Merge branch 'fortglx/3.12/sched-clock64-base' into fortglx/3.13/time
Merge in 64bit sched_clock support that missed 3.12. Conflicts: kernel/time/sched_clock.c Signed-off-by: John.Stultz <john.stultz@linaro.org>
This commit is contained in:
commit
19c3205cea
4 changed files with 95 additions and 65 deletions
|
@ -292,6 +292,8 @@ extern void clocksource_resume(void);
|
|||
extern struct clocksource * __init __weak clocksource_default_clock(void);
|
||||
extern void clocksource_mark_unstable(struct clocksource *cs);
|
||||
|
||||
extern u64
|
||||
clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask);
|
||||
extern void
|
||||
clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 minsec);
|
||||
|
||||
|
|
|
@ -15,6 +15,8 @@ static inline void sched_clock_postinit(void) { }
|
|||
#endif
|
||||
|
||||
extern void setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate);
|
||||
extern void sched_clock_register(u64 (*read)(void), int bits,
|
||||
unsigned long rate);
|
||||
|
||||
extern unsigned long long (*sched_clock_func)(void);
|
||||
|
||||
|
|
|
@ -537,40 +537,55 @@ static u32 clocksource_max_adjustment(struct clocksource *cs)
|
|||
}
|
||||
|
||||
/**
|
||||
* clocksource_max_deferment - Returns max time the clocksource can be deferred
|
||||
* @cs: Pointer to clocksource
|
||||
*
|
||||
* clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
|
||||
* @mult: cycle to nanosecond multiplier
|
||||
* @shift: cycle to nanosecond divisor (power of two)
|
||||
* @maxadj: maximum adjustment value to mult (~11%)
|
||||
* @mask: bitmask for two's complement subtraction of non 64 bit counters
|
||||
*/
|
||||
static u64 clocksource_max_deferment(struct clocksource *cs)
|
||||
u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask)
|
||||
{
|
||||
u64 max_nsecs, max_cycles;
|
||||
|
||||
/*
|
||||
* Calculate the maximum number of cycles that we can pass to the
|
||||
* cyc2ns function without overflowing a 64-bit signed result. The
|
||||
* maximum number of cycles is equal to ULLONG_MAX/(cs->mult+cs->maxadj)
|
||||
* maximum number of cycles is equal to ULLONG_MAX/(mult+maxadj)
|
||||
* which is equivalent to the below.
|
||||
* max_cycles < (2^63)/(cs->mult + cs->maxadj)
|
||||
* max_cycles < 2^(log2((2^63)/(cs->mult + cs->maxadj)))
|
||||
* max_cycles < 2^(log2(2^63) - log2(cs->mult + cs->maxadj))
|
||||
* max_cycles < 2^(63 - log2(cs->mult + cs->maxadj))
|
||||
* max_cycles < 1 << (63 - log2(cs->mult + cs->maxadj))
|
||||
* max_cycles < (2^63)/(mult + maxadj)
|
||||
* max_cycles < 2^(log2((2^63)/(mult + maxadj)))
|
||||
* max_cycles < 2^(log2(2^63) - log2(mult + maxadj))
|
||||
* max_cycles < 2^(63 - log2(mult + maxadj))
|
||||
* max_cycles < 1 << (63 - log2(mult + maxadj))
|
||||
* Please note that we add 1 to the result of the log2 to account for
|
||||
* any rounding errors, ensure the above inequality is satisfied and
|
||||
* no overflow will occur.
|
||||
*/
|
||||
max_cycles = 1ULL << (63 - (ilog2(cs->mult + cs->maxadj) + 1));
|
||||
max_cycles = 1ULL << (63 - (ilog2(mult + maxadj) + 1));
|
||||
|
||||
/*
|
||||
* The actual maximum number of cycles we can defer the clocksource is
|
||||
* determined by the minimum of max_cycles and cs->mask.
|
||||
* determined by the minimum of max_cycles and mask.
|
||||
* Note: Here we subtract the maxadj to make sure we don't sleep for
|
||||
* too long if there's a large negative adjustment.
|
||||
*/
|
||||
max_cycles = min_t(u64, max_cycles, (u64) cs->mask);
|
||||
max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult - cs->maxadj,
|
||||
cs->shift);
|
||||
max_cycles = min(max_cycles, mask);
|
||||
max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
|
||||
|
||||
return max_nsecs;
|
||||
}
|
||||
|
||||
/**
|
||||
* clocksource_max_deferment - Returns max time the clocksource can be deferred
|
||||
* @cs: Pointer to clocksource
|
||||
*
|
||||
*/
|
||||
static u64 clocksource_max_deferment(struct clocksource *cs)
|
||||
{
|
||||
u64 max_nsecs;
|
||||
|
||||
max_nsecs = clocks_calc_max_nsecs(cs->mult, cs->shift, cs->maxadj,
|
||||
cs->mask);
|
||||
/*
|
||||
* To ensure that the clocksource does not wrap whilst we are idle,
|
||||
* limit the time the clocksource can be deferred by 12.5%. Please
|
||||
|
|
|
@ -8,25 +8,28 @@
|
|||
#include <linux/clocksource.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/jiffies.h>
|
||||
#include <linux/ktime.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/moduleparam.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/syscore_ops.h>
|
||||
#include <linux/timer.h>
|
||||
#include <linux/hrtimer.h>
|
||||
#include <linux/sched_clock.h>
|
||||
#include <linux/seqlock.h>
|
||||
#include <linux/bitops.h>
|
||||
|
||||
struct clock_data {
|
||||
ktime_t wrap_kt;
|
||||
u64 epoch_ns;
|
||||
u32 epoch_cyc;
|
||||
u32 epoch_cyc_copy;
|
||||
u64 epoch_cyc;
|
||||
seqcount_t seq;
|
||||
unsigned long rate;
|
||||
u32 mult;
|
||||
u32 shift;
|
||||
bool suspended;
|
||||
};
|
||||
|
||||
static void sched_clock_poll(unsigned long wrap_ticks);
|
||||
static DEFINE_TIMER(sched_clock_timer, sched_clock_poll, 0, 0);
|
||||
static struct hrtimer sched_clock_timer;
|
||||
static int irqtime = -1;
|
||||
|
||||
core_param(irqtime, irqtime, int, 0400);
|
||||
|
@ -35,14 +38,25 @@ static struct clock_data cd = {
|
|||
.mult = NSEC_PER_SEC / HZ,
|
||||
};
|
||||
|
||||
static u32 __read_mostly sched_clock_mask = 0xffffffff;
|
||||
static u64 __read_mostly sched_clock_mask;
|
||||
|
||||
static u32 notrace jiffy_sched_clock_read(void)
|
||||
static u64 notrace jiffy_sched_clock_read(void)
|
||||
{
|
||||
return (u32)(jiffies - INITIAL_JIFFIES);
|
||||
/*
|
||||
* We don't need to use get_jiffies_64 on 32-bit arches here
|
||||
* because we register with BITS_PER_LONG
|
||||
*/
|
||||
return (u64)(jiffies - INITIAL_JIFFIES);
|
||||
}
|
||||
|
||||
static u32 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
|
||||
static u32 __read_mostly (*read_sched_clock_32)(void);
|
||||
|
||||
static u64 notrace read_sched_clock_32_wrapper(void)
|
||||
{
|
||||
return read_sched_clock_32();
|
||||
}
|
||||
|
||||
static u64 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
|
||||
|
||||
static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
|
||||
{
|
||||
|
@ -52,25 +66,18 @@ static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
|
|||
static unsigned long long notrace sched_clock_32(void)
|
||||
{
|
||||
u64 epoch_ns;
|
||||
u32 epoch_cyc;
|
||||
u32 cyc;
|
||||
u64 epoch_cyc;
|
||||
u64 cyc;
|
||||
unsigned long seq;
|
||||
|
||||
if (cd.suspended)
|
||||
return cd.epoch_ns;
|
||||
|
||||
/*
|
||||
* Load the epoch_cyc and epoch_ns atomically. We do this by
|
||||
* ensuring that we always write epoch_cyc, epoch_ns and
|
||||
* epoch_cyc_copy in strict order, and read them in strict order.
|
||||
* If epoch_cyc and epoch_cyc_copy are not equal, then we're in
|
||||
* the middle of an update, and we should repeat the load.
|
||||
*/
|
||||
do {
|
||||
seq = read_seqcount_begin(&cd.seq);
|
||||
epoch_cyc = cd.epoch_cyc;
|
||||
smp_rmb();
|
||||
epoch_ns = cd.epoch_ns;
|
||||
smp_rmb();
|
||||
} while (epoch_cyc != cd.epoch_cyc_copy);
|
||||
} while (read_seqcount_retry(&cd.seq, seq));
|
||||
|
||||
cyc = read_sched_clock();
|
||||
cyc = (cyc - epoch_cyc) & sched_clock_mask;
|
||||
|
@ -83,49 +90,46 @@ static unsigned long long notrace sched_clock_32(void)
|
|||
static void notrace update_sched_clock(void)
|
||||
{
|
||||
unsigned long flags;
|
||||
u32 cyc;
|
||||
u64 cyc;
|
||||
u64 ns;
|
||||
|
||||
cyc = read_sched_clock();
|
||||
ns = cd.epoch_ns +
|
||||
cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
|
||||
cd.mult, cd.shift);
|
||||
/*
|
||||
* Write epoch_cyc and epoch_ns in a way that the update is
|
||||
* detectable in cyc_to_fixed_sched_clock().
|
||||
*/
|
||||
|
||||
raw_local_irq_save(flags);
|
||||
cd.epoch_cyc_copy = cyc;
|
||||
smp_wmb();
|
||||
write_seqcount_begin(&cd.seq);
|
||||
cd.epoch_ns = ns;
|
||||
smp_wmb();
|
||||
cd.epoch_cyc = cyc;
|
||||
write_seqcount_end(&cd.seq);
|
||||
raw_local_irq_restore(flags);
|
||||
}
|
||||
|
||||
static void sched_clock_poll(unsigned long wrap_ticks)
|
||||
static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
|
||||
{
|
||||
mod_timer(&sched_clock_timer, round_jiffies(jiffies + wrap_ticks));
|
||||
update_sched_clock();
|
||||
hrtimer_forward_now(hrt, cd.wrap_kt);
|
||||
return HRTIMER_RESTART;
|
||||
}
|
||||
|
||||
void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
|
||||
void __init sched_clock_register(u64 (*read)(void), int bits,
|
||||
unsigned long rate)
|
||||
{
|
||||
unsigned long r, w;
|
||||
unsigned long r;
|
||||
u64 res, wrap;
|
||||
char r_unit;
|
||||
|
||||
if (cd.rate > rate)
|
||||
return;
|
||||
|
||||
BUG_ON(bits > 32);
|
||||
WARN_ON(!irqs_disabled());
|
||||
read_sched_clock = read;
|
||||
sched_clock_mask = (1ULL << bits) - 1;
|
||||
sched_clock_mask = CLOCKSOURCE_MASK(bits);
|
||||
cd.rate = rate;
|
||||
|
||||
/* calculate the mult/shift to convert counter ticks to ns. */
|
||||
clocks_calc_mult_shift(&cd.mult, &cd.shift, rate, NSEC_PER_SEC, 0);
|
||||
clocks_calc_mult_shift(&cd.mult, &cd.shift, rate, NSEC_PER_SEC, 3600);
|
||||
|
||||
r = rate;
|
||||
if (r >= 4000000) {
|
||||
|
@ -138,20 +142,14 @@ void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
|
|||
r_unit = ' ';
|
||||
|
||||
/* calculate how many ns until we wrap */
|
||||
wrap = cyc_to_ns((1ULL << bits) - 1, cd.mult, cd.shift);
|
||||
do_div(wrap, NSEC_PER_MSEC);
|
||||
w = wrap;
|
||||
wrap = clocks_calc_max_nsecs(cd.mult, cd.shift, 0, sched_clock_mask);
|
||||
cd.wrap_kt = ns_to_ktime(wrap - (wrap >> 3));
|
||||
|
||||
/* calculate the ns resolution of this counter */
|
||||
res = cyc_to_ns(1ULL, cd.mult, cd.shift);
|
||||
pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lums\n",
|
||||
bits, r, r_unit, res, w);
|
||||
pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
|
||||
bits, r, r_unit, res, wrap);
|
||||
|
||||
/*
|
||||
* Start the timer to keep sched_clock() properly updated and
|
||||
* sets the initial epoch.
|
||||
*/
|
||||
sched_clock_timer.data = msecs_to_jiffies(w - (w / 10));
|
||||
update_sched_clock();
|
||||
|
||||
/*
|
||||
|
@ -166,6 +164,12 @@ void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
|
|||
pr_debug("Registered %pF as sched_clock source\n", read);
|
||||
}
|
||||
|
||||
void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
|
||||
{
|
||||
read_sched_clock_32 = read;
|
||||
sched_clock_register(read_sched_clock_32_wrapper, bits, rate);
|
||||
}
|
||||
|
||||
unsigned long long __read_mostly (*sched_clock_func)(void) = sched_clock_32;
|
||||
|
||||
unsigned long long notrace sched_clock(void)
|
||||
|
@ -180,14 +184,22 @@ void __init sched_clock_postinit(void)
|
|||
* make it the final one one.
|
||||
*/
|
||||
if (read_sched_clock == jiffy_sched_clock_read)
|
||||
setup_sched_clock(jiffy_sched_clock_read, 32, HZ);
|
||||
sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
|
||||
|
||||
sched_clock_poll(sched_clock_timer.data);
|
||||
update_sched_clock();
|
||||
|
||||
/*
|
||||
* Start the timer to keep sched_clock() properly updated and
|
||||
* sets the initial epoch.
|
||||
*/
|
||||
hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
||||
sched_clock_timer.function = sched_clock_poll;
|
||||
hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
|
||||
}
|
||||
|
||||
static int sched_clock_suspend(void)
|
||||
{
|
||||
sched_clock_poll(sched_clock_timer.data);
|
||||
sched_clock_poll(&sched_clock_timer);
|
||||
cd.suspended = true;
|
||||
return 0;
|
||||
}
|
||||
|
@ -195,7 +207,6 @@ static int sched_clock_suspend(void)
|
|||
static void sched_clock_resume(void)
|
||||
{
|
||||
cd.epoch_cyc = read_sched_clock();
|
||||
cd.epoch_cyc_copy = cd.epoch_cyc;
|
||||
cd.suspended = false;
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue