coresight: tmc: add scatter-gather support for ETR device

Add support to configure ETR device in scatter-gather mode.

In scatter-gather mode trace buffer can be configured to use bigger
buffer size without need of bigger contiguous memory.

Change-Id: I3ce654392d2b75d24f7982638e53c2aab27d4a0e
Signed-off-by: Shashank Mittal <mittals@codeaurora.org>
This commit is contained in:
Shashank Mittal 2016-01-15 19:03:14 -08:00 committed by David Keitel
parent babde2831d
commit 24d0ee108b

View file

@ -27,6 +27,7 @@
#include <linux/of.h>
#include <linux/coresight.h>
#include <linux/amba/bus.h>
#include <asm/cacheflush.h>
#include "coresight-priv.h"
@ -79,6 +80,12 @@
#define TMC_STS_TRIGGERED_BIT 2
#define TMC_FFCR_FLUSHMAN_BIT 6
#define TMC_ETR_SG_ENT_TO_BLK(phys_pte) (((phys_addr_t)phys_pte >> 4) \
<< PAGE_SHIFT)
#define TMC_ETR_SG_ENT(phys_pte) (((phys_pte >> PAGE_SHIFT) << 4) | 0x2)
#define TMC_ETR_SG_NXT_TBL(phys_pte) (((phys_pte >> PAGE_SHIFT) << 4) | 0x3)
#define TMC_ETR_SG_LST_ENT(phys_pte) (((phys_pte >> PAGE_SHIFT) << 4) | 0x1)
enum tmc_config_type {
TMC_CONFIG_TYPE_ETB,
TMC_CONFIG_TYPE_ETR,
@ -98,6 +105,16 @@ enum tmc_mem_intf_width {
TMC_MEM_INTF_WIDTH_256BITS = 0x5,
};
enum tmc_etr_mem_type {
TMC_ETR_MEM_TYPE_CONTIG,
TMC_ETR_MEM_TYPE_SG,
};
static const char * const str_tmc_etr_mem_type[] = {
[TMC_ETR_MEM_TYPE_CONTIG] = "contig",
[TMC_ETR_MEM_TYPE_SG] = "sg",
};
/**
* struct tmc_drvdata - specifics associated to an TMC component
* @base: memory mapped base address for this component.
@ -131,6 +148,10 @@ struct tmc_drvdata {
bool enable;
enum tmc_config_type config_type;
u32 trigger_cntr;
enum tmc_etr_mem_type mem_type;
enum tmc_etr_mem_type memtype;
u32 delta_bottom;
int sg_blk_num;
};
static void tmc_wait_for_ready(struct tmc_drvdata *drvdata)
@ -193,18 +214,233 @@ static void tmc_etb_enable_hw(struct tmc_drvdata *drvdata)
CS_LOCK(drvdata->base);
}
static void tmc_etr_sg_tbl_free(uint32_t *vaddr, uint32_t size, uint32_t ents)
{
uint32_t i = 0, pte_n = 0, last_pte;
uint32_t *virt_st_tbl, *virt_pte;
void *virt_blk;
phys_addr_t phys_pte;
int total_ents = DIV_ROUND_UP(size, PAGE_SIZE);
int ents_per_blk = PAGE_SIZE/sizeof(uint32_t);
virt_st_tbl = vaddr;
while (i < total_ents) {
last_pte = ((i + ents_per_blk) > total_ents) ?
total_ents : (i + ents_per_blk);
while (i < last_pte) {
virt_pte = virt_st_tbl + pte_n;
/* Do not go beyond number of entries allocated */
if (i == ents) {
free_page((unsigned long)virt_st_tbl);
return;
}
phys_pte = TMC_ETR_SG_ENT_TO_BLK(*virt_pte);
virt_blk = phys_to_virt(phys_pte);
if ((last_pte - i) > 1) {
free_page((unsigned long)virt_blk);
pte_n++;
} else if (last_pte == total_ents) {
free_page((unsigned long)virt_blk);
free_page((unsigned long)virt_st_tbl);
} else {
free_page((unsigned long)virt_st_tbl);
virt_st_tbl = (uint32_t *)virt_blk;
pte_n = 0;
break;
}
i++;
}
}
}
static void tmc_etr_sg_tbl_flush(uint32_t *vaddr, uint32_t size)
{
uint32_t i = 0, pte_n = 0, last_pte;
uint32_t *virt_st_tbl, *virt_pte;
void *virt_blk;
phys_addr_t phys_pte;
int total_ents = DIV_ROUND_UP(size, PAGE_SIZE);
int ents_per_blk = PAGE_SIZE/sizeof(uint32_t);
virt_st_tbl = vaddr;
dmac_flush_range((void *)virt_st_tbl, (void *)virt_st_tbl + PAGE_SIZE);
while (i < total_ents) {
last_pte = ((i + ents_per_blk) > total_ents) ?
total_ents : (i + ents_per_blk);
while (i < last_pte) {
virt_pte = virt_st_tbl + pte_n;
phys_pte = TMC_ETR_SG_ENT_TO_BLK(*virt_pte);
virt_blk = phys_to_virt(phys_pte);
dmac_flush_range(virt_blk, virt_blk + PAGE_SIZE);
if ((last_pte - i) > 1) {
pte_n++;
} else if (last_pte != total_ents) {
virt_st_tbl = (uint32_t *)virt_blk;
pte_n = 0;
break;
}
i++;
}
}
}
/*
* Scatter gather table layout in memory:
* 1. Table contains 32-bit entries
* 2. Each entry in the table points to 4K block of memory
* 3. Last entry in the table points to next table
* 4. (*) Based on mem_size requested, if there is no need for next level of
* table, last entry in the table points directly to 4K block of memory.
*
* sg_tbl_num=0
* |---------------|<-- drvdata->vaddr
* | blk_num=0 |
* |---------------|
* | blk_num=1 |
* |---------------|
* | blk_num=2 |
* |---------------| sg_tbl_num=1
* |(*)Nxt Tbl Addr|------>|---------------|
* |---------------| | blk_num=3 |
* |---------------|
* | blk_num=4 |
* |---------------|
* | blk_num=5 |
* |---------------| sg_tbl_num=2
* |(*)Nxt Tbl Addr|------>|---------------|
* |---------------| | blk_num=6 |
* |---------------|
* | blk_num=7 |
* |---------------|
* | blk_num=8 |
* |---------------|
* | |End of
* |---------------|-----
* Table
* For simplicity above diagram assumes following:
* a. mem_size = 36KB --> total_ents = 9
* b. ents_per_blk = 4
*/
static int tmc_etr_sg_tbl_alloc(struct tmc_drvdata *drvdata)
{
int ret;
uint32_t i = 0, last_pte;
uint32_t *virt_pgdir, *virt_st_tbl;
void *virt_pte;
int total_ents = DIV_ROUND_UP(drvdata->size, PAGE_SIZE);
int ents_per_blk = PAGE_SIZE/sizeof(uint32_t);
virt_pgdir = (uint32_t *)get_zeroed_page(GFP_KERNEL);
if (!virt_pgdir)
return -ENOMEM;
virt_st_tbl = virt_pgdir;
while (i < total_ents) {
last_pte = ((i + ents_per_blk) > total_ents) ?
total_ents : (i + ents_per_blk);
while (i < last_pte) {
virt_pte = (void *)get_zeroed_page(GFP_KERNEL);
if (!virt_pte) {
ret = -ENOMEM;
goto err;
}
if ((last_pte - i) > 1) {
*virt_st_tbl =
TMC_ETR_SG_ENT(virt_to_phys(virt_pte));
virt_st_tbl++;
} else if (last_pte == total_ents) {
*virt_st_tbl =
TMC_ETR_SG_LST_ENT(virt_to_phys(virt_pte));
} else {
*virt_st_tbl =
TMC_ETR_SG_NXT_TBL(virt_to_phys(virt_pte));
virt_st_tbl = (uint32_t *)virt_pte;
break;
}
i++;
}
}
drvdata->vaddr = virt_pgdir;
drvdata->paddr = virt_to_phys(virt_pgdir);
/* Flush the dcache before proceeding */
tmc_etr_sg_tbl_flush((uint32_t *)drvdata->vaddr, drvdata->size);
dev_dbg(drvdata->dev, "%s: table starts at %#lx, total entries %d\n",
__func__, (unsigned long)drvdata->paddr, total_ents);
return 0;
err:
tmc_etr_sg_tbl_free(virt_pgdir, drvdata->size, i);
return ret;
}
static void tmc_etr_sg_mem_reset(uint32_t *vaddr, uint32_t size)
{
uint32_t i = 0, pte_n = 0, last_pte;
uint32_t *virt_st_tbl, *virt_pte;
void *virt_blk;
phys_addr_t phys_pte;
int total_ents = DIV_ROUND_UP(size, PAGE_SIZE);
int ents_per_blk = PAGE_SIZE/sizeof(uint32_t);
virt_st_tbl = vaddr;
while (i < total_ents) {
last_pte = ((i + ents_per_blk) > total_ents) ?
total_ents : (i + ents_per_blk);
while (i < last_pte) {
virt_pte = virt_st_tbl + pte_n;
phys_pte = TMC_ETR_SG_ENT_TO_BLK(*virt_pte);
virt_blk = phys_to_virt(phys_pte);
if ((last_pte - i) > 1) {
memset(virt_blk, 0, PAGE_SIZE);
pte_n++;
} else if (last_pte == total_ents) {
memset(virt_blk, 0, PAGE_SIZE);
} else {
virt_st_tbl = (uint32_t *)virt_blk;
pte_n = 0;
break;
}
i++;
}
}
/* Flush the dcache before proceeding */
tmc_etr_sg_tbl_flush(vaddr, size);
}
static int tmc_etr_alloc_mem(struct tmc_drvdata *drvdata)
{
int ret;
if (!drvdata->vaddr) {
drvdata->vaddr = dma_zalloc_coherent(drvdata->dev,
drvdata->size,
&drvdata->paddr,
GFP_KERNEL);
if (!drvdata->vaddr) {
ret = -ENOMEM;
goto err;
if (drvdata->memtype == TMC_ETR_MEM_TYPE_CONTIG) {
drvdata->vaddr = dma_zalloc_coherent(drvdata->dev,
drvdata->size,
&drvdata->paddr,
GFP_KERNEL);
if (!drvdata->vaddr) {
ret = -ENOMEM;
goto err;
}
} else {
ret = tmc_etr_sg_tbl_alloc(drvdata);
if (ret)
goto err;
}
}
/*
@ -221,19 +457,36 @@ err:
static void tmc_etr_free_mem(struct tmc_drvdata *drvdata)
{
if (drvdata->vaddr) {
dma_free_coherent(drvdata->dev, drvdata->size,
drvdata->vaddr, drvdata->paddr);
if (drvdata->memtype == TMC_ETR_MEM_TYPE_CONTIG)
dma_free_coherent(drvdata->dev, drvdata->size,
drvdata->vaddr, drvdata->paddr);
else
tmc_etr_sg_tbl_free((uint32_t *)drvdata->vaddr,
drvdata->size,
DIV_ROUND_UP(drvdata->size, PAGE_SIZE));
drvdata->vaddr = 0;
drvdata->paddr = 0;
}
}
static void tmc_etr_mem_reset(struct tmc_drvdata *drvdata)
{
if (drvdata->vaddr) {
if (drvdata->memtype == TMC_ETR_MEM_TYPE_CONTIG)
memset(drvdata->vaddr, 0, drvdata->size);
else
tmc_etr_sg_mem_reset((uint32_t *)drvdata->vaddr,
drvdata->size);
}
}
static void tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
{
u32 axictl;
/* Zero out the memory to help with debug */
memset(drvdata->vaddr, 0, drvdata->size);
tmc_etr_mem_reset(drvdata);
CS_UNLOCK(drvdata->base);
@ -243,7 +496,10 @@ static void tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
axictl |= TMC_AXICTL_WR_BURST_LEN;
writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
axictl &= ~TMC_AXICTL_SCT_GAT_MODE;
if (drvdata->memtype == TMC_ETR_MEM_TYPE_CONTIG)
axictl &= ~TMC_AXICTL_SCT_GAT_MODE;
else
axictl |= TMC_AXICTL_SCT_GAT_MODE;
writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
axictl = (axictl &
~(TMC_AXICTL_PROT_CTL_B0 | TMC_AXICTL_PROT_CTL_B1)) |
@ -292,9 +548,11 @@ static int tmc_enable(struct tmc_drvdata *drvdata, enum tmc_mode mode)
* enabling tmc; the new selection will be honored from
* next tmc enable session.
*/
if (drvdata->size != drvdata->mem_size) {
if (drvdata->size != drvdata->mem_size ||
drvdata->memtype != drvdata->mem_type) {
tmc_etr_free_mem(drvdata);
drvdata->size = drvdata->mem_size;
drvdata->memtype = drvdata->mem_type;
}
ret = tmc_etr_alloc_mem(drvdata);
if (ret) {
@ -385,6 +643,59 @@ static void tmc_etb_disable_hw(struct tmc_drvdata *drvdata)
CS_LOCK(drvdata->base);
}
static void tmc_etr_sg_rwp_pos(struct tmc_drvdata *drvdata, uint32_t rwp)
{
uint32_t i = 0, pte_n = 0, last_pte;
uint32_t *virt_st_tbl, *virt_pte;
void *virt_blk;
bool found = false;
phys_addr_t phys_pte;
int total_ents = DIV_ROUND_UP(drvdata->size, PAGE_SIZE);
int ents_per_blk = PAGE_SIZE/sizeof(uint32_t);
virt_st_tbl = drvdata->vaddr;
while (i < total_ents) {
last_pte = ((i + ents_per_blk) > total_ents) ?
total_ents : (i + ents_per_blk);
while (i < last_pte) {
virt_pte = virt_st_tbl + pte_n;
phys_pte = TMC_ETR_SG_ENT_TO_BLK(*virt_pte);
/*
* When the trace buffer is full; RWP could be on any
* 4K block from scatter gather table. Compute below -
* 1. Block number where RWP is currently residing
* 2. RWP position in that 4K block
* 3. Delta offset from current RWP position to end of
* block.
*/
if (phys_pte <= rwp && rwp < (phys_pte + PAGE_SIZE)) {
virt_blk = phys_to_virt(phys_pte);
drvdata->sg_blk_num = i;
drvdata->buf = virt_blk + rwp - phys_pte;
drvdata->delta_bottom =
phys_pte + PAGE_SIZE - rwp;
found = true;
break;
}
if ((last_pte - i) > 1) {
pte_n++;
} else if (i < (total_ents - 1)) {
virt_blk = phys_to_virt(phys_pte);
virt_st_tbl = (uint32_t *)virt_blk;
pte_n = 0;
break;
}
i++;
}
if (found)
break;
}
}
static void tmc_etr_dump_hw(struct tmc_drvdata *drvdata)
{
u32 rwp, val;
@ -392,11 +703,25 @@ static void tmc_etr_dump_hw(struct tmc_drvdata *drvdata)
rwp = readl_relaxed(drvdata->base + TMC_RWP);
val = readl_relaxed(drvdata->base + TMC_STS);
/* How much memory do we still have */
if (val & BIT(0))
drvdata->buf = drvdata->vaddr + rwp - drvdata->paddr;
else
drvdata->buf = drvdata->vaddr;
if (drvdata->memtype == TMC_ETR_MEM_TYPE_CONTIG) {
/* How much memory do we still have */
if (val & BIT(0))
drvdata->buf = drvdata->vaddr + rwp - drvdata->paddr;
else
drvdata->buf = drvdata->vaddr;
} else {
/*
* Reset these variables before computing since we
* rely on their values during tmc read
*/
drvdata->sg_blk_num = 0;
drvdata->delta_bottom = 0;
if (val & BIT(0))
tmc_etr_sg_rwp_pos(drvdata, rwp);
else
drvdata->buf = drvdata->vaddr;
}
}
static void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
@ -563,6 +888,128 @@ out:
return 0;
}
/*
* TMC read logic when scatter gather feature is enabled:
*
* sg_tbl_num=0
* |---------------|<-- drvdata->vaddr
* | blk_num=0 |
* | blk_num_rel=5 |
* |---------------|
* | blk_num=1 |
* | blk_num_rel=6 |
* |---------------|
* | blk_num=2 |
* | blk_num_rel=7 |
* |---------------| sg_tbl_num=1
* | Next Table |------>|---------------|
* | Addr | | blk_num=3 |
* |---------------| | blk_num_rel=8 |
* |---------------|
* 4k Block Addr | blk_num=4 |
* |--------------| blk_num_rel=0 |
* | |---------------|
* | | blk_num=5 |
* | | blk_num_rel=1 |
* | |---------------| sg_tbl_num=2
* |---------------| | Next Table |------>|---------------|
* | | | Addr | | blk_num=6 |
* | | |---------------| | blk_num_rel=2 |
* | read_off | |---------------|
* | | | blk_num=7 |
* | | ppos | blk_num_rel=3 |
* |---------------|----- |---------------|
* | | | blk_num=8 |
* | delta_up | | blk_num_rel=4 |
* | | RWP/drvdata->buf |---------------|
* |---------------|----------------- | |
* | | | | |End of
* | | | |---------------|-----
* | | drvdata->delta_bottom Table
* | | |
* |_______________| _|_
* 4K Block
*
* For simplicity above diagram assumes following:
* a. mem_size = 36KB --> total_ents = 9
* b. ents_per_blk = 4
* c. RWP is on 5th block (blk_num = 5); so we have to start reading from RWP
* position
*/
static void tmc_etr_sg_compute_read(struct tmc_drvdata *drvdata, loff_t *ppos,
char **bufpp, size_t *len)
{
uint32_t i = 0, blk_num_rel = 0, read_len = 0;
uint32_t blk_num, sg_tbl_num, blk_num_loc, read_off;
uint32_t *virt_pte, *virt_st_tbl;
void *virt_blk;
phys_addr_t phys_pte = 0;
int total_ents = DIV_ROUND_UP(drvdata->size, PAGE_SIZE);
int ents_per_blk = PAGE_SIZE/sizeof(uint32_t);
/*
* Find relative block number from ppos and reading offset
* within block and find actual block number based on relative
* block number
*/
if (drvdata->buf == drvdata->vaddr) {
blk_num = *ppos / PAGE_SIZE;
read_off = *ppos % PAGE_SIZE;
} else {
if (*ppos < drvdata->delta_bottom) {
read_off = PAGE_SIZE - drvdata->delta_bottom;
} else {
blk_num_rel = (*ppos / PAGE_SIZE) + 1;
read_off = (*ppos - drvdata->delta_bottom) % PAGE_SIZE;
}
blk_num = (drvdata->sg_blk_num + blk_num_rel) % total_ents;
}
virt_st_tbl = (uint32_t *)drvdata->vaddr;
/* Compute table index and block entry index within that table */
if (blk_num && (blk_num == (total_ents - 1)) &&
!(blk_num % (ents_per_blk - 1))) {
sg_tbl_num = blk_num / ents_per_blk;
blk_num_loc = ents_per_blk - 1;
} else {
sg_tbl_num = blk_num / (ents_per_blk - 1);
blk_num_loc = blk_num % (ents_per_blk - 1);
}
for (i = 0; i < sg_tbl_num; i++) {
virt_pte = virt_st_tbl + (ents_per_blk - 1);
phys_pte = TMC_ETR_SG_ENT_TO_BLK(*virt_pte);
virt_st_tbl = (uint32_t *)phys_to_virt(phys_pte);
}
virt_pte = virt_st_tbl + blk_num_loc;
phys_pte = TMC_ETR_SG_ENT_TO_BLK(*virt_pte);
virt_blk = phys_to_virt(phys_pte);
*bufpp = virt_blk + read_off;
if (*len > (PAGE_SIZE - read_off))
*len = PAGE_SIZE - read_off;
/*
* When buffer is wrapped around and trying to read last relative
* block (i.e. delta_up), compute len differently
*/
if (blk_num_rel && (blk_num == drvdata->sg_blk_num)) {
read_len = PAGE_SIZE - drvdata->delta_bottom - read_off;
if (*len > read_len)
*len = read_len;
}
dev_dbg_ratelimited(drvdata->dev,
"%s: read at %p, phys %pa len %zu blk %d, rel blk %d RWP blk %d\n",
__func__, *bufpp, &phys_pte, *len, blk_num, blk_num_rel,
drvdata->sg_blk_num);
}
static ssize_t tmc_read(struct file *file, char __user *data, size_t len,
loff_t *ppos)
{
@ -574,12 +1021,18 @@ static ssize_t tmc_read(struct file *file, char __user *data, size_t len,
len = drvdata->size - *ppos;
if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
if (bufp == (char *)(drvdata->vaddr + drvdata->size))
bufp = drvdata->vaddr;
else if (bufp > (char *)(drvdata->vaddr + drvdata->size))
bufp -= drvdata->size;
if ((bufp + len) > (char *)(drvdata->vaddr + drvdata->size))
len = (char *)(drvdata->vaddr + drvdata->size) - bufp;
if (drvdata->memtype == TMC_ETR_MEM_TYPE_CONTIG) {
if (bufp == (char *)(drvdata->vaddr + drvdata->size))
bufp = drvdata->vaddr;
else if (bufp >
(char *)(drvdata->vaddr + drvdata->size))
bufp -= drvdata->size;
if ((bufp + len) >
(char *)(drvdata->vaddr + drvdata->size))
len = (char *)(drvdata->vaddr + drvdata->size)
- bufp;
} else
tmc_etr_sg_compute_read(drvdata, ppos, &bufp, &len);
}
if (copy_to_user(data, bufp, len)) {
@ -724,6 +1177,44 @@ static ssize_t mem_size_store(struct device *dev,
}
static DEVICE_ATTR_RW(mem_size);
static ssize_t mem_type_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
return scnprintf(buf, PAGE_SIZE, "%s\n",
str_tmc_etr_mem_type[drvdata->mem_type]);
}
static ssize_t mem_type_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t size)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
char str[10] = "";
if (strlen(buf) >= 10)
return -EINVAL;
if (sscanf(buf, "%s", str) != 1)
return -EINVAL;
mutex_lock(&drvdata->mem_lock);
if (!strcmp(str, str_tmc_etr_mem_type[TMC_ETR_MEM_TYPE_CONTIG])) {
drvdata->mem_type = TMC_ETR_MEM_TYPE_CONTIG;
} else if (!strcmp(str, str_tmc_etr_mem_type[TMC_ETR_MEM_TYPE_SG])) {
drvdata->mem_type = TMC_ETR_MEM_TYPE_SG;
} else {
mutex_unlock(&drvdata->mem_lock);
return -EINVAL;
}
mutex_unlock(&drvdata->mem_lock);
return size;
}
static DEVICE_ATTR_RW(mem_type);
static struct attribute *coresight_etb_attrs[] = {
&dev_attr_trigger_cntr.attr,
&dev_attr_status.attr,
@ -733,6 +1224,7 @@ ATTRIBUTE_GROUPS(coresight_etb);
static struct attribute *coresight_etr_attrs[] = {
&dev_attr_mem_size.attr,
&dev_attr_mem_type.attr,
&dev_attr_trigger_cntr.attr,
&dev_attr_status.attr,
NULL,
@ -794,6 +1286,8 @@ static int tmc_probe(struct amba_device *adev, const struct amba_id *id)
drvdata->size = SZ_1M;
drvdata->mem_size = drvdata->size;
drvdata->memtype = TMC_ETR_MEM_TYPE_CONTIG;
drvdata->mem_type = drvdata->memtype;
} else {
drvdata->size = readl_relaxed(drvdata->base + TMC_RSZ) * 4;
}