_instance_ctx *ctx;
|
|
|
|
struct shash_alg *cmac;
|
2017-01-11 10:36:41 -08:00
|
|
|
struct shash_alg *poly_hash;
|
2017-01-10 16:47:49 -08:00
|
|
|
struct crypto_alg *ecb;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
algt = crypto_get_attr_type(tb);
|
|
|
|
if (IS_ERR(algt))
|
|
|
|
return PTR_ERR(algt);
|
|
|
|
|
|
|
|
/* User must be asking for something compatible with ablkcipher */
|
|
|
|
if ((algt->type ^ CRYPTO_ALG_TYPE_ABLKCIPHER) & algt->mask)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* Allocate the ablkcipher instance */
|
|
|
|
inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
|
|
|
|
if (!inst)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
ctx = crypto_instance_ctx(inst);
|
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
/* Set up the cmac spawn */
|
2017-01-10 16:47:49 -08:00
|
|
|
ctx->cmac.base.inst = inst;
|
2017-01-11 10:36:41 -08:00
|
|
|
err = crypto_grab_shash(&ctx->cmac, cmac_name, 0, 0);
|
2017-01-10 16:47:49 -08:00
|
|
|
if (err)
|
|
|
|
goto err_free_inst;
|
|
|
|
cmac = crypto_spawn_shash_alg(&ctx->cmac);
|
|
|
|
err = -EINVAL;
|
|
|
|
if (cmac->digestsize != HEH_BLOCK_SIZE)
|
|
|
|
goto err_drop_cmac;
|
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
/* Set up the poly_hash spawn */
|
|
|
|
ctx->poly_hash.base.inst = inst;
|
|
|
|
err = crypto_grab_shash(&ctx->poly_hash, poly_hash_name, 0, 0);
|
|
|
|
if (err)
|
|
|
|
goto err_drop_cmac;
|
|
|
|
poly_hash = crypto_spawn_shash_alg(&ctx->poly_hash);
|
|
|
|
err = -EINVAL;
|
|
|
|
if (poly_hash->digestsize != HEH_BLOCK_SIZE)
|
|
|
|
goto err_drop_poly_hash;
|
|
|
|
|
|
|
|
/* Set up the ecb spawn */
|
2017-01-10 16:47:49 -08:00
|
|
|
ctx->ecb.base.inst = inst;
|
|
|
|
err = crypto_grab_skcipher(&ctx->ecb, ecb_name, 0,
|
|
|
|
crypto_requires_sync(algt->type,
|
|
|
|
algt->mask));
|
|
|
|
if (err)
|
2017-01-11 10:36:41 -08:00
|
|
|
goto err_drop_poly_hash;
|
2017-01-10 16:47:49 -08:00
|
|
|
ecb = crypto_skcipher_spawn_alg(&ctx->ecb);
|
|
|
|
|
|
|
|
/* HEH only supports block ciphers with 16 byte block size */
|
|
|
|
err = -EINVAL;
|
|
|
|
if (ecb->cra_blocksize != HEH_BLOCK_SIZE)
|
|
|
|
goto err_drop_ecb;
|
|
|
|
|
|
|
|
/* The underlying "ECB" algorithm must not require an IV */
|
|
|
|
err = -EINVAL;
|
|
|
|
if ((ecb->cra_flags & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_BLKCIPHER) {
|
|
|
|
if (ecb->cra_blkcipher.ivsize != 0)
|
|
|
|
goto err_drop_ecb;
|
|
|
|
} else {
|
|
|
|
if (ecb->cra_ablkcipher.ivsize != 0)
|
|
|
|
goto err_drop_ecb;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set the instance names */
|
|
|
|
err = -ENAMETOOLONG;
|
|
|
|
if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
|
2017-01-11 10:36:41 -08:00
|
|
|
"heh_base(%s,%s,%s)", cmac->base.cra_driver_name,
|
|
|
|
poly_hash->base.cra_driver_name,
|
2017-01-10 16:47:49 -08:00
|
|
|
ecb->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
|
|
|
|
goto err_drop_ecb;
|
|
|
|
|
|
|
|
err = -ENAMETOOLONG;
|
|
|
|
if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME,
|
|
|
|
"%s", full_name) >= CRYPTO_MAX_ALG_NAME)
|
|
|
|
goto err_drop_ecb;
|
|
|
|
|
|
|
|
/* Finish initializing the instance */
|
|
|
|
|
|
|
|
inst->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
|
2017-01-11 10:36:41 -08:00
|
|
|
(ecb->cra_flags & CRYPTO_ALG_ASYNC);
|
2017-01-10 16:47:49 -08:00
|
|
|
inst->alg.cra_blocksize = HEH_BLOCK_SIZE;
|
|
|
|
inst->alg.cra_ctxsize = sizeof(struct heh_tfm_ctx);
|
|
|
|
inst->alg.cra_alignmask = ecb->cra_alignmask | (__alignof__(be128) - 1);
|
|
|
|
inst->alg.cra_priority = ecb->cra_priority;
|
|
|
|
inst->alg.cra_type = &crypto_ablkcipher_type;
|
|
|
|
inst->alg.cra_init = heh_init_tfm;
|
|
|
|
inst->alg.cra_exit = heh_exit_tfm;
|
|
|
|
|
|
|
|
inst->alg.cra_ablkcipher.setkey = heh_setkey;
|
|
|
|
inst->alg.cra_ablkcipher.encrypt = heh_encrypt;
|
|
|
|
inst->alg.cra_ablkcipher.decrypt = heh_decrypt;
|
|
|
|
if ((ecb->cra_flags & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_BLKCIPHER) {
|
|
|
|
inst->alg.cra_ablkcipher.min_keysize = ecb->cra_blkcipher.min_keysize;
|
|
|
|
inst->alg.cra_ablkcipher.max_keysize = ecb->cra_blkcipher.max_keysize;
|
|
|
|
} else {
|
|
|
|
inst->alg.cra_ablkcipher.min_keysize = ecb->cra_ablkcipher.min_keysize;
|
|
|
|
inst->alg.cra_ablkcipher.max_keysize = ecb->cra_ablkcipher.max_keysize;
|
|
|
|
}
|
|
|
|
inst->alg.cra_ablkcipher.ivsize = HEH_BLOCK_SIZE;
|
|
|
|
|
|
|
|
/* Register the instance */
|
|
|
|
err = crypto_register_instance(tmpl, inst);
|
|
|
|
if (err)
|
|
|
|
goto err_drop_ecb;
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err_drop_ecb:
|
|
|
|
crypto_drop_skcipher(&ctx->ecb);
|
2017-01-11 10:36:41 -08:00
|
|
|
err_drop_poly_hash:
|
|
|
|
crypto_drop_shash(&ctx->poly_hash);
|
2017-01-10 16:47:49 -08:00
|
|
|
err_drop_cmac:
|
|
|
|
crypto_drop_shash(&ctx->cmac);
|
|
|
|
err_free_inst:
|
|
|
|
kfree(inst);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int heh_create(struct crypto_template *tmpl, struct rtattr **tb)
|
|
|
|
{
|
|
|
|
const char *cipher_name;
|
|
|
|
char full_name[CRYPTO_MAX_ALG_NAME];
|
|
|
|
char cmac_name[CRYPTO_MAX_ALG_NAME];
|
|
|
|
char ecb_name[CRYPTO_MAX_ALG_NAME];
|
|
|
|
|
|
|
|
/* Get the name of the requested block cipher (e.g. aes) */
|
|
|
|
cipher_name = crypto_attr_alg_name(tb[1]);
|
|
|
|
if (IS_ERR(cipher_name))
|
|
|
|
return PTR_ERR(cipher_name);
|
|
|
|
|
|
|
|
if (snprintf(full_name, CRYPTO_MAX_ALG_NAME, "heh(%s)", cipher_name) >=
|
|
|
|
CRYPTO_MAX_ALG_NAME)
|
|
|
|
return -ENAMETOOLONG;
|
|
|
|
|
|
|
|
if (snprintf(cmac_name, CRYPTO_MAX_ALG_NAME, "cmac(%s)", cipher_name) >=
|
|
|
|
CRYPTO_MAX_ALG_NAME)
|
|
|
|
return -ENAMETOOLONG;
|
|
|
|
|
|
|
|
if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)", cipher_name) >=
|
|
|
|
CRYPTO_MAX_ALG_NAME)
|
|
|
|
return -ENAMETOOLONG;
|
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
return heh_create_common(tmpl, tb, full_name, cmac_name, "poly_hash",
|
|
|
|
ecb_name);
|
2017-01-10 16:47:49 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
static struct crypto_template heh_tmpl = {
|
|
|
|
.name = "heh",
|
|
|
|
.create = heh_create,
|
|
|
|
.free = heh_free_instance,
|
|
|
|
.module = THIS_MODULE,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int heh_base_create(struct crypto_template *tmpl, struct rtattr **tb)
|
|
|
|
{
|
|
|
|
char full_name[CRYPTO_MAX_ALG_NAME];
|
|
|
|
const char *cmac_name;
|
2017-01-11 10:36:41 -08:00
|
|
|
const char *poly_hash_name;
|
2017-01-10 16:47:49 -08:00
|
|
|
const char *ecb_name;
|
|
|
|
|
|
|
|
cmac_name = crypto_attr_alg_name(tb[1]);
|
|
|
|
if (IS_ERR(cmac_name))
|
|
|
|
return PTR_ERR(cmac_name);
|
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
poly_hash_name = crypto_attr_alg_name(tb[2]);
|
|
|
|
if (IS_ERR(poly_hash_name))
|
|
|
|
return PTR_ERR(poly_hash_name);
|
|
|
|
|
|
|
|
ecb_name = crypto_attr_alg_name(tb[3]);
|
2017-01-10 16:47:49 -08:00
|
|
|
if (IS_ERR(ecb_name))
|
|
|
|
return PTR_ERR(ecb_name);
|
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
if (snprintf(full_name, CRYPTO_MAX_ALG_NAME, "heh_base(%s,%s,%s)",
|
|
|
|
cmac_name, poly_hash_name, ecb_name) >=
|
|
|
|
CRYPTO_MAX_ALG_NAME)
|
2017-01-10 16:47:49 -08:00
|
|
|
return -ENAMETOOLONG;
|
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
return heh_create_common(tmpl, tb, full_name, cmac_name, poly_hash_name,
|
|
|
|
ecb_name);
|
2017-01-10 16:47:49 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If HEH is instantiated as "heh_base" instead of "heh", then specific
|
2017-01-11 10:36:41 -08:00
|
|
|
* implementations of cmac, poly_hash, and ecb can be specified instead of just
|
|
|
|
* the cipher.
|
2017-01-10 16:47:49 -08:00
|
|
|
*/
|
|
|
|
static struct crypto_template heh_base_tmpl = {
|
|
|
|
.name = "heh_base",
|
|
|
|
.create = heh_base_create,
|
|
|
|
.free = heh_free_instance,
|
|
|
|
.module = THIS_MODULE,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __init heh_module_init(void)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = crypto_register_template(&heh_tmpl);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
err = crypto_register_template(&heh_base_tmpl);
|
|
|
|
if (err)
|
|
|
|
goto out_undo_heh;
|
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
err = crypto_register_shash(&poly_hash_alg);
|
|
|
|
if (err)
|
|
|
|
goto out_undo_heh_base;
|
|
|
|
|
2017-01-10 16:47:49 -08:00
|
|
|
return 0;
|
|
|
|
|
2017-01-11 10:36:41 -08:00
|
|
|
out_undo_heh_base:
|
|
|
|
crypto_unregister_template(&heh_base_tmpl);
|
2017-01-10 16:47:49 -08:00
|
|
|
out_undo_heh:
|
|
|
|
crypto_unregister_template(&heh_tmpl);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __exit heh_module_exit(void)
|
|
|
|
{
|
|
|
|
crypto_unregister_template(&heh_tmpl);
|
|
|
|
crypto_unregister_template(&heh_base_tmpl);
|
2017-01-11 10:36:41 -08:00
|
|
|
crypto_unregister_shash(&poly_hash_alg);
|
2017-01-10 16:47:49 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
module_init(heh_module_init);
|
|
|
|
module_exit(heh_module_exit);
|
|
|
|
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
MODULE_DESCRIPTION("Hash-Encrypt-Hash block cipher mode");
|
|
|
|
MODULE_ALIAS_CRYPTO("heh");
|
|
|
|
MODULE_ALIAS_CRYPTO("heh_base");
|