android_kernel_oneplus_msm8998/arch/x86/include/asm/switch_to.h

172 lines
5.9 KiB
C
Raw Normal View History

#ifndef _ASM_X86_SWITCH_TO_H
#define _ASM_X86_SWITCH_TO_H
x86/retpoline: Fill RSB on context switch for affected CPUs commit c995efd5a740d9cbafbf58bde4973e8b50b4d761 upstream. On context switch from a shallow call stack to a deeper one, as the CPU does 'ret' up the deeper side it may encounter RSB entries (predictions for where the 'ret' goes to) which were populated in userspace. This is problematic if neither SMEP nor KPTI (the latter of which marks userspace pages as NX for the kernel) are active, as malicious code in userspace may then be executed speculatively. Overwrite the CPU's return prediction stack with calls which are predicted to return to an infinite loop, to "capture" speculation if this happens. This is required both for retpoline, and also in conjunction with IBRS for !SMEP && !KPTI. On Skylake+ the problem is slightly different, and an *underflow* of the RSB may cause errant branch predictions to occur. So there it's not so much overwrite, as *filling* the RSB to attempt to prevent it getting empty. This is only a partial solution for Skylake+ since there are many other conditions which may result in the RSB becoming empty. The full solution on Skylake+ is to use IBRS, which will prevent the problem even when the RSB becomes empty. With IBRS, the RSB-stuffing will not be required on context switch. [ tglx: Added missing vendor check and slighty massaged comments and changelog ] [js] backport to 4.4 -- __switch_to_asm does not exist there, we have to patch the switch_to macros for both x86_32 and x86_64. Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Cc: gnomes@lxorguk.ukuu.org.uk Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: thomas.lendacky@amd.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kees Cook <keescook@google.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org> Cc: Paul Turner <pjt@google.com> Link: https://lkml.kernel.org/r/1515779365-9032-1-git-send-email-dwmw@amazon.co.uk Signed-off-by: Jiri Slaby <jslaby@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-12 17:49:25 +00:00
#include <asm/nospec-branch.h>
struct task_struct; /* one of the stranger aspects of C forward declarations */
__visible struct task_struct *__switch_to(struct task_struct *prev,
struct task_struct *next);
struct tss_struct;
void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
struct tss_struct *tss);
#ifdef CONFIG_X86_32
#ifdef CONFIG_CC_STACKPROTECTOR
#define __switch_canary \
"movl %P[task_canary](%[next]), %%ebx\n\t" \
"movl %%ebx, "__percpu_arg([stack_canary])"\n\t"
#define __switch_canary_oparam \
, [stack_canary] "=m" (stack_canary.canary)
#define __switch_canary_iparam \
, [task_canary] "i" (offsetof(struct task_struct, stack_canary))
#else /* CC_STACKPROTECTOR */
#define __switch_canary
#define __switch_canary_oparam
#define __switch_canary_iparam
#endif /* CC_STACKPROTECTOR */
x86/retpoline: Fill RSB on context switch for affected CPUs commit c995efd5a740d9cbafbf58bde4973e8b50b4d761 upstream. On context switch from a shallow call stack to a deeper one, as the CPU does 'ret' up the deeper side it may encounter RSB entries (predictions for where the 'ret' goes to) which were populated in userspace. This is problematic if neither SMEP nor KPTI (the latter of which marks userspace pages as NX for the kernel) are active, as malicious code in userspace may then be executed speculatively. Overwrite the CPU's return prediction stack with calls which are predicted to return to an infinite loop, to "capture" speculation if this happens. This is required both for retpoline, and also in conjunction with IBRS for !SMEP && !KPTI. On Skylake+ the problem is slightly different, and an *underflow* of the RSB may cause errant branch predictions to occur. So there it's not so much overwrite, as *filling* the RSB to attempt to prevent it getting empty. This is only a partial solution for Skylake+ since there are many other conditions which may result in the RSB becoming empty. The full solution on Skylake+ is to use IBRS, which will prevent the problem even when the RSB becomes empty. With IBRS, the RSB-stuffing will not be required on context switch. [ tglx: Added missing vendor check and slighty massaged comments and changelog ] [js] backport to 4.4 -- __switch_to_asm does not exist there, we have to patch the switch_to macros for both x86_32 and x86_64. Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Cc: gnomes@lxorguk.ukuu.org.uk Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: thomas.lendacky@amd.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kees Cook <keescook@google.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org> Cc: Paul Turner <pjt@google.com> Link: https://lkml.kernel.org/r/1515779365-9032-1-git-send-email-dwmw@amazon.co.uk Signed-off-by: Jiri Slaby <jslaby@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-12 17:49:25 +00:00
#ifdef CONFIG_RETPOLINE
/*
* When switching from a shallower to a deeper call stack
* the RSB may either underflow or use entries populated
* with userspace addresses. On CPUs where those concerns
* exist, overwrite the RSB with entries which capture
* speculative execution to prevent attack.
*/
#define __retpoline_fill_return_buffer \
ALTERNATIVE("jmp 910f", \
__stringify(__FILL_RETURN_BUFFER(%%ebx, RSB_CLEAR_LOOPS, %%esp)),\
X86_FEATURE_RSB_CTXSW) \
"910:\n\t"
#else
#define __retpoline_fill_return_buffer
#endif
/*
* Saving eflags is important. It switches not only IOPL between tasks,
* it also protects other tasks from NT leaking through sysenter etc.
*/
#define switch_to(prev, next, last) \
do { \
/* \
* Context-switching clobbers all registers, so we clobber \
* them explicitly, via unused output variables. \
* (EAX and EBP is not listed because EBP is saved/restored \
* explicitly for wchan access and EAX is the return value of \
* __switch_to()) \
*/ \
unsigned long ebx, ecx, edx, esi, edi; \
\
asm volatile("pushfl\n\t" /* save flags */ \
"pushl %%ebp\n\t" /* save EBP */ \
"movl %%esp,%[prev_sp]\n\t" /* save ESP */ \
"movl %[next_sp],%%esp\n\t" /* restore ESP */ \
"movl $1f,%[prev_ip]\n\t" /* save EIP */ \
"pushl %[next_ip]\n\t" /* restore EIP */ \
__switch_canary \
x86/retpoline: Fill RSB on context switch for affected CPUs commit c995efd5a740d9cbafbf58bde4973e8b50b4d761 upstream. On context switch from a shallow call stack to a deeper one, as the CPU does 'ret' up the deeper side it may encounter RSB entries (predictions for where the 'ret' goes to) which were populated in userspace. This is problematic if neither SMEP nor KPTI (the latter of which marks userspace pages as NX for the kernel) are active, as malicious code in userspace may then be executed speculatively. Overwrite the CPU's return prediction stack with calls which are predicted to return to an infinite loop, to "capture" speculation if this happens. This is required both for retpoline, and also in conjunction with IBRS for !SMEP && !KPTI. On Skylake+ the problem is slightly different, and an *underflow* of the RSB may cause errant branch predictions to occur. So there it's not so much overwrite, as *filling* the RSB to attempt to prevent it getting empty. This is only a partial solution for Skylake+ since there are many other conditions which may result in the RSB becoming empty. The full solution on Skylake+ is to use IBRS, which will prevent the problem even when the RSB becomes empty. With IBRS, the RSB-stuffing will not be required on context switch. [ tglx: Added missing vendor check and slighty massaged comments and changelog ] [js] backport to 4.4 -- __switch_to_asm does not exist there, we have to patch the switch_to macros for both x86_32 and x86_64. Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Cc: gnomes@lxorguk.ukuu.org.uk Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: thomas.lendacky@amd.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kees Cook <keescook@google.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org> Cc: Paul Turner <pjt@google.com> Link: https://lkml.kernel.org/r/1515779365-9032-1-git-send-email-dwmw@amazon.co.uk Signed-off-by: Jiri Slaby <jslaby@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-12 17:49:25 +00:00
__retpoline_fill_return_buffer \
"jmp __switch_to\n" /* regparm call */ \
"1:\t" \
"popl %%ebp\n\t" /* restore EBP */ \
"popfl\n" /* restore flags */ \
\
/* output parameters */ \
: [prev_sp] "=m" (prev->thread.sp), \
[prev_ip] "=m" (prev->thread.ip), \
"=a" (last), \
\
/* clobbered output registers: */ \
"=b" (ebx), "=c" (ecx), "=d" (edx), \
"=S" (esi), "=D" (edi) \
\
__switch_canary_oparam \
\
/* input parameters: */ \
: [next_sp] "m" (next->thread.sp), \
[next_ip] "m" (next->thread.ip), \
\
/* regparm parameters for __switch_to(): */ \
[prev] "a" (prev), \
[next] "d" (next) \
\
__switch_canary_iparam \
\
: /* reloaded segment registers */ \
"memory"); \
} while (0)
#else /* CONFIG_X86_32 */
/* frame pointer must be last for get_wchan */
x86/sched/64: Don't save flags on context switch (reinstated) This reinstates the following commit: 2c7577a75837 ("sched/x86_64: Don't save flags on context switch") which was reverted in: 512255a2ad2c ("Revert 'sched/x86_64: Don't save flags on context switch'") Historically, Linux has always saved and restored EFLAGS across context switches. As far as I know, the only reason to do this is because of the NT flag. In particular, if something calls switch_to() with the NT flag set, then we don't want to leak the NT flag into a different task that might try to IRET and fail because NT is set. Before this commit: 8c7aa698baca ("x86_64, entry: Filter RFLAGS.NT on entry from userspace") we could run system call bodies with NT set. This would be a DoS or possibly privilege escalation hole if scheduling in such a system call would leak NT into a different task. Importantly, we don't need to worry about NT being set while preemptible or across page faults. The only way we can schedule due to preemption or a page fault is in an interrupt entry that nests inside the SYSENTER prologue. The CPU will clear NT when entering through an interrupt gate, so we won't schedule with NT set. The only other interesting flags are IOPL and AC. Allowing switch_to() to change IOPL has no effect, as the value loaded during kernel execution doesn't matter at all except between a SYSENTER entry and the subsequent PUSHF, and anythign that interrupts in that window will restore IOPL on return. If we call __switch_to() with AC set, we have bigger problems. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/d4440fdc2a89247bffb7c003d2a9a2952bd46827.1441146105.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-01 15:41:06 -07:00
#define SAVE_CONTEXT "pushq %%rbp ; movq %%rsi,%%rbp\n\t"
#define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp\t"
#define __EXTRA_CLOBBER \
, "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
x86/sched/64: Don't save flags on context switch (reinstated) This reinstates the following commit: 2c7577a75837 ("sched/x86_64: Don't save flags on context switch") which was reverted in: 512255a2ad2c ("Revert 'sched/x86_64: Don't save flags on context switch'") Historically, Linux has always saved and restored EFLAGS across context switches. As far as I know, the only reason to do this is because of the NT flag. In particular, if something calls switch_to() with the NT flag set, then we don't want to leak the NT flag into a different task that might try to IRET and fail because NT is set. Before this commit: 8c7aa698baca ("x86_64, entry: Filter RFLAGS.NT on entry from userspace") we could run system call bodies with NT set. This would be a DoS or possibly privilege escalation hole if scheduling in such a system call would leak NT into a different task. Importantly, we don't need to worry about NT being set while preemptible or across page faults. The only way we can schedule due to preemption or a page fault is in an interrupt entry that nests inside the SYSENTER prologue. The CPU will clear NT when entering through an interrupt gate, so we won't schedule with NT set. The only other interesting flags are IOPL and AC. Allowing switch_to() to change IOPL has no effect, as the value loaded during kernel execution doesn't matter at all except between a SYSENTER entry and the subsequent PUSHF, and anythign that interrupts in that window will restore IOPL on return. If we call __switch_to() with AC set, we have bigger problems. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/d4440fdc2a89247bffb7c003d2a9a2952bd46827.1441146105.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-01 15:41:06 -07:00
"r12", "r13", "r14", "r15", "flags"
#ifdef CONFIG_CC_STACKPROTECTOR
#define __switch_canary \
"movq %P[task_canary](%%rsi),%%r8\n\t" \
"movq %%r8,"__percpu_arg([gs_canary])"\n\t"
#define __switch_canary_oparam \
, [gs_canary] "=m" (irq_stack_union.stack_canary)
#define __switch_canary_iparam \
, [task_canary] "i" (offsetof(struct task_struct, stack_canary))
#else /* CC_STACKPROTECTOR */
#define __switch_canary
#define __switch_canary_oparam
#define __switch_canary_iparam
#endif /* CC_STACKPROTECTOR */
x86/retpoline: Fill RSB on context switch for affected CPUs commit c995efd5a740d9cbafbf58bde4973e8b50b4d761 upstream. On context switch from a shallow call stack to a deeper one, as the CPU does 'ret' up the deeper side it may encounter RSB entries (predictions for where the 'ret' goes to) which were populated in userspace. This is problematic if neither SMEP nor KPTI (the latter of which marks userspace pages as NX for the kernel) are active, as malicious code in userspace may then be executed speculatively. Overwrite the CPU's return prediction stack with calls which are predicted to return to an infinite loop, to "capture" speculation if this happens. This is required both for retpoline, and also in conjunction with IBRS for !SMEP && !KPTI. On Skylake+ the problem is slightly different, and an *underflow* of the RSB may cause errant branch predictions to occur. So there it's not so much overwrite, as *filling* the RSB to attempt to prevent it getting empty. This is only a partial solution for Skylake+ since there are many other conditions which may result in the RSB becoming empty. The full solution on Skylake+ is to use IBRS, which will prevent the problem even when the RSB becomes empty. With IBRS, the RSB-stuffing will not be required on context switch. [ tglx: Added missing vendor check and slighty massaged comments and changelog ] [js] backport to 4.4 -- __switch_to_asm does not exist there, we have to patch the switch_to macros for both x86_32 and x86_64. Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Cc: gnomes@lxorguk.ukuu.org.uk Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: thomas.lendacky@amd.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kees Cook <keescook@google.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org> Cc: Paul Turner <pjt@google.com> Link: https://lkml.kernel.org/r/1515779365-9032-1-git-send-email-dwmw@amazon.co.uk Signed-off-by: Jiri Slaby <jslaby@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-12 17:49:25 +00:00
#ifdef CONFIG_RETPOLINE
/*
* When switching from a shallower to a deeper call stack
* the RSB may either underflow or use entries populated
* with userspace addresses. On CPUs where those concerns
* exist, overwrite the RSB with entries which capture
* speculative execution to prevent attack.
*/
#define __retpoline_fill_return_buffer \
ALTERNATIVE("jmp 910f", \
__stringify(__FILL_RETURN_BUFFER(%%r12, RSB_CLEAR_LOOPS, %%rsp)),\
X86_FEATURE_RSB_CTXSW) \
"910:\n\t"
#else
#define __retpoline_fill_return_buffer
#endif
x86/sched/64: Don't save flags on context switch (reinstated) This reinstates the following commit: 2c7577a75837 ("sched/x86_64: Don't save flags on context switch") which was reverted in: 512255a2ad2c ("Revert 'sched/x86_64: Don't save flags on context switch'") Historically, Linux has always saved and restored EFLAGS across context switches. As far as I know, the only reason to do this is because of the NT flag. In particular, if something calls switch_to() with the NT flag set, then we don't want to leak the NT flag into a different task that might try to IRET and fail because NT is set. Before this commit: 8c7aa698baca ("x86_64, entry: Filter RFLAGS.NT on entry from userspace") we could run system call bodies with NT set. This would be a DoS or possibly privilege escalation hole if scheduling in such a system call would leak NT into a different task. Importantly, we don't need to worry about NT being set while preemptible or across page faults. The only way we can schedule due to preemption or a page fault is in an interrupt entry that nests inside the SYSENTER prologue. The CPU will clear NT when entering through an interrupt gate, so we won't schedule with NT set. The only other interesting flags are IOPL and AC. Allowing switch_to() to change IOPL has no effect, as the value loaded during kernel execution doesn't matter at all except between a SYSENTER entry and the subsequent PUSHF, and anythign that interrupts in that window will restore IOPL on return. If we call __switch_to() with AC set, we have bigger problems. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/d4440fdc2a89247bffb7c003d2a9a2952bd46827.1441146105.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-01 15:41:06 -07:00
/*
* There is no need to save or restore flags, because flags are always
* clean in kernel mode, with the possible exception of IOPL. Kernel IOPL
* has no effect.
*/
#define switch_to(prev, next, last) \
asm volatile(SAVE_CONTEXT \
"movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */ \
"movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */ \
"call __switch_to\n\t" \
"movq "__percpu_arg([current_task])",%%rsi\n\t" \
__switch_canary \
x86/retpoline: Fill RSB on context switch for affected CPUs commit c995efd5a740d9cbafbf58bde4973e8b50b4d761 upstream. On context switch from a shallow call stack to a deeper one, as the CPU does 'ret' up the deeper side it may encounter RSB entries (predictions for where the 'ret' goes to) which were populated in userspace. This is problematic if neither SMEP nor KPTI (the latter of which marks userspace pages as NX for the kernel) are active, as malicious code in userspace may then be executed speculatively. Overwrite the CPU's return prediction stack with calls which are predicted to return to an infinite loop, to "capture" speculation if this happens. This is required both for retpoline, and also in conjunction with IBRS for !SMEP && !KPTI. On Skylake+ the problem is slightly different, and an *underflow* of the RSB may cause errant branch predictions to occur. So there it's not so much overwrite, as *filling* the RSB to attempt to prevent it getting empty. This is only a partial solution for Skylake+ since there are many other conditions which may result in the RSB becoming empty. The full solution on Skylake+ is to use IBRS, which will prevent the problem even when the RSB becomes empty. With IBRS, the RSB-stuffing will not be required on context switch. [ tglx: Added missing vendor check and slighty massaged comments and changelog ] [js] backport to 4.4 -- __switch_to_asm does not exist there, we have to patch the switch_to macros for both x86_32 and x86_64. Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Cc: gnomes@lxorguk.ukuu.org.uk Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: thomas.lendacky@amd.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kees Cook <keescook@google.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org> Cc: Paul Turner <pjt@google.com> Link: https://lkml.kernel.org/r/1515779365-9032-1-git-send-email-dwmw@amazon.co.uk Signed-off-by: Jiri Slaby <jslaby@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-12 17:49:25 +00:00
__retpoline_fill_return_buffer \
"movq %P[thread_info](%%rsi),%%r8\n\t" \
"movq %%rax,%%rdi\n\t" \
"testl %[_tif_fork],%P[ti_flags](%%r8)\n\t" \
"jnz ret_from_fork\n\t" \
RESTORE_CONTEXT \
: "=a" (last) \
__switch_canary_oparam \
: [next] "S" (next), [prev] "D" (prev), \
[threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
[ti_flags] "i" (offsetof(struct thread_info, flags)), \
[_tif_fork] "i" (_TIF_FORK), \
[thread_info] "i" (offsetof(struct task_struct, stack)), \
[current_task] "m" (current_task) \
__switch_canary_iparam \
: "memory", "cc" __EXTRA_CLOBBER)
#endif /* CONFIG_X86_32 */
#endif /* _ASM_X86_SWITCH_TO_H */