This is the 4.4.112 stable release

-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAlpfCtUACgkQONu9yGCS
 aT6ZvBAAqxRZ9H5LCEVboN5KE4cvTDS7pYhJPk518ZxnSJslwUl7SZ+AOzxivV9w
 YouBOEHbufSmbVJgPgsxuhlFsw+TMOYATUBVWIBrWjuD+nD+ooba0j5nb4FW2SOc
 XTWv5X8t+Ho19uWcq7w9W+3Ang5f8ySNZUZIG4F/HTeRGU3//J29wfEP2nM9cVOJ
 ZsOze9aK88KbLwgJRr2uCa/eyARvUeqOFomIlUhLNHgtU8xfEEKVX72r68RJ/bbU
 xhoceKJHXLDnA29ZFG6hEi/EIgG6Zr9Iwp/QBe2JtcGtpXCNTR1f+VuW//rcqzka
 OBXctQlObRuZ361jl+WcWg3aycK8DgSJPgC1+QTEcOULa64smu3n//ICqdPNHWSS
 MIG1iVH5zKhtRyDkVZKnk66jqi04GWZ370FpmUvrmaOLFftSM7FHk/U4GDR5eOFJ
 8vxARTrUF4ls2weLBwNiR7zFLiI7iaN8LYmGnjLeBvgVy4u8zZgqfrhwDrMX7dh6
 mEAjNNufLTrsGo7O8tNhwI3KIn7s4gJp5u3c28I0LmB+G3OH+jIopy0o/NXXjAkm
 5gYGsf5mkf0I2SbDT/wkRSAFwuhCfgWKfQiTZmdukLuRo5VaL+SP148hZBcTol0z
 Jsqpy8SeAkWkPcegoMUwGQLRVU3QM1NL0NpT1TAT1Ng4lw5igxU=
 =7usw
 -----END PGP SIGNATURE-----

Merge 4.4.112 into android-4.4

Changes in 4.4.112
	dm bufio: fix shrinker scans when (nr_to_scan < retain_target)
	KVM: Fix stack-out-of-bounds read in write_mmio
	can: gs_usb: fix return value of the "set_bittiming" callback
	IB/srpt: Disable RDMA access by the initiator
	MIPS: Validate PR_SET_FP_MODE prctl(2) requests against the ABI of the task
	MIPS: Factor out NT_PRFPREG regset access helpers
	MIPS: Guard against any partial write attempt with PTRACE_SETREGSET
	MIPS: Consistently handle buffer counter with PTRACE_SETREGSET
	MIPS: Fix an FCSR access API regression with NT_PRFPREG and MSA
	MIPS: Also verify sizeof `elf_fpreg_t' with PTRACE_SETREGSET
	MIPS: Disallow outsized PTRACE_SETREGSET NT_PRFPREG regset accesses
	net/mac80211/debugfs.c: prevent build failure with CONFIG_UBSAN=y
	kvm: vmx: Scrub hardware GPRs at VM-exit
	x86/vsdo: Fix build on PARAVIRT_CLOCK=y, KVM_GUEST=n
	x86/acpi: Handle SCI interrupts above legacy space gracefully
	iommu/arm-smmu-v3: Don't free page table ops twice
	ALSA: pcm: Remove incorrect snd_BUG_ON() usages
	ALSA: pcm: Add missing error checks in OSS emulation plugin builder
	ALSA: pcm: Abort properly at pending signal in OSS read/write loops
	ALSA: pcm: Allow aborting mutex lock at OSS read/write loops
	ALSA: aloop: Release cable upon open error path
	ALSA: aloop: Fix inconsistent format due to incomplete rule
	ALSA: aloop: Fix racy hw constraints adjustment
	x86/acpi: Reduce code duplication in mp_override_legacy_irq()
	mm/compaction: fix invalid free_pfn and compact_cached_free_pfn
	mm/compaction: pass only pageblock aligned range to pageblock_pfn_to_page
	mm/page-writeback: fix dirty_ratelimit calculation
	mm/zswap: use workqueue to destroy pool
	zswap: don't param_set_charp while holding spinlock
	locks: don't check for race with close when setting OFD lock
	futex: Replace barrier() in unqueue_me() with READ_ONCE()
	locking/mutex: Allow next waiter lockless wakeup
	usbvision fix overflow of interfaces array
	usb: musb: ux500: Fix NULL pointer dereference at system PM
	r8152: fix the wake event
	r8152: use test_and_clear_bit
	r8152: adjust ALDPS function
	lan78xx: use skb_cow_head() to deal with cloned skbs
	sr9700: use skb_cow_head() to deal with cloned skbs
	smsc75xx: use skb_cow_head() to deal with cloned skbs
	cx82310_eth: use skb_cow_head() to deal with cloned skbs
	x86/mm/pat, /dev/mem: Remove superfluous error message
	hwrng: core - sleep interruptible in read
	sysrq: Fix warning in sysrq generated crash.
	xhci: Fix ring leak in failure path of xhci_alloc_virt_device()
	Revert "userfaultfd: selftest: vm: allow to build in vm/ directory"
	x86/pti/efi: broken conversion from efi to kernel page table
	8021q: fix a memory leak for VLAN 0 device
	ip6_tunnel: disable dst caching if tunnel is dual-stack
	net: core: fix module type in sock_diag_bind
	RDS: Heap OOB write in rds_message_alloc_sgs()
	RDS: null pointer dereference in rds_atomic_free_op
	sh_eth: fix TSU resource handling
	sh_eth: fix SH7757 GEther initialization
	net: stmmac: enable EEE in MII, GMII or RGMII only
	ipv6: fix possible mem leaks in ipv6_make_skb()
	crypto: algapi - fix NULL dereference in crypto_remove_spawns()
	rbd: set max_segments to USHRT_MAX
	x86/microcode/intel: Extend BDW late-loading with a revision check
	KVM: x86: Add memory barrier on vmcs field lookup
	drm/vmwgfx: Potential off by one in vmw_view_add()
	kaiser: Set _PAGE_NX only if supported
	bpf: add bpf_patch_insn_single helper
	bpf: don't (ab)use instructions to store state
	bpf: move fixup_bpf_calls() function
	bpf: refactor fixup_bpf_calls()
	bpf: adjust insn_aux_data when patching insns
	bpf: prevent out-of-bounds speculation
	bpf, array: fix overflow in max_entries and undefined behavior in index_mask
	iscsi-target: Make TASK_REASSIGN use proper se_cmd->cmd_kref
	target: Avoid early CMD_T_PRE_EXECUTE failures during ABORT_TASK
	USB: serial: cp210x: add IDs for LifeScan OneTouch Verio IQ
	USB: serial: cp210x: add new device ID ELV ALC 8xxx
	usb: misc: usb3503: make sure reset is low for at least 100us
	USB: fix usbmon BUG trigger
	usbip: remove kernel addresses from usb device and urb debug msgs
	staging: android: ashmem: fix a race condition in ASHMEM_SET_SIZE ioctl
	Bluetooth: Prevent stack info leak from the EFS element.
	uas: ignore UAS for Norelsys NS1068(X) chips
	e1000e: Fix e1000_check_for_copper_link_ich8lan return value.
	x86/Documentation: Add PTI description
	x86/cpu: Factor out application of forced CPU caps
	x86/cpufeatures: Make CPU bugs sticky
	x86/cpufeatures: Add X86_BUG_CPU_INSECURE
	x86/pti: Rename BUG_CPU_INSECURE to BUG_CPU_MELTDOWN
	x86/cpufeatures: Add X86_BUG_SPECTRE_V[12]
	x86/cpu: Merge bugs.c and bugs_64.c
	sysfs/cpu: Add vulnerability folder
	x86/cpu: Implement CPU vulnerabilites sysfs functions
	sysfs/cpu: Fix typos in vulnerability documentation
	x86/alternatives: Fix optimize_nops() checking
	x86/alternatives: Add missing '\n' at end of ALTERNATIVE inline asm
	selftests/x86: Add test_vsyscall
	Linux 4.4.112

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
This commit is contained in:
Greg Kroah-Hartman 2018-01-17 10:14:26 +01:00
commit 5f6325b148
90 changed files with 1815 additions and 527 deletions

View file

@ -271,3 +271,19 @@ Description: Parameters for the CPU cache attributes
- WriteBack: data is written only to the cache line and
the modified cache line is written to main
memory only when it is replaced
What: /sys/devices/system/cpu/vulnerabilities
/sys/devices/system/cpu/vulnerabilities/meltdown
/sys/devices/system/cpu/vulnerabilities/spectre_v1
/sys/devices/system/cpu/vulnerabilities/spectre_v2
Date: January 2018
Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
Description: Information about CPU vulnerabilities
The files are named after the code names of CPU
vulnerabilities. The output of those files reflects the
state of the CPUs in the system. Possible output values:
"Not affected" CPU is not affected by the vulnerability
"Vulnerable" CPU is affected and no mitigation in effect
"Mitigation: $M" CPU is affected and mitigation $M is in effect

View file

@ -2529,8 +2529,6 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
nojitter [IA-64] Disables jitter checking for ITC timers.
nopti [X86-64] Disable KAISER isolation of kernel from user.
no-kvmclock [X86,KVM] Disable paravirtualized KVM clock driver
no-kvmapf [X86,KVM] Disable paravirtualized asynchronous page
@ -3062,11 +3060,20 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
pt. [PARIDE]
See Documentation/blockdev/paride.txt.
pti= [X86_64]
Control KAISER user/kernel address space isolation:
on - enable
off - disable
auto - default setting
pti= [X86_64] Control Page Table Isolation of user and
kernel address spaces. Disabling this feature
removes hardening, but improves performance of
system calls and interrupts.
on - unconditionally enable
off - unconditionally disable
auto - kernel detects whether your CPU model is
vulnerable to issues that PTI mitigates
Not specifying this option is equivalent to pti=auto.
nopti [X86_64]
Equivalent to pti=off
pty.legacy_count=
[KNL] Number of legacy pty's. Overwrites compiled-in

186
Documentation/x86/pti.txt Normal file
View file

@ -0,0 +1,186 @@
Overview
========
Page Table Isolation (pti, previously known as KAISER[1]) is a
countermeasure against attacks on the shared user/kernel address
space such as the "Meltdown" approach[2].
To mitigate this class of attacks, we create an independent set of
page tables for use only when running userspace applications. When
the kernel is entered via syscalls, interrupts or exceptions, the
page tables are switched to the full "kernel" copy. When the system
switches back to user mode, the user copy is used again.
The userspace page tables contain only a minimal amount of kernel
data: only what is needed to enter/exit the kernel such as the
entry/exit functions themselves and the interrupt descriptor table
(IDT). There are a few strictly unnecessary things that get mapped
such as the first C function when entering an interrupt (see
comments in pti.c).
This approach helps to ensure that side-channel attacks leveraging
the paging structures do not function when PTI is enabled. It can be
enabled by setting CONFIG_PAGE_TABLE_ISOLATION=y at compile time.
Once enabled at compile-time, it can be disabled at boot with the
'nopti' or 'pti=' kernel parameters (see kernel-parameters.txt).
Page Table Management
=====================
When PTI is enabled, the kernel manages two sets of page tables.
The first set is very similar to the single set which is present in
kernels without PTI. This includes a complete mapping of userspace
that the kernel can use for things like copy_to_user().
Although _complete_, the user portion of the kernel page tables is
crippled by setting the NX bit in the top level. This ensures
that any missed kernel->user CR3 switch will immediately crash
userspace upon executing its first instruction.
The userspace page tables map only the kernel data needed to enter
and exit the kernel. This data is entirely contained in the 'struct
cpu_entry_area' structure which is placed in the fixmap which gives
each CPU's copy of the area a compile-time-fixed virtual address.
For new userspace mappings, the kernel makes the entries in its
page tables like normal. The only difference is when the kernel
makes entries in the top (PGD) level. In addition to setting the
entry in the main kernel PGD, a copy of the entry is made in the
userspace page tables' PGD.
This sharing at the PGD level also inherently shares all the lower
layers of the page tables. This leaves a single, shared set of
userspace page tables to manage. One PTE to lock, one set of
accessed bits, dirty bits, etc...
Overhead
========
Protection against side-channel attacks is important. But,
this protection comes at a cost:
1. Increased Memory Use
a. Each process now needs an order-1 PGD instead of order-0.
(Consumes an additional 4k per process).
b. The 'cpu_entry_area' structure must be 2MB in size and 2MB
aligned so that it can be mapped by setting a single PMD
entry. This consumes nearly 2MB of RAM once the kernel
is decompressed, but no space in the kernel image itself.
2. Runtime Cost
a. CR3 manipulation to switch between the page table copies
must be done at interrupt, syscall, and exception entry
and exit (it can be skipped when the kernel is interrupted,
though.) Moves to CR3 are on the order of a hundred
cycles, and are required at every entry and exit.
b. A "trampoline" must be used for SYSCALL entry. This
trampoline depends on a smaller set of resources than the
non-PTI SYSCALL entry code, so requires mapping fewer
things into the userspace page tables. The downside is
that stacks must be switched at entry time.
d. Global pages are disabled for all kernel structures not
mapped into both kernel and userspace page tables. This
feature of the MMU allows different processes to share TLB
entries mapping the kernel. Losing the feature means more
TLB misses after a context switch. The actual loss of
performance is very small, however, never exceeding 1%.
d. Process Context IDentifiers (PCID) is a CPU feature that
allows us to skip flushing the entire TLB when switching page
tables by setting a special bit in CR3 when the page tables
are changed. This makes switching the page tables (at context
switch, or kernel entry/exit) cheaper. But, on systems with
PCID support, the context switch code must flush both the user
and kernel entries out of the TLB. The user PCID TLB flush is
deferred until the exit to userspace, minimizing the cost.
See intel.com/sdm for the gory PCID/INVPCID details.
e. The userspace page tables must be populated for each new
process. Even without PTI, the shared kernel mappings
are created by copying top-level (PGD) entries into each
new process. But, with PTI, there are now *two* kernel
mappings: one in the kernel page tables that maps everything
and one for the entry/exit structures. At fork(), we need to
copy both.
f. In addition to the fork()-time copying, there must also
be an update to the userspace PGD any time a set_pgd() is done
on a PGD used to map userspace. This ensures that the kernel
and userspace copies always map the same userspace
memory.
g. On systems without PCID support, each CR3 write flushes
the entire TLB. That means that each syscall, interrupt
or exception flushes the TLB.
h. INVPCID is a TLB-flushing instruction which allows flushing
of TLB entries for non-current PCIDs. Some systems support
PCIDs, but do not support INVPCID. On these systems, addresses
can only be flushed from the TLB for the current PCID. When
flushing a kernel address, we need to flush all PCIDs, so a
single kernel address flush will require a TLB-flushing CR3
write upon the next use of every PCID.
Possible Future Work
====================
1. We can be more careful about not actually writing to CR3
unless its value is actually changed.
2. Allow PTI to be enabled/disabled at runtime in addition to the
boot-time switching.
Testing
========
To test stability of PTI, the following test procedure is recommended,
ideally doing all of these in parallel:
1. Set CONFIG_DEBUG_ENTRY=y
2. Run several copies of all of the tools/testing/selftests/x86/ tests
(excluding MPX and protection_keys) in a loop on multiple CPUs for
several minutes. These tests frequently uncover corner cases in the
kernel entry code. In general, old kernels might cause these tests
themselves to crash, but they should never crash the kernel.
3. Run the 'perf' tool in a mode (top or record) that generates many
frequent performance monitoring non-maskable interrupts (see "NMI"
in /proc/interrupts). This exercises the NMI entry/exit code which
is known to trigger bugs in code paths that did not expect to be
interrupted, including nested NMIs. Using "-c" boosts the rate of
NMIs, and using two -c with separate counters encourages nested NMIs
and less deterministic behavior.
while true; do perf record -c 10000 -e instructions,cycles -a sleep 10; done
4. Launch a KVM virtual machine.
5. Run 32-bit binaries on systems supporting the SYSCALL instruction.
This has been a lightly-tested code path and needs extra scrutiny.
Debugging
=========
Bugs in PTI cause a few different signatures of crashes
that are worth noting here.
* Failures of the selftests/x86 code. Usually a bug in one of the
more obscure corners of entry_64.S
* Crashes in early boot, especially around CPU bringup. Bugs
in the trampoline code or mappings cause these.
* Crashes at the first interrupt. Caused by bugs in entry_64.S,
like screwing up a page table switch. Also caused by
incorrectly mapping the IRQ handler entry code.
* Crashes at the first NMI. The NMI code is separate from main
interrupt handlers and can have bugs that do not affect
normal interrupts. Also caused by incorrectly mapping NMI
code. NMIs that interrupt the entry code must be very
careful and can be the cause of crashes that show up when
running perf.
* Kernel crashes at the first exit to userspace. entry_64.S
bugs, or failing to map some of the exit code.
* Crashes at first interrupt that interrupts userspace. The paths
in entry_64.S that return to userspace are sometimes separate
from the ones that return to the kernel.
* Double faults: overflowing the kernel stack because of page
faults upon page faults. Caused by touching non-pti-mapped
data in the entry code, or forgetting to switch to kernel
CR3 before calling into C functions which are not pti-mapped.
* Userspace segfaults early in boot, sometimes manifesting
as mount(8) failing to mount the rootfs. These have
tended to be TLB invalidation issues. Usually invalidating
the wrong PCID, or otherwise missing an invalidation.
1. https://gruss.cc/files/kaiser.pdf
2. https://meltdownattack.com/meltdown.pdf

View file

@ -1,6 +1,6 @@
VERSION = 4
PATCHLEVEL = 4
SUBLEVEL = 111
SUBLEVEL = 112
EXTRAVERSION =
NAME = Blurry Fish Butt

View file

@ -113,7 +113,7 @@ int kvm_handle_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
}
trace_kvm_mmio(KVM_TRACE_MMIO_READ, len, run->mmio.phys_addr,
data);
&data);
data = vcpu_data_host_to_guest(vcpu, data, len);
vcpu_set_reg(vcpu, vcpu->arch.mmio_decode.rt, data);
}
@ -189,14 +189,14 @@ int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run,
data = vcpu_data_guest_to_host(vcpu, vcpu_get_reg(vcpu, rt),
len);
trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, len, fault_ipa, data);
trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, len, fault_ipa, &data);
mmio_write_buf(data_buf, len, data);
ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, fault_ipa, len,
data_buf);
} else {
trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, len,
fault_ipa, 0);
fault_ipa, NULL);
ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_ipa, len,
data_buf);

View file

@ -664,6 +664,18 @@ int mips_set_process_fp_mode(struct task_struct *task, unsigned int value)
unsigned long switch_count;
struct task_struct *t;
/* If nothing to change, return right away, successfully. */
if (value == mips_get_process_fp_mode(task))
return 0;
/* Only accept a mode change if 64-bit FP enabled for o32. */
if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
return -EOPNOTSUPP;
/* And only for o32 tasks. */
if (IS_ENABLED(CONFIG_64BIT) && !test_thread_flag(TIF_32BIT_REGS))
return -EOPNOTSUPP;
/* Check the value is valid */
if (value & ~known_bits)
return -EOPNOTSUPP;

View file

@ -439,25 +439,38 @@ static int gpr64_set(struct task_struct *target,
#endif /* CONFIG_64BIT */
static int fpr_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
/*
* Copy the floating-point context to the supplied NT_PRFPREG buffer,
* !CONFIG_CPU_HAS_MSA variant. FP context's general register slots
* correspond 1:1 to buffer slots. Only general registers are copied.
*/
static int fpr_get_fpa(struct task_struct *target,
unsigned int *pos, unsigned int *count,
void **kbuf, void __user **ubuf)
{
unsigned i;
int err;
return user_regset_copyout(pos, count, kbuf, ubuf,
&target->thread.fpu,
0, NUM_FPU_REGS * sizeof(elf_fpreg_t));
}
/*
* Copy the floating-point context to the supplied NT_PRFPREG buffer,
* CONFIG_CPU_HAS_MSA variant. Only lower 64 bits of FP context's
* general register slots are copied to buffer slots. Only general
* registers are copied.
*/
static int fpr_get_msa(struct task_struct *target,
unsigned int *pos, unsigned int *count,
void **kbuf, void __user **ubuf)
{
unsigned int i;
u64 fpr_val;
int err;
/* XXX fcr31 */
if (sizeof(target->thread.fpu.fpr[i]) == sizeof(elf_fpreg_t))
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu,
0, sizeof(elf_fpregset_t));
BUILD_BUG_ON(sizeof(fpr_val) != sizeof(elf_fpreg_t));
for (i = 0; i < NUM_FPU_REGS; i++) {
fpr_val = get_fpr64(&target->thread.fpu.fpr[i], 0);
err = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
err = user_regset_copyout(pos, count, kbuf, ubuf,
&fpr_val, i * sizeof(elf_fpreg_t),
(i + 1) * sizeof(elf_fpreg_t));
if (err)
@ -467,27 +480,64 @@ static int fpr_get(struct task_struct *target,
return 0;
}
static int fpr_set(struct task_struct *target,
/*
* Copy the floating-point context to the supplied NT_PRFPREG buffer.
* Choose the appropriate helper for general registers, and then copy
* the FCSR register separately.
*/
static int fpr_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
void *kbuf, void __user *ubuf)
{
unsigned i;
const int fcr31_pos = NUM_FPU_REGS * sizeof(elf_fpreg_t);
int err;
if (sizeof(target->thread.fpu.fpr[0]) == sizeof(elf_fpreg_t))
err = fpr_get_fpa(target, &pos, &count, &kbuf, &ubuf);
else
err = fpr_get_msa(target, &pos, &count, &kbuf, &ubuf);
if (err)
return err;
err = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.fcr31,
fcr31_pos, fcr31_pos + sizeof(u32));
return err;
}
/*
* Copy the supplied NT_PRFPREG buffer to the floating-point context,
* !CONFIG_CPU_HAS_MSA variant. Buffer slots correspond 1:1 to FP
* context's general register slots. Only general registers are copied.
*/
static int fpr_set_fpa(struct task_struct *target,
unsigned int *pos, unsigned int *count,
const void **kbuf, const void __user **ubuf)
{
return user_regset_copyin(pos, count, kbuf, ubuf,
&target->thread.fpu,
0, NUM_FPU_REGS * sizeof(elf_fpreg_t));
}
/*
* Copy the supplied NT_PRFPREG buffer to the floating-point context,
* CONFIG_CPU_HAS_MSA variant. Buffer slots are copied to lower 64
* bits only of FP context's general register slots. Only general
* registers are copied.
*/
static int fpr_set_msa(struct task_struct *target,
unsigned int *pos, unsigned int *count,
const void **kbuf, const void __user **ubuf)
{
unsigned int i;
u64 fpr_val;
/* XXX fcr31 */
init_fp_ctx(target);
if (sizeof(target->thread.fpu.fpr[i]) == sizeof(elf_fpreg_t))
return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu,
0, sizeof(elf_fpregset_t));
int err;
BUILD_BUG_ON(sizeof(fpr_val) != sizeof(elf_fpreg_t));
for (i = 0; i < NUM_FPU_REGS && count >= sizeof(elf_fpreg_t); i++) {
err = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
for (i = 0; i < NUM_FPU_REGS && *count > 0; i++) {
err = user_regset_copyin(pos, count, kbuf, ubuf,
&fpr_val, i * sizeof(elf_fpreg_t),
(i + 1) * sizeof(elf_fpreg_t));
if (err)
@ -498,6 +548,53 @@ static int fpr_set(struct task_struct *target,
return 0;
}
/*
* Copy the supplied NT_PRFPREG buffer to the floating-point context.
* Choose the appropriate helper for general registers, and then copy
* the FCSR register separately.
*
* We optimize for the case where `count % sizeof(elf_fpreg_t) == 0',
* which is supposed to have been guaranteed by the kernel before
* calling us, e.g. in `ptrace_regset'. We enforce that requirement,
* so that we can safely avoid preinitializing temporaries for
* partial register writes.
*/
static int fpr_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
const int fcr31_pos = NUM_FPU_REGS * sizeof(elf_fpreg_t);
u32 fcr31;
int err;
BUG_ON(count % sizeof(elf_fpreg_t));
if (pos + count > sizeof(elf_fpregset_t))
return -EIO;
init_fp_ctx(target);
if (sizeof(target->thread.fpu.fpr[0]) == sizeof(elf_fpreg_t))
err = fpr_set_fpa(target, &pos, &count, &kbuf, &ubuf);
else
err = fpr_set_msa(target, &pos, &count, &kbuf, &ubuf);
if (err)
return err;
if (count > 0) {
err = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&fcr31,
fcr31_pos, fcr31_pos + sizeof(u32));
if (err)
return err;
ptrace_setfcr31(target, fcr31);
}
return err;
}
enum mips_regset {
REGSET_GPR,
REGSET_FPR,

View file

@ -65,6 +65,7 @@ config X86
select GENERIC_CLOCKEVENTS_MIN_ADJUST
select GENERIC_CMOS_UPDATE
select GENERIC_CPU_AUTOPROBE
select GENERIC_CPU_VULNERABILITIES
select GENERIC_EARLY_IOREMAP
select GENERIC_FIND_FIRST_BIT
select GENERIC_IOMAP

View file

@ -138,7 +138,7 @@ static inline int alternatives_text_reserved(void *start, void *end)
".popsection\n" \
".pushsection .altinstr_replacement, \"ax\"\n" \
ALTINSTR_REPLACEMENT(newinstr, feature, 1) \
".popsection"
".popsection\n"
#define ALTERNATIVE_2(oldinstr, newinstr1, feature1, newinstr2, feature2)\
OLDINSTR_2(oldinstr, 1, 2) \
@ -149,7 +149,7 @@ static inline int alternatives_text_reserved(void *start, void *end)
".pushsection .altinstr_replacement, \"ax\"\n" \
ALTINSTR_REPLACEMENT(newinstr1, feature1, 1) \
ALTINSTR_REPLACEMENT(newinstr2, feature2, 2) \
".popsection"
".popsection\n"
/*
* This must be included *after* the definition of ALTERNATIVE due to

View file

@ -277,6 +277,9 @@
#define X86_BUG_FXSAVE_LEAK X86_BUG(6) /* FXSAVE leaks FOP/FIP/FOP */
#define X86_BUG_CLFLUSH_MONITOR X86_BUG(7) /* AAI65, CLFLUSH required before MONITOR */
#define X86_BUG_SYSRET_SS_ATTRS X86_BUG(8) /* SYSRET doesn't fix up SS attrs */
#define X86_BUG_CPU_MELTDOWN X86_BUG(14) /* CPU is affected by meltdown attack and needs kernel page table isolation */
#define X86_BUG_SPECTRE_V1 X86_BUG(15) /* CPU is affected by Spectre variant 1 attack with conditional branches */
#define X86_BUG_SPECTRE_V2 X86_BUG(16) /* CPU is affected by Spectre variant 2 attack with indirect branches */
#if defined(__KERNEL__) && !defined(__ASSEMBLY__)
@ -359,6 +362,8 @@ extern const char * const x86_bug_flags[NBUGINTS*32];
set_bit(bit, (unsigned long *)cpu_caps_set); \
} while (0)
#define setup_force_cpu_bug(bit) setup_force_cpu_cap(bit)
#define cpu_has_fpu boot_cpu_has(X86_FEATURE_FPU)
#define cpu_has_de boot_cpu_has(X86_FEATURE_DE)
#define cpu_has_pse boot_cpu_has(X86_FEATURE_PSE)

View file

@ -19,6 +19,16 @@
#define KAISER_SHADOW_PGD_OFFSET 0x1000
#ifdef CONFIG_PAGE_TABLE_ISOLATION
/*
* A page table address must have this alignment to stay the same when
* KAISER_SHADOW_PGD_OFFSET mask is applied
*/
#define KAISER_KERNEL_PGD_ALIGNMENT (KAISER_SHADOW_PGD_OFFSET << 1)
#else
#define KAISER_KERNEL_PGD_ALIGNMENT PAGE_SIZE
#endif
#ifdef __ASSEMBLY__
#ifdef CONFIG_PAGE_TABLE_ISOLATION

View file

@ -156,8 +156,8 @@ extern struct cpuinfo_x86 boot_cpu_data;
extern struct cpuinfo_x86 new_cpu_data;
extern struct tss_struct doublefault_tss;
extern __u32 cpu_caps_cleared[NCAPINTS];
extern __u32 cpu_caps_set[NCAPINTS];
extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
#ifdef CONFIG_SMP
DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);

View file

@ -4,7 +4,7 @@
#include <linux/clocksource.h>
#include <asm/pvclock-abi.h>
#ifdef CONFIG_PARAVIRT_CLOCK
#ifdef CONFIG_KVM_GUEST
extern struct pvclock_vsyscall_time_info *pvclock_pvti_cpu0_va(void);
#else
static inline struct pvclock_vsyscall_time_info *pvclock_pvti_cpu0_va(void)

View file

@ -321,13 +321,12 @@ acpi_parse_lapic_nmi(struct acpi_subtable_header * header, const unsigned long e
#ifdef CONFIG_X86_IO_APIC
#define MP_ISA_BUS 0
static int __init mp_register_ioapic_irq(u8 bus_irq, u8 polarity,
u8 trigger, u32 gsi);
static void __init mp_override_legacy_irq(u8 bus_irq, u8 polarity, u8 trigger,
u32 gsi)
{
int ioapic;
int pin;
struct mpc_intsrc mp_irq;
/*
* Check bus_irq boundary.
*/
@ -336,14 +335,6 @@ static void __init mp_override_legacy_irq(u8 bus_irq, u8 polarity, u8 trigger,
return;
}
/*
* Convert 'gsi' to 'ioapic.pin'.
*/
ioapic = mp_find_ioapic(gsi);
if (ioapic < 0)
return;
pin = mp_find_ioapic_pin(ioapic, gsi);
/*
* TBD: This check is for faulty timer entries, where the override
* erroneously sets the trigger to level, resulting in a HUGE
@ -352,16 +343,8 @@ static void __init mp_override_legacy_irq(u8 bus_irq, u8 polarity, u8 trigger,
if ((bus_irq == 0) && (trigger == 3))
trigger = 1;
mp_irq.type = MP_INTSRC;
mp_irq.irqtype = mp_INT;
mp_irq.irqflag = (trigger << 2) | polarity;
mp_irq.srcbus = MP_ISA_BUS;
mp_irq.srcbusirq = bus_irq; /* IRQ */
mp_irq.dstapic = mpc_ioapic_id(ioapic); /* APIC ID */
mp_irq.dstirq = pin; /* INTIN# */
mp_save_irq(&mp_irq);
if (mp_register_ioapic_irq(bus_irq, polarity, trigger, gsi) < 0)
return;
/*
* Reset default identity mapping if gsi is also an legacy IRQ,
* otherwise there will be more than one entry with the same GSI
@ -408,6 +391,34 @@ static int mp_config_acpi_gsi(struct device *dev, u32 gsi, int trigger,
return 0;
}
static int __init mp_register_ioapic_irq(u8 bus_irq, u8 polarity,
u8 trigger, u32 gsi)
{
struct mpc_intsrc mp_irq;
int ioapic, pin;
/* Convert 'gsi' to 'ioapic.pin'(INTIN#) */
ioapic = mp_find_ioapic(gsi);
if (ioapic < 0) {
pr_warn("Failed to find ioapic for gsi : %u\n", gsi);
return ioapic;
}
pin = mp_find_ioapic_pin(ioapic, gsi);
mp_irq.type = MP_INTSRC;
mp_irq.irqtype = mp_INT;
mp_irq.irqflag = (trigger << 2) | polarity;
mp_irq.srcbus = MP_ISA_BUS;
mp_irq.srcbusirq = bus_irq;
mp_irq.dstapic = mpc_ioapic_id(ioapic);
mp_irq.dstirq = pin;
mp_save_irq(&mp_irq);
return 0;
}
static int __init
acpi_parse_ioapic(struct acpi_subtable_header * header, const unsigned long end)
{
@ -452,7 +463,11 @@ static void __init acpi_sci_ioapic_setup(u8 bus_irq, u16 polarity, u16 trigger,
if (acpi_sci_flags & ACPI_MADT_POLARITY_MASK)
polarity = acpi_sci_flags & ACPI_MADT_POLARITY_MASK;
mp_override_legacy_irq(bus_irq, polarity, trigger, gsi);
if (bus_irq < NR_IRQS_LEGACY)
mp_override_legacy_irq(bus_irq, polarity, trigger, gsi);
else
mp_register_ioapic_irq(bus_irq, polarity, trigger, gsi);
acpi_penalize_sci_irq(bus_irq, trigger, polarity);
/*

View file

@ -339,9 +339,12 @@ done:
static void __init_or_module optimize_nops(struct alt_instr *a, u8 *instr)
{
unsigned long flags;
int i;
if (instr[0] != 0x90)
return;
for (i = 0; i < a->padlen; i++) {
if (instr[i] != 0x90)
return;
}
local_irq_save(flags);
add_nops(instr + (a->instrlen - a->padlen), a->padlen);

View file

@ -20,13 +20,11 @@ obj-y := intel_cacheinfo.o scattered.o topology.o
obj-y += common.o
obj-y += rdrand.o
obj-y += match.o
obj-y += bugs.o
obj-$(CONFIG_PROC_FS) += proc.o
obj-$(CONFIG_X86_FEATURE_NAMES) += capflags.o powerflags.o
obj-$(CONFIG_X86_32) += bugs.o
obj-$(CONFIG_X86_64) += bugs_64.o
obj-$(CONFIG_CPU_SUP_INTEL) += intel.o
obj-$(CONFIG_CPU_SUP_AMD) += amd.o
obj-$(CONFIG_CPU_SUP_CYRIX_32) += cyrix.o

View file

@ -9,6 +9,7 @@
*/
#include <linux/init.h>
#include <linux/utsname.h>
#include <linux/cpu.h>
#include <asm/bugs.h>
#include <asm/processor.h>
#include <asm/processor-flags.h>
@ -16,6 +17,8 @@
#include <asm/msr.h>
#include <asm/paravirt.h>
#include <asm/alternative.h>
#include <asm/pgtable.h>
#include <asm/cacheflush.h>
void __init check_bugs(void)
{
@ -28,11 +31,13 @@ void __init check_bugs(void)
#endif
identify_boot_cpu();
#ifndef CONFIG_SMP
pr_info("CPU: ");
print_cpu_info(&boot_cpu_data);
#endif
if (!IS_ENABLED(CONFIG_SMP)) {
pr_info("CPU: ");
print_cpu_info(&boot_cpu_data);
}
#ifdef CONFIG_X86_32
/*
* Check whether we are able to run this kernel safely on SMP.
*
@ -48,4 +53,46 @@ void __init check_bugs(void)
alternative_instructions();
fpu__init_check_bugs();
#else /* CONFIG_X86_64 */
alternative_instructions();
/*
* Make sure the first 2MB area is not mapped by huge pages
* There are typically fixed size MTRRs in there and overlapping
* MTRRs into large pages causes slow downs.
*
* Right now we don't do that with gbpages because there seems
* very little benefit for that case.
*/
if (!direct_gbpages)
set_memory_4k((unsigned long)__va(0), 1);
#endif
}
#ifdef CONFIG_SYSFS
ssize_t cpu_show_meltdown(struct device *dev,
struct device_attribute *attr, char *buf)
{
if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
return sprintf(buf, "Not affected\n");
if (boot_cpu_has(X86_FEATURE_KAISER))
return sprintf(buf, "Mitigation: PTI\n");
return sprintf(buf, "Vulnerable\n");
}
ssize_t cpu_show_spectre_v1(struct device *dev,
struct device_attribute *attr, char *buf)
{
if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1))
return sprintf(buf, "Not affected\n");
return sprintf(buf, "Vulnerable\n");
}
ssize_t cpu_show_spectre_v2(struct device *dev,
struct device_attribute *attr, char *buf)
{
if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
return sprintf(buf, "Not affected\n");
return sprintf(buf, "Vulnerable\n");
}
#endif

View file

@ -1,33 +0,0 @@
/*
* Copyright (C) 1994 Linus Torvalds
* Copyright (C) 2000 SuSE
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <asm/alternative.h>
#include <asm/bugs.h>
#include <asm/processor.h>
#include <asm/mtrr.h>
#include <asm/cacheflush.h>
void __init check_bugs(void)
{
identify_boot_cpu();
#if !defined(CONFIG_SMP)
printk(KERN_INFO "CPU: ");
print_cpu_info(&boot_cpu_data);
#endif
alternative_instructions();
/*
* Make sure the first 2MB area is not mapped by huge pages
* There are typically fixed size MTRRs in there and overlapping
* MTRRs into large pages causes slow downs.
*
* Right now we don't do that with gbpages because there seems
* very little benefit for that case.
*/
if (!direct_gbpages)
set_memory_4k((unsigned long)__va(0), 1);
}

View file

@ -432,8 +432,8 @@ static const char *table_lookup_model(struct cpuinfo_x86 *c)
return NULL; /* Not found */
}
__u32 cpu_caps_cleared[NCAPINTS];
__u32 cpu_caps_set[NCAPINTS];
__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
__u32 cpu_caps_set[NCAPINTS + NBUGINTS];
void load_percpu_segment(int cpu)
{
@ -664,6 +664,16 @@ void cpu_detect(struct cpuinfo_x86 *c)
}
}
static void apply_forced_caps(struct cpuinfo_x86 *c)
{
int i;
for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
c->x86_capability[i] &= ~cpu_caps_cleared[i];
c->x86_capability[i] |= cpu_caps_set[i];
}
}
void get_cpu_cap(struct cpuinfo_x86 *c)
{
u32 tfms, xlvl;
@ -820,6 +830,13 @@ static void __init early_identify_cpu(struct cpuinfo_x86 *c)
}
setup_force_cpu_cap(X86_FEATURE_ALWAYS);
/* Assume for now that ALL x86 CPUs are insecure */
setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
fpu__init_system(c);
}
@ -955,11 +972,8 @@ static void identify_cpu(struct cpuinfo_x86 *c)
if (this_cpu->c_identify)
this_cpu->c_identify(c);
/* Clear/Set all flags overriden by options, after probe */
for (i = 0; i < NCAPINTS; i++) {
c->x86_capability[i] &= ~cpu_caps_cleared[i];
c->x86_capability[i] |= cpu_caps_set[i];
}
/* Clear/Set all flags overridden by options, after probe */
apply_forced_caps(c);
#ifdef CONFIG_X86_64
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
@ -1020,10 +1034,7 @@ static void identify_cpu(struct cpuinfo_x86 *c)
* Clear/Set all flags overriden by options, need do it
* before following smp all cpus cap AND.
*/
for (i = 0; i < NCAPINTS; i++) {
c->x86_capability[i] &= ~cpu_caps_cleared[i];
c->x86_capability[i] |= cpu_caps_set[i];
}
apply_forced_caps(c);
/*
* On SMP, boot_cpu_data holds the common feature set between

View file

@ -994,9 +994,17 @@ static bool is_blacklisted(unsigned int cpu)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
if (c->x86 == 6 && c->x86_model == 79) {
pr_err_once("late loading on model 79 is disabled.\n");
return true;
/*
* Late loading on model 79 with microcode revision less than 0x0b000021
* may result in a system hang. This behavior is documented in item
* BDF90, #334165 (Intel Xeon Processor E7-8800/4800 v4 Product Family).
*/
if (c->x86 == 6 &&
c->x86_model == 79 &&
c->x86_mask == 0x01 &&
c->microcode < 0x0b000021) {
pr_err_once("Erratum BDF90: late loading with revision < 0x0b000021 (0x%x) disabled.\n", c->microcode);
pr_err_once("Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
}
return false;

View file

@ -3855,6 +3855,25 @@ static void svm_vcpu_run(struct kvm_vcpu *vcpu)
"mov %%r13, %c[r13](%[svm]) \n\t"
"mov %%r14, %c[r14](%[svm]) \n\t"
"mov %%r15, %c[r15](%[svm]) \n\t"
#endif
/*
* Clear host registers marked as clobbered to prevent
* speculative use.
*/
"xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
"xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
"xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
"xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
"xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
#ifdef CONFIG_X86_64
"xor %%r8, %%r8 \n\t"
"xor %%r9, %%r9 \n\t"
"xor %%r10, %%r10 \n\t"
"xor %%r11, %%r11 \n\t"
"xor %%r12, %%r12 \n\t"
"xor %%r13, %%r13 \n\t"
"xor %%r14, %%r14 \n\t"
"xor %%r15, %%r15 \n\t"
#endif
"pop %%" _ASM_BP
:

View file

@ -828,8 +828,16 @@ static inline short vmcs_field_to_offset(unsigned long field)
{
BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
vmcs_field_to_offset_table[field] == 0)
if (field >= ARRAY_SIZE(vmcs_field_to_offset_table))
return -ENOENT;
/*
* FIXME: Mitigation for CVE-2017-5753. To be replaced with a
* generic mechanism.
*/
asm("lfence");
if (vmcs_field_to_offset_table[field] == 0)
return -ENOENT;
return vmcs_field_to_offset_table[field];
@ -8623,6 +8631,7 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
/* Save guest registers, load host registers, keep flags */
"mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
"pop %0 \n\t"
"setbe %c[fail](%0)\n\t"
"mov %%" _ASM_AX ", %c[rax](%0) \n\t"
"mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
__ASM_SIZE(pop) " %c[rcx](%0) \n\t"
@ -8639,12 +8648,23 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
"mov %%r13, %c[r13](%0) \n\t"
"mov %%r14, %c[r14](%0) \n\t"
"mov %%r15, %c[r15](%0) \n\t"
"xor %%r8d, %%r8d \n\t"
"xor %%r9d, %%r9d \n\t"
"xor %%r10d, %%r10d \n\t"
"xor %%r11d, %%r11d \n\t"
"xor %%r12d, %%r12d \n\t"
"xor %%r13d, %%r13d \n\t"
"xor %%r14d, %%r14d \n\t"
"xor %%r15d, %%r15d \n\t"
#endif
"mov %%cr2, %%" _ASM_AX " \n\t"
"mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
"xor %%eax, %%eax \n\t"
"xor %%ebx, %%ebx \n\t"
"xor %%esi, %%esi \n\t"
"xor %%edi, %%edi \n\t"
"pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
"setbe %c[fail](%0) \n\t"
".pushsection .rodata \n\t"
".global vmx_return \n\t"
"vmx_return: " _ASM_PTR " 2b \n\t"

View file

@ -4114,7 +4114,7 @@ static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
addr, n, v))
&& kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
break;
trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
handled += n;
addr += n;
len -= n;
@ -4362,7 +4362,7 @@ static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
{
if (vcpu->mmio_read_completed) {
trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
vcpu->mmio_fragments[0].gpa, *(u64 *)val);
vcpu->mmio_fragments[0].gpa, val);
vcpu->mmio_read_completed = 0;
return 1;
}
@ -4384,14 +4384,14 @@ static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
{
trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
return vcpu_mmio_write(vcpu, gpa, bytes, val);
}
static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
void *val, int bytes)
{
trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
return X86EMUL_IO_NEEDED;
}

View file

@ -198,6 +198,8 @@ static int kaiser_add_user_map(const void *__start_addr, unsigned long size,
* requires that not to be #defined to 0): so mask it off here.
*/
flags &= ~_PAGE_GLOBAL;
if (!(__supported_pte_mask & _PAGE_NX))
flags &= ~_PAGE_NX;
for (; address < end_addr; address += PAGE_SIZE) {
target_address = get_pa_from_mapping(address);

View file

@ -750,11 +750,8 @@ static inline int range_is_allowed(unsigned long pfn, unsigned long size)
return 1;
while (cursor < to) {
if (!devmem_is_allowed(pfn)) {
pr_info("x86/PAT: Program %s tried to access /dev/mem between [mem %#010Lx-%#010Lx], PAT prevents it\n",
current->comm, from, to - 1);
if (!devmem_is_allowed(pfn))
return 0;
}
cursor += PAGE_SIZE;
pfn++;
}

View file

@ -4,6 +4,7 @@
#include <asm/cacheflush.h>
#include <asm/pgtable.h>
#include <asm/realmode.h>
#include <asm/kaiser.h>
struct real_mode_header *real_mode_header;
u32 *trampoline_cr4_features;
@ -15,7 +16,8 @@ void __init reserve_real_mode(void)
size_t size = PAGE_ALIGN(real_mode_blob_end - real_mode_blob);
/* Has to be under 1M so we can execute real-mode AP code. */
mem = memblock_find_in_range(0, 1<<20, size, PAGE_SIZE);
mem = memblock_find_in_range(0, 1 << 20, size,
KAISER_KERNEL_PGD_ALIGNMENT);
if (!mem)
panic("Cannot allocate trampoline\n");

View file

@ -30,6 +30,7 @@
#include <asm/msr.h>
#include <asm/segment.h>
#include <asm/processor-flags.h>
#include <asm/kaiser.h>
#include "realmode.h"
.text
@ -139,7 +140,7 @@ tr_gdt:
tr_gdt_end:
.bss
.balign PAGE_SIZE
.balign KAISER_KERNEL_PGD_ALIGNMENT
GLOBAL(trampoline_pgd) .space PAGE_SIZE
.balign 8

View file

@ -168,6 +168,18 @@ void crypto_remove_spawns(struct crypto_alg *alg, struct list_head *list,
spawn->alg = NULL;
spawns = &inst->alg.cra_users;
/*
* We may encounter an unregistered instance here, since
* an instance's spawns are set up prior to the instance
* being registered. An unregistered instance will have
* NULL ->cra_users.next, since ->cra_users isn't
* properly initialized until registration. But an
* unregistered instance cannot have any users, so treat
* it the same as ->cra_users being empty.
*/
if (spawns->next == NULL)
break;
}
} while ((spawns = crypto_more_spawns(alg, &stack, &top,
&secondary_spawns)));

View file

@ -223,6 +223,9 @@ config GENERIC_CPU_DEVICES
config GENERIC_CPU_AUTOPROBE
bool
config GENERIC_CPU_VULNERABILITIES
bool
config SOC_BUS
bool

View file

@ -498,10 +498,58 @@ static void __init cpu_dev_register_generic(void)
#endif
}
#ifdef CONFIG_GENERIC_CPU_VULNERABILITIES
ssize_t __weak cpu_show_meltdown(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "Not affected\n");
}
ssize_t __weak cpu_show_spectre_v1(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "Not affected\n");
}
ssize_t __weak cpu_show_spectre_v2(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "Not affected\n");
}
static DEVICE_ATTR(meltdown, 0444, cpu_show_meltdown, NULL);
static DEVICE_ATTR(spectre_v1, 0444, cpu_show_spectre_v1, NULL);
static DEVICE_ATTR(spectre_v2, 0444, cpu_show_spectre_v2, NULL);
static struct attribute *cpu_root_vulnerabilities_attrs[] = {
&dev_attr_meltdown.attr,
&dev_attr_spectre_v1.attr,
&dev_attr_spectre_v2.attr,
NULL
};
static const struct attribute_group cpu_root_vulnerabilities_group = {
.name = "vulnerabilities",
.attrs = cpu_root_vulnerabilities_attrs,
};
static void __init cpu_register_vulnerabilities(void)
{
if (sysfs_create_group(&cpu_subsys.dev_root->kobj,
&cpu_root_vulnerabilities_group))
pr_err("Unable to register CPU vulnerabilities\n");
}
#else
static inline void cpu_register_vulnerabilities(void) { }
#endif
void __init cpu_dev_init(void)
{
if (subsys_system_register(&cpu_subsys, cpu_root_attr_groups))
panic("Failed to register CPU subsystem");
cpu_dev_register_generic();
cpu_register_vulnerabilities();
}

View file

@ -3767,7 +3767,7 @@ static int rbd_init_disk(struct rbd_device *rbd_dev)
segment_size = rbd_obj_bytes(&rbd_dev->header);
blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
q->limits.max_sectors = queue_max_hw_sectors(q);
blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
blk_queue_max_segments(q, USHRT_MAX);
blk_queue_max_segment_size(q, segment_size);
blk_queue_io_min(q, segment_size);
blk_queue_io_opt(q, segment_size);

View file

@ -238,7 +238,10 @@ static ssize_t rng_dev_read(struct file *filp, char __user *buf,
goto out;
}
mutex_lock(&reading_mutex);
if (mutex_lock_interruptible(&reading_mutex)) {
err = -ERESTARTSYS;
goto out_put;
}
if (!data_avail) {
bytes_read = rng_get_data(rng, rng_buffer,
rng_buffer_size(),
@ -288,6 +291,7 @@ out:
out_unlock_reading:
mutex_unlock(&reading_mutex);
out_put:
put_rng(rng);
goto out;
}

View file

@ -70,12 +70,8 @@ static inline int range_is_allowed(unsigned long pfn, unsigned long size)
u64 cursor = from;
while (cursor < to) {
if (!devmem_is_allowed(pfn)) {
printk(KERN_INFO
"Program %s tried to access /dev/mem between %Lx->%Lx.\n",
current->comm, from, to);
if (!devmem_is_allowed(pfn))
return 0;
}
cursor += PAGE_SIZE;
pfn++;
}

View file

@ -2678,6 +2678,8 @@ static int vmw_cmd_dx_view_define(struct vmw_private *dev_priv,
}
view_type = vmw_view_cmd_to_type(header->id);
if (view_type == vmw_view_max)
return -EINVAL;
cmd = container_of(header, typeof(*cmd), header);
ret = vmw_cmd_res_check(dev_priv, sw_context, vmw_res_surface,
user_surface_converter,

View file

@ -957,8 +957,7 @@ static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
return -ENOMEM;
attr->qp_state = IB_QPS_INIT;
attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
IB_ACCESS_REMOTE_WRITE;
attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
attr->port_num = ch->sport->port;
attr->pkey_index = 0;

View file

@ -1541,13 +1541,15 @@ static int arm_smmu_domain_finalise(struct iommu_domain *domain)
return -ENOMEM;
arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
smmu_domain->pgtbl_ops = pgtbl_ops;
ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
if (IS_ERR_VALUE(ret))
if (IS_ERR_VALUE(ret)) {
free_io_pgtable_ops(pgtbl_ops);
return ret;
}
return ret;
smmu_domain->pgtbl_ops = pgtbl_ops;
return 0;
}
static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)

View file

@ -1527,7 +1527,8 @@ static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
int l;
struct dm_buffer *b, *tmp;
unsigned long freed = 0;
unsigned long count = nr_to_scan;
unsigned long count = c->n_buffers[LIST_CLEAN] +
c->n_buffers[LIST_DIRTY];
unsigned long retain_target = get_retain_buffers(c);
for (l = 0; l < LIST_SIZE; l++) {
@ -1564,6 +1565,7 @@ dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
struct dm_bufio_client *c;
unsigned long count;
unsigned long retain_target;
c = container_of(shrink, struct dm_bufio_client, shrinker);
if (sc->gfp_mask & __GFP_FS)
@ -1572,8 +1574,9 @@ dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
return 0;
count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
retain_target = get_retain_buffers(c);
dm_bufio_unlock(c);
return count;
return (count < retain_target) ? 0 : (count - retain_target);
}
/*

View file

@ -1461,6 +1461,13 @@ static int usbvision_probe(struct usb_interface *intf,
printk(KERN_INFO "%s: %s found\n", __func__,
usbvision_device_data[model].model_string);
/*
* this is a security check.
* an exploit using an incorrect bInterfaceNumber is known
*/
if (ifnum >= USB_MAXINTERFACES || !dev->actconfig->interface[ifnum])
return -ENODEV;
if (usbvision_device_data[model].interface >= 0)
interface = &dev->actconfig->interface[usbvision_device_data[model].interface]->altsetting[0];
else if (ifnum < dev->actconfig->desc.bNumInterfaces)

View file

@ -430,7 +430,7 @@ static int gs_usb_set_bittiming(struct net_device *netdev)
dev_err(netdev->dev.parent, "Couldn't set bittimings (err=%d)",
rc);
return rc;
return (rc > 0) ? 0 : rc;
}
static void gs_usb_xmit_callback(struct urb *urb)

View file

@ -1362,6 +1362,9 @@ out:
* Checks to see of the link status of the hardware has changed. If a
* change in link status has been detected, then we read the PHY registers
* to get the current speed/duplex if link exists.
*
* Returns a negative error code (-E1000_ERR_*) or 0 (link down) or 1 (link
* up).
**/
static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
{
@ -1377,7 +1380,7 @@ static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
* Change or Rx Sequence Error interrupt.
*/
if (!mac->get_link_status)
return 0;
return 1;
/* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
@ -1585,10 +1588,12 @@ static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
* different link partner.
*/
ret_val = e1000e_config_fc_after_link_up(hw);
if (ret_val)
if (ret_val) {
e_dbg("Error configuring flow control\n");
return ret_val;
}
return ret_val;
return 1;
}
static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)

View file

@ -3176,18 +3176,37 @@ static int sh_eth_drv_probe(struct platform_device *pdev)
/* ioremap the TSU registers */
if (mdp->cd->tsu) {
struct resource *rtsu;
rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
if (IS_ERR(mdp->tsu_addr)) {
ret = PTR_ERR(mdp->tsu_addr);
if (!rtsu) {
dev_err(&pdev->dev, "no TSU resource\n");
ret = -ENODEV;
goto out_release;
}
/* We can only request the TSU region for the first port
* of the two sharing this TSU for the probe to succeed...
*/
if (devno % 2 == 0 &&
!devm_request_mem_region(&pdev->dev, rtsu->start,
resource_size(rtsu),
dev_name(&pdev->dev))) {
dev_err(&pdev->dev, "can't request TSU resource.\n");
ret = -EBUSY;
goto out_release;
}
mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
resource_size(rtsu));
if (!mdp->tsu_addr) {
dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
ret = -ENOMEM;
goto out_release;
}
mdp->port = devno % 2;
ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
}
/* initialize first or needed device */
if (!devno || pd->needs_init) {
/* Need to init only the first port of the two sharing a TSU */
if (devno % 2 == 0) {
if (mdp->cd->chip_reset)
mdp->cd->chip_reset(ndev);

View file

@ -272,8 +272,14 @@ bool stmmac_eee_init(struct stmmac_priv *priv)
{
char *phy_bus_name = priv->plat->phy_bus_name;
unsigned long flags;
int interface = priv->plat->interface;
bool ret = false;
if ((interface != PHY_INTERFACE_MODE_MII) &&
(interface != PHY_INTERFACE_MODE_GMII) &&
!phy_interface_mode_is_rgmii(interface))
goto out;
/* Using PCS we cannot dial with the phy registers at this stage
* so we do not support extra feature like EEE.
*/

View file

@ -293,12 +293,9 @@ static struct sk_buff *cx82310_tx_fixup(struct usbnet *dev, struct sk_buff *skb,
{
int len = skb->len;
if (skb_headroom(skb) < 2) {
struct sk_buff *skb2 = skb_copy_expand(skb, 2, 0, flags);
if (skb_cow_head(skb, 2)) {
dev_kfree_skb_any(skb);
skb = skb2;
if (!skb)
return NULL;
return NULL;
}
skb_push(skb, 2);

View file

@ -2050,14 +2050,9 @@ static struct sk_buff *lan78xx_tx_prep(struct lan78xx_net *dev,
{
u32 tx_cmd_a, tx_cmd_b;
if (skb_headroom(skb) < TX_OVERHEAD) {
struct sk_buff *skb2;
skb2 = skb_copy_expand(skb, TX_OVERHEAD, 0, flags);
if (skb_cow_head(skb, TX_OVERHEAD)) {
dev_kfree_skb_any(skb);
skb = skb2;
if (!skb)
return NULL;
return NULL;
}
if (lan78xx_linearize(skb) < 0)

View file

@ -25,12 +25,13 @@
#include <uapi/linux/mdio.h>
#include <linux/mdio.h>
#include <linux/usb/cdc.h>
#include <linux/suspend.h>
/* Information for net-next */
#define NETNEXT_VERSION "08"
/* Information for net */
#define NET_VERSION "2"
#define NET_VERSION "3"
#define DRIVER_VERSION "v1." NETNEXT_VERSION "." NET_VERSION
#define DRIVER_AUTHOR "Realtek linux nic maintainers <nic_swsd@realtek.com>"
@ -604,6 +605,9 @@ struct r8152 {
struct delayed_work schedule;
struct mii_if_info mii;
struct mutex control; /* use for hw setting */
#ifdef CONFIG_PM_SLEEP
struct notifier_block pm_notifier;
#endif
struct rtl_ops {
void (*init)(struct r8152 *);
@ -1943,7 +1947,6 @@ static void _rtl8152_set_rx_mode(struct net_device *netdev)
__le32 tmp[2];
u32 ocp_data;
clear_bit(RTL8152_SET_RX_MODE, &tp->flags);
netif_stop_queue(netdev);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
@ -2429,8 +2432,6 @@ static void rtl_phy_reset(struct r8152 *tp)
u16 data;
int i;
clear_bit(PHY_RESET, &tp->flags);
data = r8152_mdio_read(tp, MII_BMCR);
/* don't reset again before the previous one complete */
@ -2460,23 +2461,23 @@ static void r8153_teredo_off(struct r8152 *tp)
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TEREDO_TIMER, 0);
}
static void r8152b_disable_aldps(struct r8152 *tp)
static void r8152_aldps_en(struct r8152 *tp, bool enable)
{
ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPDNPS | LINKENA | DIS_SDSAVE);
msleep(20);
}
static inline void r8152b_enable_aldps(struct r8152 *tp)
{
ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPWRSAVE | ENPDNPS |
LINKENA | DIS_SDSAVE);
if (enable) {
ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPWRSAVE | ENPDNPS |
LINKENA | DIS_SDSAVE);
} else {
ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPDNPS | LINKENA |
DIS_SDSAVE);
msleep(20);
}
}
static void rtl8152_disable(struct r8152 *tp)
{
r8152b_disable_aldps(tp);
r8152_aldps_en(tp, false);
rtl_disable(tp);
r8152b_enable_aldps(tp);
r8152_aldps_en(tp, true);
}
static void r8152b_hw_phy_cfg(struct r8152 *tp)
@ -2788,30 +2789,26 @@ static void r8153_enter_oob(struct r8152 *tp)
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
}
static void r8153_disable_aldps(struct r8152 *tp)
static void r8153_aldps_en(struct r8152 *tp, bool enable)
{
u16 data;
data = ocp_reg_read(tp, OCP_POWER_CFG);
data &= ~EN_ALDPS;
ocp_reg_write(tp, OCP_POWER_CFG, data);
msleep(20);
}
static void r8153_enable_aldps(struct r8152 *tp)
{
u16 data;
data = ocp_reg_read(tp, OCP_POWER_CFG);
data |= EN_ALDPS;
ocp_reg_write(tp, OCP_POWER_CFG, data);
if (enable) {
data |= EN_ALDPS;
ocp_reg_write(tp, OCP_POWER_CFG, data);
} else {
data &= ~EN_ALDPS;
ocp_reg_write(tp, OCP_POWER_CFG, data);
msleep(20);
}
}
static void rtl8153_disable(struct r8152 *tp)
{
r8153_disable_aldps(tp);
r8153_aldps_en(tp, false);
rtl_disable(tp);
r8153_enable_aldps(tp);
r8153_aldps_en(tp, true);
usb_enable_lpm(tp->udev);
}
@ -2889,10 +2886,9 @@ static int rtl8152_set_speed(struct r8152 *tp, u8 autoneg, u16 speed, u8 duplex)
r8152_mdio_write(tp, MII_ADVERTISE, anar);
r8152_mdio_write(tp, MII_BMCR, bmcr);
if (test_bit(PHY_RESET, &tp->flags)) {
if (test_and_clear_bit(PHY_RESET, &tp->flags)) {
int i;
clear_bit(PHY_RESET, &tp->flags);
for (i = 0; i < 50; i++) {
msleep(20);
if ((r8152_mdio_read(tp, MII_BMCR) & BMCR_RESET) == 0)
@ -2901,7 +2897,6 @@ static int rtl8152_set_speed(struct r8152 *tp, u8 autoneg, u16 speed, u8 duplex)
}
out:
return ret;
}
@ -2910,9 +2905,9 @@ static void rtl8152_up(struct r8152 *tp)
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8152b_disable_aldps(tp);
r8152_aldps_en(tp, false);
r8152b_exit_oob(tp);
r8152b_enable_aldps(tp);
r8152_aldps_en(tp, true);
}
static void rtl8152_down(struct r8152 *tp)
@ -2923,9 +2918,9 @@ static void rtl8152_down(struct r8152 *tp)
}
r8152_power_cut_en(tp, false);
r8152b_disable_aldps(tp);
r8152_aldps_en(tp, false);
r8152b_enter_oob(tp);
r8152b_enable_aldps(tp);
r8152_aldps_en(tp, true);
}
static void rtl8153_up(struct r8152 *tp)
@ -2934,9 +2929,9 @@ static void rtl8153_up(struct r8152 *tp)
return;
r8153_u1u2en(tp, false);
r8153_disable_aldps(tp);
r8153_aldps_en(tp, false);
r8153_first_init(tp);
r8153_enable_aldps(tp);
r8153_aldps_en(tp, true);
r8153_u2p3en(tp, true);
r8153_u1u2en(tp, true);
usb_enable_lpm(tp->udev);
@ -2952,9 +2947,9 @@ static void rtl8153_down(struct r8152 *tp)
r8153_u1u2en(tp, false);
r8153_u2p3en(tp, false);
r8153_power_cut_en(tp, false);
r8153_disable_aldps(tp);
r8153_aldps_en(tp, false);
r8153_enter_oob(tp);
r8153_enable_aldps(tp);
r8153_aldps_en(tp, true);
}
static bool rtl8152_in_nway(struct r8152 *tp)
@ -2988,7 +2983,6 @@ static void set_carrier(struct r8152 *tp)
struct net_device *netdev = tp->netdev;
u8 speed;
clear_bit(RTL8152_LINK_CHG, &tp->flags);
speed = rtl8152_get_speed(tp);
if (speed & LINK_STATUS) {
@ -3038,20 +3032,18 @@ static void rtl_work_func_t(struct work_struct *work)
goto out1;
}
if (test_bit(RTL8152_LINK_CHG, &tp->flags))
if (test_and_clear_bit(RTL8152_LINK_CHG, &tp->flags))
set_carrier(tp);
if (test_bit(RTL8152_SET_RX_MODE, &tp->flags))
if (test_and_clear_bit(RTL8152_SET_RX_MODE, &tp->flags))
_rtl8152_set_rx_mode(tp->netdev);
/* don't schedule napi before linking */
if (test_bit(SCHEDULE_NAPI, &tp->flags) &&
netif_carrier_ok(tp->netdev)) {
clear_bit(SCHEDULE_NAPI, &tp->flags);
if (test_and_clear_bit(SCHEDULE_NAPI, &tp->flags) &&
netif_carrier_ok(tp->netdev))
napi_schedule(&tp->napi);
}
if (test_bit(PHY_RESET, &tp->flags))
if (test_and_clear_bit(PHY_RESET, &tp->flags))
rtl_phy_reset(tp);
mutex_unlock(&tp->control);
@ -3060,6 +3052,33 @@ out1:
usb_autopm_put_interface(tp->intf);
}
#ifdef CONFIG_PM_SLEEP
static int rtl_notifier(struct notifier_block *nb, unsigned long action,
void *data)
{
struct r8152 *tp = container_of(nb, struct r8152, pm_notifier);
switch (action) {
case PM_HIBERNATION_PREPARE:
case PM_SUSPEND_PREPARE:
usb_autopm_get_interface(tp->intf);
break;
case PM_POST_HIBERNATION:
case PM_POST_SUSPEND:
usb_autopm_put_interface(tp->intf);
break;
case PM_POST_RESTORE:
case PM_RESTORE_PREPARE:
default:
break;
}
return NOTIFY_DONE;
}
#endif
static int rtl8152_open(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
@ -3102,6 +3121,10 @@ static int rtl8152_open(struct net_device *netdev)
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
#ifdef CONFIG_PM_SLEEP
tp->pm_notifier.notifier_call = rtl_notifier;
register_pm_notifier(&tp->pm_notifier);
#endif
out:
return res;
@ -3112,6 +3135,9 @@ static int rtl8152_close(struct net_device *netdev)
struct r8152 *tp = netdev_priv(netdev);
int res = 0;
#ifdef CONFIG_PM_SLEEP
unregister_pm_notifier(&tp->pm_notifier);
#endif
napi_disable(&tp->napi);
clear_bit(WORK_ENABLE, &tp->flags);
usb_kill_urb(tp->intr_urb);
@ -3250,7 +3276,7 @@ static void r8152b_init(struct r8152 *tp)
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8152b_disable_aldps(tp);
r8152_aldps_en(tp, false);
if (tp->version == RTL_VER_01) {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE);
@ -3272,7 +3298,7 @@ static void r8152b_init(struct r8152 *tp)
ocp_write_word(tp, MCU_TYPE_PLA, PLA_GPHY_INTR_IMR, ocp_data);
r8152b_enable_eee(tp);
r8152b_enable_aldps(tp);
r8152_aldps_en(tp, true);
r8152b_enable_fc(tp);
rtl_tally_reset(tp);
@ -3290,7 +3316,7 @@ static void r8153_init(struct r8152 *tp)
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153_disable_aldps(tp);
r8153_aldps_en(tp, false);
r8153_u1u2en(tp, false);
for (i = 0; i < 500; i++) {
@ -3379,7 +3405,7 @@ static void r8153_init(struct r8152 *tp)
EEE_SPDWN_EN);
r8153_enable_eee(tp);
r8153_enable_aldps(tp);
r8153_aldps_en(tp, true);
r8152b_enable_fc(tp);
rtl_tally_reset(tp);
r8153_u2p3en(tp, true);

View file

@ -2193,13 +2193,9 @@ static struct sk_buff *smsc75xx_tx_fixup(struct usbnet *dev,
{
u32 tx_cmd_a, tx_cmd_b;
if (skb_headroom(skb) < SMSC75XX_TX_OVERHEAD) {
struct sk_buff *skb2 =
skb_copy_expand(skb, SMSC75XX_TX_OVERHEAD, 0, flags);
if (skb_cow_head(skb, SMSC75XX_TX_OVERHEAD)) {
dev_kfree_skb_any(skb);
skb = skb2;
if (!skb)
return NULL;
return NULL;
}
tx_cmd_a = (u32)(skb->len & TX_CMD_A_LEN) | TX_CMD_A_FCS;

View file

@ -456,14 +456,9 @@ static struct sk_buff *sr9700_tx_fixup(struct usbnet *dev, struct sk_buff *skb,
len = skb->len;
if (skb_headroom(skb) < SR_TX_OVERHEAD) {
struct sk_buff *skb2;
skb2 = skb_copy_expand(skb, SR_TX_OVERHEAD, 0, flags);
if (skb_cow_head(skb, SR_TX_OVERHEAD)) {
dev_kfree_skb_any(skb);
skb = skb2;
if (!skb)
return NULL;
return NULL;
}
__skb_push(skb, SR_TX_OVERHEAD);

View file

@ -753,10 +753,12 @@ static long ashmem_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
break;
case ASHMEM_SET_SIZE:
ret = -EINVAL;
mutex_lock(&ashmem_mutex);
if (!asma->file) {
ret = 0;
asma->size = (size_t)arg;
}
mutex_unlock(&ashmem_mutex);
break;
case ASHMEM_GET_SIZE:
ret = asma->size;

View file

@ -1759,7 +1759,6 @@ iscsit_handle_task_mgt_cmd(struct iscsi_conn *conn, struct iscsi_cmd *cmd,
struct iscsi_tmr_req *tmr_req;
struct iscsi_tm *hdr;
int out_of_order_cmdsn = 0, ret;
bool sess_ref = false;
u8 function, tcm_function = TMR_UNKNOWN;
hdr = (struct iscsi_tm *) buf;
@ -1801,18 +1800,17 @@ iscsit_handle_task_mgt_cmd(struct iscsi_conn *conn, struct iscsi_cmd *cmd,
buf);
}
transport_init_se_cmd(&cmd->se_cmd, &iscsi_ops,
conn->sess->se_sess, 0, DMA_NONE,
TCM_SIMPLE_TAG, cmd->sense_buffer + 2);
target_get_sess_cmd(&cmd->se_cmd, true);
/*
* TASK_REASSIGN for ERL=2 / connection stays inside of
* LIO-Target $FABRIC_MOD
*/
if (function != ISCSI_TM_FUNC_TASK_REASSIGN) {
transport_init_se_cmd(&cmd->se_cmd, &iscsi_ops,
conn->sess->se_sess, 0, DMA_NONE,
TCM_SIMPLE_TAG, cmd->sense_buffer + 2);
target_get_sess_cmd(&cmd->se_cmd, true);
sess_ref = true;
switch (function) {
case ISCSI_TM_FUNC_ABORT_TASK:
tcm_function = TMR_ABORT_TASK;
@ -1951,12 +1949,8 @@ attach:
* For connection recovery, this is also the default action for
* TMR TASK_REASSIGN.
*/
if (sess_ref) {
pr_debug("Handle TMR, using sess_ref=true check\n");
target_put_sess_cmd(&cmd->se_cmd);
}
iscsit_add_cmd_to_response_queue(cmd, conn, cmd->i_state);
target_put_sess_cmd(&cmd->se_cmd);
return 0;
}
EXPORT_SYMBOL(iscsit_handle_task_mgt_cmd);

View file

@ -133,6 +133,15 @@ static bool __target_check_io_state(struct se_cmd *se_cmd,
spin_unlock(&se_cmd->t_state_lock);
return false;
}
if (se_cmd->transport_state & CMD_T_PRE_EXECUTE) {
if (se_cmd->scsi_status) {
pr_debug("Attempted to abort io tag: %llu early failure"
" status: 0x%02x\n", se_cmd->tag,
se_cmd->scsi_status);
spin_unlock(&se_cmd->t_state_lock);
return false;
}
}
if (sess->sess_tearing_down || se_cmd->cmd_wait_set) {
pr_debug("Attempted to abort io tag: %llu already shutdown,"
" skipping\n", se_cmd->tag);

View file

@ -1933,6 +1933,7 @@ void target_execute_cmd(struct se_cmd *cmd)
}
cmd->t_state = TRANSPORT_PROCESSING;
cmd->transport_state &= ~CMD_T_PRE_EXECUTE;
cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
spin_unlock_irq(&cmd->t_state_lock);
@ -2572,6 +2573,7 @@ int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
ret = -ESHUTDOWN;
goto out;
}
se_cmd->transport_state |= CMD_T_PRE_EXECUTE;
list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
out:
spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);

View file

@ -133,6 +133,12 @@ static void sysrq_handle_crash(int key)
{
char *killer = NULL;
/* we need to release the RCU read lock here,
* otherwise we get an annoying
* 'BUG: sleeping function called from invalid context'
* complaint from the kernel before the panic.
*/
rcu_read_unlock();
panic_on_oops = 1; /* force panic */
wmb();
*killer = 1;

View file

@ -1071,7 +1071,8 @@ int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
return 1;
fail:
if (dev->eps[0].ring)
xhci_ring_free(xhci, dev->eps[0].ring);
if (dev->in_ctx)
xhci_free_container_ctx(xhci, dev->in_ctx);
if (dev->out_ctx)

View file

@ -292,6 +292,8 @@ static int usb3503_probe(struct usb3503 *hub)
if (gpio_is_valid(hub->gpio_reset)) {
err = devm_gpio_request_one(dev, hub->gpio_reset,
GPIOF_OUT_INIT_LOW, "usb3503 reset");
/* Datasheet defines a hardware reset to be at least 100us */
usleep_range(100, 10000);
if (err) {
dev_err(dev,
"unable to request GPIO %d as reset pin (%d)\n",

View file

@ -1001,7 +1001,9 @@ static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg
break;
case MON_IOCQ_RING_SIZE:
mutex_lock(&rp->fetch_lock);
ret = rp->b_size;
mutex_unlock(&rp->fetch_lock);
break;
case MON_IOCT_RING_SIZE:
@ -1228,12 +1230,16 @@ static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
unsigned long offset, chunk_idx;
struct page *pageptr;
mutex_lock(&rp->fetch_lock);
offset = vmf->pgoff << PAGE_SHIFT;
if (offset >= rp->b_size)
if (offset >= rp->b_size) {
mutex_unlock(&rp->fetch_lock);
return VM_FAULT_SIGBUS;
}
chunk_idx = offset / CHUNK_SIZE;
pageptr = rp->b_vec[chunk_idx].pg;
get_page(pageptr);
mutex_unlock(&rp->fetch_lock);
vmf->page = pageptr;
return 0;
}

View file

@ -348,7 +348,9 @@ static int ux500_suspend(struct device *dev)
struct ux500_glue *glue = dev_get_drvdata(dev);
struct musb *musb = glue_to_musb(glue);
usb_phy_set_suspend(musb->xceiv, 1);
if (musb)
usb_phy_set_suspend(musb->xceiv, 1);
clk_disable_unprepare(glue->clk);
return 0;
@ -366,7 +368,8 @@ static int ux500_resume(struct device *dev)
return ret;
}
usb_phy_set_suspend(musb->xceiv, 0);
if (musb)
usb_phy_set_suspend(musb->xceiv, 0);
return 0;
}

View file

@ -120,6 +120,7 @@ static const struct usb_device_id id_table[] = {
{ USB_DEVICE(0x10C4, 0x8470) }, /* Juniper Networks BX Series System Console */
{ USB_DEVICE(0x10C4, 0x8477) }, /* Balluff RFID */
{ USB_DEVICE(0x10C4, 0x84B6) }, /* Starizona Hyperion */
{ USB_DEVICE(0x10C4, 0x85A7) }, /* LifeScan OneTouch Verio IQ */
{ USB_DEVICE(0x10C4, 0x85EA) }, /* AC-Services IBUS-IF */
{ USB_DEVICE(0x10C4, 0x85EB) }, /* AC-Services CIS-IBUS */
{ USB_DEVICE(0x10C4, 0x85F8) }, /* Virtenio Preon32 */
@ -170,6 +171,7 @@ static const struct usb_device_id id_table[] = {
{ USB_DEVICE(0x1843, 0x0200) }, /* Vaisala USB Instrument Cable */
{ USB_DEVICE(0x18EF, 0xE00F) }, /* ELV USB-I2C-Interface */
{ USB_DEVICE(0x18EF, 0xE025) }, /* ELV Marble Sound Board 1 */
{ USB_DEVICE(0x18EF, 0xE030) }, /* ELV ALC 8xxx Battery Charger */
{ USB_DEVICE(0x18EF, 0xE032) }, /* ELV TFD500 Data Logger */
{ USB_DEVICE(0x1901, 0x0190) }, /* GE B850 CP2105 Recorder interface */
{ USB_DEVICE(0x1901, 0x0193) }, /* GE B650 CP2104 PMC interface */

View file

@ -155,6 +155,13 @@ UNUSUAL_DEV(0x2109, 0x0711, 0x0000, 0x9999,
USB_SC_DEVICE, USB_PR_DEVICE, NULL,
US_FL_NO_ATA_1X),
/* Reported-by: Icenowy Zheng <icenowy@aosc.io> */
UNUSUAL_DEV(0x2537, 0x1068, 0x0000, 0x9999,
"Norelsys",
"NS1068X",
USB_SC_DEVICE, USB_PR_DEVICE, NULL,
US_FL_IGNORE_UAS),
/* Reported-by: Takeo Nakayama <javhera@gmx.com> */
UNUSUAL_DEV(0x357d, 0x7788, 0x0000, 0x9999,
"JMicron",

View file

@ -103,7 +103,7 @@ static void usbip_dump_usb_device(struct usb_device *udev)
dev_dbg(dev, " devnum(%d) devpath(%s) usb speed(%s)",
udev->devnum, udev->devpath, usb_speed_string(udev->speed));
pr_debug("tt %p, ttport %d\n", udev->tt, udev->ttport);
pr_debug("tt hub ttport %d\n", udev->ttport);
dev_dbg(dev, " ");
for (i = 0; i < 16; i++)
@ -136,12 +136,8 @@ static void usbip_dump_usb_device(struct usb_device *udev)
}
pr_debug("\n");
dev_dbg(dev, "parent %p, bus %p\n", udev->parent, udev->bus);
dev_dbg(dev,
"descriptor %p, config %p, actconfig %p, rawdescriptors %p\n",
&udev->descriptor, udev->config,
udev->actconfig, udev->rawdescriptors);
dev_dbg(dev, "parent %s, bus %s\n", dev_name(&udev->parent->dev),
udev->bus->bus_name);
dev_dbg(dev, "have_langid %d, string_langid %d\n",
udev->have_langid, udev->string_langid);
@ -249,9 +245,6 @@ void usbip_dump_urb(struct urb *urb)
dev = &urb->dev->dev;
dev_dbg(dev, " urb :%p\n", urb);
dev_dbg(dev, " dev :%p\n", urb->dev);
usbip_dump_usb_device(urb->dev);
dev_dbg(dev, " pipe :%08x ", urb->pipe);
@ -260,11 +253,9 @@ void usbip_dump_urb(struct urb *urb)
dev_dbg(dev, " status :%d\n", urb->status);
dev_dbg(dev, " transfer_flags :%08X\n", urb->transfer_flags);
dev_dbg(dev, " transfer_buffer :%p\n", urb->transfer_buffer);
dev_dbg(dev, " transfer_buffer_length:%d\n",
urb->transfer_buffer_length);
dev_dbg(dev, " actual_length :%d\n", urb->actual_length);
dev_dbg(dev, " setup_packet :%p\n", urb->setup_packet);
if (urb->setup_packet && usb_pipetype(urb->pipe) == PIPE_CONTROL)
usbip_dump_usb_ctrlrequest(
@ -274,8 +265,6 @@ void usbip_dump_urb(struct urb *urb)
dev_dbg(dev, " number_of_packets :%d\n", urb->number_of_packets);
dev_dbg(dev, " interval :%d\n", urb->interval);
dev_dbg(dev, " error_count :%d\n", urb->error_count);
dev_dbg(dev, " context :%p\n", urb->context);
dev_dbg(dev, " complete :%p\n", urb->complete);
}
EXPORT_SYMBOL_GPL(usbip_dump_urb);

View file

@ -2220,10 +2220,12 @@ int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd,
error = do_lock_file_wait(filp, cmd, file_lock);
/*
* Attempt to detect a close/fcntl race and recover by
* releasing the lock that was just acquired.
* Attempt to detect a close/fcntl race and recover by releasing the
* lock that was just acquired. There is no need to do that when we're
* unlocking though, or for OFD locks.
*/
if (!error && file_lock->fl_type != F_UNLCK) {
if (!error && file_lock->fl_type != F_UNLCK &&
!(file_lock->fl_flags & FL_OFDLCK)) {
/*
* We need that spin_lock here - it prevents reordering between
* update of i_flctx->flc_posix and check for it done in
@ -2362,10 +2364,12 @@ int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd,
error = do_lock_file_wait(filp, cmd, file_lock);
/*
* Attempt to detect a close/fcntl race and recover by
* releasing the lock that was just acquired.
* Attempt to detect a close/fcntl race and recover by releasing the
* lock that was just acquired. There is no need to do that when we're
* unlocking though, or for OFD locks.
*/
if (!error && file_lock->fl_type != F_UNLCK) {
if (!error && file_lock->fl_type != F_UNLCK &&
!(file_lock->fl_flags & FL_OFDLCK)) {
/*
* We need that spin_lock here - it prevents reordering between
* update of i_flctx->flc_posix and check for it done in

View file

@ -37,6 +37,7 @@ struct bpf_map {
u32 value_size;
u32 max_entries;
u32 pages;
bool unpriv_array;
struct user_struct *user;
const struct bpf_map_ops *ops;
struct work_struct work;
@ -141,6 +142,7 @@ struct bpf_prog_aux {
struct bpf_array {
struct bpf_map map;
u32 elem_size;
u32 index_mask;
/* 'ownership' of prog_array is claimed by the first program that
* is going to use this map or by the first program which FD is stored
* in the map to make sure that all callers and callees have the same

View file

@ -40,6 +40,13 @@ extern void cpu_remove_dev_attr(struct device_attribute *attr);
extern int cpu_add_dev_attr_group(struct attribute_group *attrs);
extern void cpu_remove_dev_attr_group(struct attribute_group *attrs);
extern ssize_t cpu_show_meltdown(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_spectre_v1(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_spectre_v2(struct device *dev,
struct device_attribute *attr, char *buf);
extern __printf(4, 5)
struct device *cpu_device_create(struct device *parent, void *drvdata,
const struct attribute_group **groups,

View file

@ -466,6 +466,9 @@ u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
void bpf_int_jit_compile(struct bpf_prog *fp);
bool bpf_helper_changes_skb_data(void *func);
struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
const struct bpf_insn *patch, u32 len);
#ifdef CONFIG_BPF_JIT
typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);

View file

@ -682,6 +682,17 @@ static inline bool phy_is_internal(struct phy_device *phydev)
return phydev->is_internal;
}
/**
* phy_interface_mode_is_rgmii - Convenience function for testing if a
* PHY interface mode is RGMII (all variants)
* @mode: the phy_interface_t enum
*/
static inline bool phy_interface_mode_is_rgmii(phy_interface_t mode)
{
return mode >= PHY_INTERFACE_MODE_RGMII &&
mode <= PHY_INTERFACE_MODE_RGMII_TXID;
};
/**
* phy_interface_is_rgmii - Convenience function for testing if a PHY interface
* is RGMII (all variants)

View file

@ -16,7 +16,6 @@ struct sh_eth_plat_data {
unsigned char mac_addr[ETH_ALEN];
unsigned no_ether_link:1;
unsigned ether_link_active_low:1;
unsigned needs_init:1;
};
#endif

View file

@ -496,6 +496,7 @@ struct se_cmd {
#define CMD_T_BUSY (1 << 9)
#define CMD_T_TAS (1 << 10)
#define CMD_T_FABRIC_STOP (1 << 11)
#define CMD_T_PRE_EXECUTE (1 << 12)
spinlock_t t_state_lock;
struct kref cmd_kref;
struct completion t_transport_stop_comp;

View file

@ -204,7 +204,7 @@ TRACE_EVENT(kvm_ack_irq,
{ KVM_TRACE_MMIO_WRITE, "write" }
TRACE_EVENT(kvm_mmio,
TP_PROTO(int type, int len, u64 gpa, u64 val),
TP_PROTO(int type, int len, u64 gpa, void *val),
TP_ARGS(type, len, gpa, val),
TP_STRUCT__entry(
@ -218,7 +218,10 @@ TRACE_EVENT(kvm_mmio,
__entry->type = type;
__entry->len = len;
__entry->gpa = gpa;
__entry->val = val;
__entry->val = 0;
if (val)
memcpy(&__entry->val, val,
min_t(u32, sizeof(__entry->val), len));
),
TP_printk("mmio %s len %u gpa 0x%llx val 0x%llx",

View file

@ -20,8 +20,10 @@
/* Called from syscall */
static struct bpf_map *array_map_alloc(union bpf_attr *attr)
{
u32 elem_size, array_size, index_mask, max_entries;
bool unpriv = !capable(CAP_SYS_ADMIN);
struct bpf_array *array;
u32 elem_size, array_size;
u64 mask64;
/* check sanity of attributes */
if (attr->max_entries == 0 || attr->key_size != 4 ||
@ -36,12 +38,33 @@ static struct bpf_map *array_map_alloc(union bpf_attr *attr)
elem_size = round_up(attr->value_size, 8);
max_entries = attr->max_entries;
/* On 32 bit archs roundup_pow_of_two() with max_entries that has
* upper most bit set in u32 space is undefined behavior due to
* resulting 1U << 32, so do it manually here in u64 space.
*/
mask64 = fls_long(max_entries - 1);
mask64 = 1ULL << mask64;
mask64 -= 1;
index_mask = mask64;
if (unpriv) {
/* round up array size to nearest power of 2,
* since cpu will speculate within index_mask limits
*/
max_entries = index_mask + 1;
/* Check for overflows. */
if (max_entries < attr->max_entries)
return ERR_PTR(-E2BIG);
}
/* check round_up into zero and u32 overflow */
if (elem_size == 0 ||
attr->max_entries > (U32_MAX - PAGE_SIZE - sizeof(*array)) / elem_size)
max_entries > (U32_MAX - PAGE_SIZE - sizeof(*array)) / elem_size)
return ERR_PTR(-ENOMEM);
array_size = sizeof(*array) + attr->max_entries * elem_size;
array_size = sizeof(*array) + max_entries * elem_size;
/* allocate all map elements and zero-initialize them */
array = kzalloc(array_size, GFP_USER | __GFP_NOWARN);
@ -50,6 +73,8 @@ static struct bpf_map *array_map_alloc(union bpf_attr *attr)
if (!array)
return ERR_PTR(-ENOMEM);
}
array->index_mask = index_mask;
array->map.unpriv_array = unpriv;
/* copy mandatory map attributes */
array->map.key_size = attr->key_size;
@ -70,7 +95,7 @@ static void *array_map_lookup_elem(struct bpf_map *map, void *key)
if (index >= array->map.max_entries)
return NULL;
return array->value + array->elem_size * index;
return array->value + array->elem_size * (index & array->index_mask);
}
/* Called from syscall */
@ -111,7 +136,9 @@ static int array_map_update_elem(struct bpf_map *map, void *key, void *value,
/* all elements already exist */
return -EEXIST;
memcpy(array->value + array->elem_size * index, value, map->value_size);
memcpy(array->value +
array->elem_size * (index & array->index_mask),
value, map->value_size);
return 0;
}

View file

@ -137,6 +137,77 @@ void __bpf_prog_free(struct bpf_prog *fp)
}
EXPORT_SYMBOL_GPL(__bpf_prog_free);
static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
{
return BPF_CLASS(insn->code) == BPF_JMP &&
/* Call and Exit are both special jumps with no
* target inside the BPF instruction image.
*/
BPF_OP(insn->code) != BPF_CALL &&
BPF_OP(insn->code) != BPF_EXIT;
}
static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
{
struct bpf_insn *insn = prog->insnsi;
u32 i, insn_cnt = prog->len;
for (i = 0; i < insn_cnt; i++, insn++) {
if (!bpf_is_jmp_and_has_target(insn))
continue;
/* Adjust offset of jmps if we cross boundaries. */
if (i < pos && i + insn->off + 1 > pos)
insn->off += delta;
else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
insn->off -= delta;
}
}
struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
const struct bpf_insn *patch, u32 len)
{
u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
struct bpf_prog *prog_adj;
/* Since our patchlet doesn't expand the image, we're done. */
if (insn_delta == 0) {
memcpy(prog->insnsi + off, patch, sizeof(*patch));
return prog;
}
insn_adj_cnt = prog->len + insn_delta;
/* Several new instructions need to be inserted. Make room
* for them. Likely, there's no need for a new allocation as
* last page could have large enough tailroom.
*/
prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
GFP_USER);
if (!prog_adj)
return NULL;
prog_adj->len = insn_adj_cnt;
/* Patching happens in 3 steps:
*
* 1) Move over tail of insnsi from next instruction onwards,
* so we can patch the single target insn with one or more
* new ones (patching is always from 1 to n insns, n > 0).
* 2) Inject new instructions at the target location.
* 3) Adjust branch offsets if necessary.
*/
insn_rest = insn_adj_cnt - off - len;
memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
sizeof(*patch) * insn_rest);
memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
bpf_adj_branches(prog_adj, off, insn_delta);
return prog_adj;
}
#ifdef CONFIG_BPF_JIT
struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,

View file

@ -447,57 +447,6 @@ void bpf_register_prog_type(struct bpf_prog_type_list *tl)
list_add(&tl->list_node, &bpf_prog_types);
}
/* fixup insn->imm field of bpf_call instructions:
* if (insn->imm == BPF_FUNC_map_lookup_elem)
* insn->imm = bpf_map_lookup_elem - __bpf_call_base;
* else if (insn->imm == BPF_FUNC_map_update_elem)
* insn->imm = bpf_map_update_elem - __bpf_call_base;
* else ...
*
* this function is called after eBPF program passed verification
*/
static void fixup_bpf_calls(struct bpf_prog *prog)
{
const struct bpf_func_proto *fn;
int i;
for (i = 0; i < prog->len; i++) {
struct bpf_insn *insn = &prog->insnsi[i];
if (insn->code == (BPF_JMP | BPF_CALL)) {
/* we reach here when program has bpf_call instructions
* and it passed bpf_check(), means that
* ops->get_func_proto must have been supplied, check it
*/
BUG_ON(!prog->aux->ops->get_func_proto);
if (insn->imm == BPF_FUNC_get_route_realm)
prog->dst_needed = 1;
if (insn->imm == BPF_FUNC_get_prandom_u32)
bpf_user_rnd_init_once();
if (insn->imm == BPF_FUNC_tail_call) {
/* mark bpf_tail_call as different opcode
* to avoid conditional branch in
* interpeter for every normal call
* and to prevent accidental JITing by
* JIT compiler that doesn't support
* bpf_tail_call yet
*/
insn->imm = 0;
insn->code |= BPF_X;
continue;
}
fn = prog->aux->ops->get_func_proto(insn->imm);
/* all functions that have prototype and verifier allowed
* programs to call them, must be real in-kernel functions
*/
BUG_ON(!fn->func);
insn->imm = fn->func - __bpf_call_base;
}
}
}
/* drop refcnt on maps used by eBPF program and free auxilary data */
static void free_used_maps(struct bpf_prog_aux *aux)
{
@ -680,9 +629,6 @@ static int bpf_prog_load(union bpf_attr *attr)
if (err < 0)
goto free_used_maps;
/* fixup BPF_CALL->imm field */
fixup_bpf_calls(prog);
/* eBPF program is ready to be JITed */
err = bpf_prog_select_runtime(prog);
if (err < 0)

View file

@ -186,6 +186,13 @@ struct verifier_stack_elem {
struct verifier_stack_elem *next;
};
struct bpf_insn_aux_data {
union {
enum bpf_reg_type ptr_type; /* pointer type for load/store insns */
struct bpf_map *map_ptr; /* pointer for call insn into lookup_elem */
};
};
#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
/* single container for all structs
@ -200,6 +207,7 @@ struct verifier_env {
struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
u32 used_map_cnt; /* number of used maps */
bool allow_ptr_leaks;
struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
};
/* verbose verifier prints what it's seeing
@ -945,7 +953,7 @@ error:
return -EINVAL;
}
static int check_call(struct verifier_env *env, int func_id)
static int check_call(struct verifier_env *env, int func_id, int insn_idx)
{
struct verifier_state *state = &env->cur_state;
const struct bpf_func_proto *fn = NULL;
@ -981,6 +989,13 @@ static int check_call(struct verifier_env *env, int func_id)
err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &map);
if (err)
return err;
if (func_id == BPF_FUNC_tail_call) {
if (map == NULL) {
verbose("verifier bug\n");
return -EINVAL;
}
env->insn_aux_data[insn_idx].map_ptr = map;
}
err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &map);
if (err)
return err;
@ -1784,7 +1799,7 @@ static int do_check(struct verifier_env *env)
return err;
} else if (class == BPF_LDX) {
enum bpf_reg_type src_reg_type;
enum bpf_reg_type *prev_src_type, src_reg_type;
/* check for reserved fields is already done */
@ -1813,16 +1828,18 @@ static int do_check(struct verifier_env *env)
continue;
}
if (insn->imm == 0) {
prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
if (*prev_src_type == NOT_INIT) {
/* saw a valid insn
* dst_reg = *(u32 *)(src_reg + off)
* use reserved 'imm' field to mark this insn
* save type to validate intersecting paths
*/
insn->imm = src_reg_type;
*prev_src_type = src_reg_type;
} else if (src_reg_type != insn->imm &&
} else if (src_reg_type != *prev_src_type &&
(src_reg_type == PTR_TO_CTX ||
insn->imm == PTR_TO_CTX)) {
*prev_src_type == PTR_TO_CTX)) {
/* ABuser program is trying to use the same insn
* dst_reg = *(u32*) (src_reg + off)
* with different pointer types:
@ -1835,7 +1852,7 @@ static int do_check(struct verifier_env *env)
}
} else if (class == BPF_STX) {
enum bpf_reg_type dst_reg_type;
enum bpf_reg_type *prev_dst_type, dst_reg_type;
if (BPF_MODE(insn->code) == BPF_XADD) {
err = check_xadd(env, insn);
@ -1863,11 +1880,13 @@ static int do_check(struct verifier_env *env)
if (err)
return err;
if (insn->imm == 0) {
insn->imm = dst_reg_type;
} else if (dst_reg_type != insn->imm &&
prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
if (*prev_dst_type == NOT_INIT) {
*prev_dst_type = dst_reg_type;
} else if (dst_reg_type != *prev_dst_type &&
(dst_reg_type == PTR_TO_CTX ||
insn->imm == PTR_TO_CTX)) {
*prev_dst_type == PTR_TO_CTX)) {
verbose("same insn cannot be used with different pointers\n");
return -EINVAL;
}
@ -1902,7 +1921,7 @@ static int do_check(struct verifier_env *env)
return -EINVAL;
}
err = check_call(env, insn->imm);
err = check_call(env, insn->imm, insn_idx);
if (err)
return err;
@ -2098,24 +2117,39 @@ static void convert_pseudo_ld_imm64(struct verifier_env *env)
insn->src_reg = 0;
}
static void adjust_branches(struct bpf_prog *prog, int pos, int delta)
/* single env->prog->insni[off] instruction was replaced with the range
* insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
* [0, off) and [off, end) to new locations, so the patched range stays zero
*/
static int adjust_insn_aux_data(struct verifier_env *env, u32 prog_len,
u32 off, u32 cnt)
{
struct bpf_insn *insn = prog->insnsi;
int insn_cnt = prog->len;
int i;
struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
for (i = 0; i < insn_cnt; i++, insn++) {
if (BPF_CLASS(insn->code) != BPF_JMP ||
BPF_OP(insn->code) == BPF_CALL ||
BPF_OP(insn->code) == BPF_EXIT)
continue;
if (cnt == 1)
return 0;
new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
if (!new_data)
return -ENOMEM;
memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
memcpy(new_data + off + cnt - 1, old_data + off,
sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
env->insn_aux_data = new_data;
vfree(old_data);
return 0;
}
/* adjust offset of jmps if necessary */
if (i < pos && i + insn->off + 1 > pos)
insn->off += delta;
else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
insn->off -= delta;
}
static struct bpf_prog *bpf_patch_insn_data(struct verifier_env *env, u32 off,
const struct bpf_insn *patch, u32 len)
{
struct bpf_prog *new_prog;
new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
if (!new_prog)
return NULL;
if (adjust_insn_aux_data(env, new_prog->len, off, len))
return NULL;
return new_prog;
}
/* convert load instructions that access fields of 'struct __sk_buff'
@ -2124,17 +2158,18 @@ static void adjust_branches(struct bpf_prog *prog, int pos, int delta)
static int convert_ctx_accesses(struct verifier_env *env)
{
struct bpf_insn *insn = env->prog->insnsi;
int insn_cnt = env->prog->len;
const int insn_cnt = env->prog->len;
struct bpf_insn insn_buf[16];
struct bpf_prog *new_prog;
u32 cnt;
int i;
enum bpf_access_type type;
int i, delta = 0;
if (!env->prog->aux->ops->convert_ctx_access)
return 0;
for (i = 0; i < insn_cnt; i++, insn++) {
u32 cnt;
if (insn->code == (BPF_LDX | BPF_MEM | BPF_W))
type = BPF_READ;
else if (insn->code == (BPF_STX | BPF_MEM | BPF_W))
@ -2142,11 +2177,8 @@ static int convert_ctx_accesses(struct verifier_env *env)
else
continue;
if (insn->imm != PTR_TO_CTX) {
/* clear internal mark */
insn->imm = 0;
if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
continue;
}
cnt = env->prog->aux->ops->
convert_ctx_access(type, insn->dst_reg, insn->src_reg,
@ -2156,34 +2188,89 @@ static int convert_ctx_accesses(struct verifier_env *env)
return -EINVAL;
}
if (cnt == 1) {
memcpy(insn, insn_buf, sizeof(*insn));
continue;
}
/* several new insns need to be inserted. Make room for them */
insn_cnt += cnt - 1;
new_prog = bpf_prog_realloc(env->prog,
bpf_prog_size(insn_cnt),
GFP_USER);
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
new_prog->len = insn_cnt;
memmove(new_prog->insnsi + i + cnt, new_prog->insns + i + 1,
sizeof(*insn) * (insn_cnt - i - cnt));
/* copy substitute insns in place of load instruction */
memcpy(new_prog->insnsi + i, insn_buf, sizeof(*insn) * cnt);
/* adjust branches in the whole program */
adjust_branches(new_prog, i, cnt - 1);
delta += cnt - 1;
/* keep walking new program and skip insns we just inserted */
env->prog = new_prog;
insn = new_prog->insnsi + i + cnt - 1;
i += cnt - 1;
insn = new_prog->insnsi + i + delta;
}
return 0;
}
/* fixup insn->imm field of bpf_call instructions
*
* this function is called after eBPF program passed verification
*/
static int fixup_bpf_calls(struct verifier_env *env)
{
struct bpf_prog *prog = env->prog;
struct bpf_insn *insn = prog->insnsi;
const struct bpf_func_proto *fn;
const int insn_cnt = prog->len;
struct bpf_insn insn_buf[16];
struct bpf_prog *new_prog;
struct bpf_map *map_ptr;
int i, cnt, delta = 0;
for (i = 0; i < insn_cnt; i++, insn++) {
if (insn->code != (BPF_JMP | BPF_CALL))
continue;
if (insn->imm == BPF_FUNC_get_route_realm)
prog->dst_needed = 1;
if (insn->imm == BPF_FUNC_get_prandom_u32)
bpf_user_rnd_init_once();
if (insn->imm == BPF_FUNC_tail_call) {
/* mark bpf_tail_call as different opcode to avoid
* conditional branch in the interpeter for every normal
* call and to prevent accidental JITing by JIT compiler
* that doesn't support bpf_tail_call yet
*/
insn->imm = 0;
insn->code |= BPF_X;
/* instead of changing every JIT dealing with tail_call
* emit two extra insns:
* if (index >= max_entries) goto out;
* index &= array->index_mask;
* to avoid out-of-bounds cpu speculation
*/
map_ptr = env->insn_aux_data[i + delta].map_ptr;
if (!map_ptr->unpriv_array)
continue;
insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
map_ptr->max_entries, 2);
insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
container_of(map_ptr,
struct bpf_array,
map)->index_mask);
insn_buf[2] = *insn;
cnt = 3;
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
fn = prog->aux->ops->get_func_proto(insn->imm);
/* all functions that have prototype and verifier allowed
* programs to call them, must be real in-kernel functions
*/
if (!fn->func) {
verbose("kernel subsystem misconfigured func %d\n",
insn->imm);
return -EFAULT;
}
insn->imm = fn->func - __bpf_call_base;
}
return 0;
@ -2227,6 +2314,11 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
if (!env)
return -ENOMEM;
env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
(*prog)->len);
ret = -ENOMEM;
if (!env->insn_aux_data)
goto err_free_env;
env->prog = *prog;
/* grab the mutex to protect few globals used by verifier */
@ -2245,12 +2337,12 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
/* log_* values have to be sane */
if (log_size < 128 || log_size > UINT_MAX >> 8 ||
log_level == 0 || log_ubuf == NULL)
goto free_env;
goto err_unlock;
ret = -ENOMEM;
log_buf = vmalloc(log_size);
if (!log_buf)
goto free_env;
goto err_unlock;
} else {
log_level = 0;
}
@ -2282,6 +2374,9 @@ skip_full_check:
/* program is valid, convert *(u32*)(ctx + off) accesses */
ret = convert_ctx_accesses(env);
if (ret == 0)
ret = fixup_bpf_calls(env);
if (log_level && log_len >= log_size - 1) {
BUG_ON(log_len >= log_size);
/* verifier log exceeded user supplied buffer */
@ -2319,14 +2414,16 @@ skip_full_check:
free_log_buf:
if (log_level)
vfree(log_buf);
free_env:
if (!env->prog->aux->used_maps)
/* if we didn't copy map pointers into bpf_prog_info, release
* them now. Otherwise free_bpf_prog_info() will release them.
*/
release_maps(env);
*prog = env->prog;
kfree(env);
err_unlock:
mutex_unlock(&bpf_verifier_lock);
vfree(env->insn_aux_data);
err_free_env:
kfree(env);
return ret;
}

View file

@ -1939,8 +1939,12 @@ static int unqueue_me(struct futex_q *q)
/* In the common case we don't take the spinlock, which is nice. */
retry:
lock_ptr = q->lock_ptr;
barrier();
/*
* q->lock_ptr can change between this read and the following spin_lock.
* Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
* optimizing lock_ptr out of the logic below.
*/
lock_ptr = READ_ONCE(q->lock_ptr);
if (lock_ptr != NULL) {
spin_lock(lock_ptr);
/*

View file

@ -719,6 +719,7 @@ static inline void
__mutex_unlock_common_slowpath(struct mutex *lock, int nested)
{
unsigned long flags;
WAKE_Q(wake_q);
/*
* As a performance measurement, release the lock before doing other
@ -746,11 +747,11 @@ __mutex_unlock_common_slowpath(struct mutex *lock, int nested)
struct mutex_waiter, list);
debug_mutex_wake_waiter(lock, waiter);
wake_up_process(waiter->task);
wake_q_add(&wake_q, waiter->task);
}
spin_unlock_mutex(&lock->wait_lock, flags);
wake_up_q(&wake_q);
}
/*

View file

@ -200,7 +200,8 @@ static void reset_cached_positions(struct zone *zone)
{
zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
zone->compact_cached_free_pfn = zone_end_pfn(zone);
zone->compact_cached_free_pfn =
round_down(zone_end_pfn(zone) - 1, pageblock_nr_pages);
}
/*
@ -552,13 +553,17 @@ unsigned long
isolate_freepages_range(struct compact_control *cc,
unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long isolated, pfn, block_end_pfn;
unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
LIST_HEAD(freelist);
pfn = start_pfn;
block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
if (block_start_pfn < cc->zone->zone_start_pfn)
block_start_pfn = cc->zone->zone_start_pfn;
block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
for (; pfn < end_pfn; pfn += isolated,
block_start_pfn = block_end_pfn,
block_end_pfn += pageblock_nr_pages) {
/* Protect pfn from changing by isolate_freepages_block */
unsigned long isolate_start_pfn = pfn;
@ -571,11 +576,13 @@ isolate_freepages_range(struct compact_control *cc,
* scanning range to right one.
*/
if (pfn >= block_end_pfn) {
block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
block_end_pfn = min(block_end_pfn, end_pfn);
}
if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
if (!pageblock_pfn_to_page(block_start_pfn,
block_end_pfn, cc->zone))
break;
isolated = isolate_freepages_block(cc, &isolate_start_pfn,
@ -861,18 +868,23 @@ unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long pfn, block_end_pfn;
unsigned long pfn, block_start_pfn, block_end_pfn;
/* Scan block by block. First and last block may be incomplete */
pfn = start_pfn;
block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
if (block_start_pfn < cc->zone->zone_start_pfn)
block_start_pfn = cc->zone->zone_start_pfn;
block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
for (; pfn < end_pfn; pfn = block_end_pfn,
block_start_pfn = block_end_pfn,
block_end_pfn += pageblock_nr_pages) {
block_end_pfn = min(block_end_pfn, end_pfn);
if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
if (!pageblock_pfn_to_page(block_start_pfn,
block_end_pfn, cc->zone))
continue;
pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
@ -1090,7 +1102,9 @@ int sysctl_compact_unevictable_allowed __read_mostly = 1;
static isolate_migrate_t isolate_migratepages(struct zone *zone,
struct compact_control *cc)
{
unsigned long low_pfn, end_pfn;
unsigned long block_start_pfn;
unsigned long block_end_pfn;
unsigned long low_pfn;
unsigned long isolate_start_pfn;
struct page *page;
const isolate_mode_t isolate_mode =
@ -1102,16 +1116,21 @@ static isolate_migrate_t isolate_migratepages(struct zone *zone,
* initialized by compact_zone()
*/
low_pfn = cc->migrate_pfn;
block_start_pfn = cc->migrate_pfn & ~(pageblock_nr_pages - 1);
if (block_start_pfn < zone->zone_start_pfn)
block_start_pfn = zone->zone_start_pfn;
/* Only scan within a pageblock boundary */
end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
block_end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
/*
* Iterate over whole pageblocks until we find the first suitable.
* Do not cross the free scanner.
*/
for (; end_pfn <= cc->free_pfn;
low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
for (; block_end_pfn <= cc->free_pfn;
low_pfn = block_end_pfn,
block_start_pfn = block_end_pfn,
block_end_pfn += pageblock_nr_pages) {
/*
* This can potentially iterate a massively long zone with
@ -1122,7 +1141,8 @@ static isolate_migrate_t isolate_migratepages(struct zone *zone,
&& compact_should_abort(cc))
break;
page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
zone);
if (!page)
continue;
@ -1141,8 +1161,8 @@ static isolate_migrate_t isolate_migratepages(struct zone *zone,
/* Perform the isolation */
isolate_start_pfn = low_pfn;
low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
isolate_mode);
low_pfn = isolate_migratepages_block(cc, low_pfn,
block_end_pfn, isolate_mode);
if (!low_pfn || cc->contended) {
acct_isolated(zone, cc);
@ -1358,11 +1378,11 @@ static int compact_zone(struct zone *zone, struct compact_control *cc)
*/
cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
cc->free_pfn = zone->compact_cached_free_pfn;
if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
cc->free_pfn = round_down(end_pfn - 1, pageblock_nr_pages);
zone->compact_cached_free_pfn = cc->free_pfn;
}
if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
cc->migrate_pfn = start_pfn;
zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;

View file

@ -1162,6 +1162,7 @@ static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
unsigned long balanced_dirty_ratelimit;
unsigned long step;
unsigned long x;
unsigned long shift;
/*
* The dirty rate will match the writeout rate in long term, except
@ -1286,11 +1287,11 @@ static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
* rate itself is constantly fluctuating. So decrease the track speed
* when it gets close to the target. Helps eliminate pointless tremors.
*/
step >>= dirty_ratelimit / (2 * step + 1);
/*
* Limit the tracking speed to avoid overshooting.
*/
step = (step + 7) / 8;
shift = dirty_ratelimit / (2 * step + 1);
if (shift < BITS_PER_LONG)
step = DIV_ROUND_UP(step >> shift, 8);
else
step = 0;
if (dirty_ratelimit < balanced_dirty_ratelimit)
dirty_ratelimit += step;

View file

@ -123,7 +123,7 @@ struct zswap_pool {
struct crypto_comp * __percpu *tfm;
struct kref kref;
struct list_head list;
struct rcu_head rcu_head;
struct work_struct work;
struct notifier_block notifier;
char tfm_name[CRYPTO_MAX_ALG_NAME];
};
@ -667,9 +667,11 @@ static int __must_check zswap_pool_get(struct zswap_pool *pool)
return kref_get_unless_zero(&pool->kref);
}
static void __zswap_pool_release(struct rcu_head *head)
static void __zswap_pool_release(struct work_struct *work)
{
struct zswap_pool *pool = container_of(head, typeof(*pool), rcu_head);
struct zswap_pool *pool = container_of(work, typeof(*pool), work);
synchronize_rcu();
/* nobody should have been able to get a kref... */
WARN_ON(kref_get_unless_zero(&pool->kref));
@ -689,7 +691,9 @@ static void __zswap_pool_empty(struct kref *kref)
WARN_ON(pool == zswap_pool_current());
list_del_rcu(&pool->list);
call_rcu(&pool->rcu_head, __zswap_pool_release);
INIT_WORK(&pool->work, __zswap_pool_release);
schedule_work(&pool->work);
spin_unlock(&zswap_pools_lock);
}
@ -748,18 +752,22 @@ static int __zswap_param_set(const char *val, const struct kernel_param *kp,
pool = zswap_pool_find_get(type, compressor);
if (pool) {
zswap_pool_debug("using existing", pool);
WARN_ON(pool == zswap_pool_current());
list_del_rcu(&pool->list);
} else {
spin_unlock(&zswap_pools_lock);
pool = zswap_pool_create(type, compressor);
spin_lock(&zswap_pools_lock);
}
spin_unlock(&zswap_pools_lock);
if (!pool)
pool = zswap_pool_create(type, compressor);
if (pool)
ret = param_set_charp(s, kp);
else
ret = -EINVAL;
spin_lock(&zswap_pools_lock);
if (!ret) {
put_pool = zswap_pool_current();
list_add_rcu(&pool->list, &zswap_pools);

View file

@ -111,12 +111,7 @@ void unregister_vlan_dev(struct net_device *dev, struct list_head *head)
vlan_gvrp_uninit_applicant(real_dev);
}
/* Take it out of our own structures, but be sure to interlock with
* HW accelerating devices or SW vlan input packet processing if
* VLAN is not 0 (leave it there for 802.1p).
*/
if (vlan_id)
vlan_vid_del(real_dev, vlan->vlan_proto, vlan_id);
vlan_vid_del(real_dev, vlan->vlan_proto, vlan_id);
/* Get rid of the vlan's reference to real_dev */
dev_put(real_dev);

View file

@ -3342,9 +3342,10 @@ static int l2cap_parse_conf_req(struct l2cap_chan *chan, void *data, size_t data
break;
case L2CAP_CONF_EFS:
remote_efs = 1;
if (olen == sizeof(efs))
if (olen == sizeof(efs)) {
remote_efs = 1;
memcpy(&efs, (void *) val, olen);
}
break;
case L2CAP_CONF_EWS:
@ -3563,16 +3564,17 @@ static int l2cap_parse_conf_rsp(struct l2cap_chan *chan, void *rsp, int len,
break;
case L2CAP_CONF_EFS:
if (olen == sizeof(efs))
if (olen == sizeof(efs)) {
memcpy(&efs, (void *)val, olen);
if (chan->local_stype != L2CAP_SERV_NOTRAFIC &&
efs.stype != L2CAP_SERV_NOTRAFIC &&
efs.stype != chan->local_stype)
return -ECONNREFUSED;
if (chan->local_stype != L2CAP_SERV_NOTRAFIC &&
efs.stype != L2CAP_SERV_NOTRAFIC &&
efs.stype != chan->local_stype)
return -ECONNREFUSED;
l2cap_add_conf_opt(&ptr, L2CAP_CONF_EFS, sizeof(efs),
(unsigned long) &efs, endptr - ptr);
l2cap_add_conf_opt(&ptr, L2CAP_CONF_EFS, sizeof(efs),
(unsigned long) &efs, endptr - ptr);
}
break;
case L2CAP_CONF_FCS:

View file

@ -294,7 +294,7 @@ static int sock_diag_bind(struct net *net, int group)
case SKNLGRP_INET6_UDP_DESTROY:
if (!sock_diag_handlers[AF_INET6])
request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
NETLINK_SOCK_DIAG, AF_INET);
NETLINK_SOCK_DIAG, AF_INET6);
break;
}
return 0;

View file

@ -1785,8 +1785,10 @@ struct sk_buff *ip6_make_skb(struct sock *sk,
cork.base.opt = NULL;
v6_cork.opt = NULL;
err = ip6_setup_cork(sk, &cork, &v6_cork, hlimit, tclass, opt, rt, fl6);
if (err)
if (err) {
ip6_cork_release(&cork, &v6_cork);
return ERR_PTR(err);
}
if (dontfrag < 0)
dontfrag = inet6_sk(sk)->dontfrag;

View file

@ -1083,10 +1083,11 @@ static int ip6_tnl_xmit2(struct sk_buff *skb,
memcpy(&fl6->daddr, addr6, sizeof(fl6->daddr));
neigh_release(neigh);
}
} else if (!(t->parms.flags &
(IP6_TNL_F_USE_ORIG_TCLASS | IP6_TNL_F_USE_ORIG_FWMARK))) {
/* enable the cache only only if the routing decision does
* not depend on the current inner header value
} else if (t->parms.proto != 0 && !(t->parms.flags &
(IP6_TNL_F_USE_ORIG_TCLASS |
IP6_TNL_F_USE_ORIG_FWMARK))) {
/* enable the cache only if neither the outer protocol nor the
* routing decision depends on the current inner header value
*/
use_cache = true;
}

View file

@ -91,7 +91,7 @@ static const struct file_operations reset_ops = {
};
#endif
static const char *hw_flag_names[NUM_IEEE80211_HW_FLAGS + 1] = {
static const char *hw_flag_names[] = {
#define FLAG(F) [IEEE80211_HW_##F] = #F
FLAG(HAS_RATE_CONTROL),
FLAG(RX_INCLUDES_FCS),
@ -125,9 +125,6 @@ static const char *hw_flag_names[NUM_IEEE80211_HW_FLAGS + 1] = {
FLAG(TDLS_WIDER_BW),
FLAG(SUPPORTS_AMSDU_IN_AMPDU),
FLAG(BEACON_TX_STATUS),
/* keep last for the build bug below */
(void *)0x1
#undef FLAG
};
@ -147,7 +144,7 @@ static ssize_t hwflags_read(struct file *file, char __user *user_buf,
/* fail compilation if somebody adds or removes
* a flag without updating the name array above
*/
BUILD_BUG_ON(hw_flag_names[NUM_IEEE80211_HW_FLAGS] != (void *)0x1);
BUILD_BUG_ON(ARRAY_SIZE(hw_flag_names) != NUM_IEEE80211_HW_FLAGS);
for (i = 0; i < NUM_IEEE80211_HW_FLAGS; i++) {
if (test_bit(i, local->hw.flags))

View file

@ -517,6 +517,9 @@ int rds_rdma_extra_size(struct rds_rdma_args *args)
local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
if (args->nr_local == 0)
return -EINVAL;
/* figure out the number of pages in the vector */
for (i = 0; i < args->nr_local; i++) {
if (copy_from_user(&vec, &local_vec[i],
@ -866,6 +869,7 @@ int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm,
err:
if (page)
put_page(page);
rm->atomic.op_active = 0;
kfree(rm->atomic.op_notifier);
return ret;

View file

@ -465,7 +465,6 @@ static int snd_pcm_hw_param_near(struct snd_pcm_substream *pcm,
v = snd_pcm_hw_param_last(pcm, params, var, dir);
else
v = snd_pcm_hw_param_first(pcm, params, var, dir);
snd_BUG_ON(v < 0);
return v;
}
@ -1370,8 +1369,11 @@ static ssize_t snd_pcm_oss_write1(struct snd_pcm_substream *substream, const cha
if ((tmp = snd_pcm_oss_make_ready(substream)) < 0)
return tmp;
mutex_lock(&runtime->oss.params_lock);
while (bytes > 0) {
if (mutex_lock_interruptible(&runtime->oss.params_lock)) {
tmp = -ERESTARTSYS;
break;
}
if (bytes < runtime->oss.period_bytes || runtime->oss.buffer_used > 0) {
tmp = bytes;
if (tmp + runtime->oss.buffer_used > runtime->oss.period_bytes)
@ -1415,14 +1417,18 @@ static ssize_t snd_pcm_oss_write1(struct snd_pcm_substream *substream, const cha
xfer += tmp;
if ((substream->f_flags & O_NONBLOCK) != 0 &&
tmp != runtime->oss.period_bytes)
break;
tmp = -EAGAIN;
}
}
mutex_unlock(&runtime->oss.params_lock);
return xfer;
err:
mutex_unlock(&runtime->oss.params_lock);
mutex_unlock(&runtime->oss.params_lock);
if (tmp < 0)
break;
if (signal_pending(current)) {
tmp = -ERESTARTSYS;
break;
}
tmp = 0;
}
return xfer > 0 ? (snd_pcm_sframes_t)xfer : tmp;
}
@ -1470,8 +1476,11 @@ static ssize_t snd_pcm_oss_read1(struct snd_pcm_substream *substream, char __use
if ((tmp = snd_pcm_oss_make_ready(substream)) < 0)
return tmp;
mutex_lock(&runtime->oss.params_lock);
while (bytes > 0) {
if (mutex_lock_interruptible(&runtime->oss.params_lock)) {
tmp = -ERESTARTSYS;
break;
}
if (bytes < runtime->oss.period_bytes || runtime->oss.buffer_used > 0) {
if (runtime->oss.buffer_used == 0) {
tmp = snd_pcm_oss_read2(substream, runtime->oss.buffer, runtime->oss.period_bytes, 1);
@ -1502,12 +1511,16 @@ static ssize_t snd_pcm_oss_read1(struct snd_pcm_substream *substream, char __use
bytes -= tmp;
xfer += tmp;
}
}
mutex_unlock(&runtime->oss.params_lock);
return xfer;
err:
mutex_unlock(&runtime->oss.params_lock);
mutex_unlock(&runtime->oss.params_lock);
if (tmp < 0)
break;
if (signal_pending(current)) {
tmp = -ERESTARTSYS;
break;
}
tmp = 0;
}
return xfer > 0 ? (snd_pcm_sframes_t)xfer : tmp;
}

View file

@ -591,18 +591,26 @@ snd_pcm_sframes_t snd_pcm_plug_write_transfer(struct snd_pcm_substream *plug, st
snd_pcm_sframes_t frames = size;
plugin = snd_pcm_plug_first(plug);
while (plugin && frames > 0) {
while (plugin) {
if (frames <= 0)
return frames;
if ((next = plugin->next) != NULL) {
snd_pcm_sframes_t frames1 = frames;
if (plugin->dst_frames)
if (plugin->dst_frames) {
frames1 = plugin->dst_frames(plugin, frames);
if (frames1 <= 0)
return frames1;
}
if ((err = next->client_channels(next, frames1, &dst_channels)) < 0) {
return err;
}
if (err != frames1) {
frames = err;
if (plugin->src_frames)
if (plugin->src_frames) {
frames = plugin->src_frames(plugin, frames1);
if (frames <= 0)
return frames;
}
}
} else
dst_channels = NULL;

View file

@ -1664,7 +1664,7 @@ int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
return changed;
if (params->rmask) {
int err = snd_pcm_hw_refine(pcm, params);
if (snd_BUG_ON(err < 0))
if (err < 0)
return err;
}
return snd_pcm_hw_param_value(params, var, dir);
@ -1711,7 +1711,7 @@ int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
return changed;
if (params->rmask) {
int err = snd_pcm_hw_refine(pcm, params);
if (snd_BUG_ON(err < 0))
if (err < 0)
return err;
}
return snd_pcm_hw_param_value(params, var, dir);

View file

@ -39,6 +39,7 @@
#include <sound/core.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/info.h>
#include <sound/initval.h>
@ -305,19 +306,6 @@ static int loopback_trigger(struct snd_pcm_substream *substream, int cmd)
return 0;
}
static void params_change_substream(struct loopback_pcm *dpcm,
struct snd_pcm_runtime *runtime)
{
struct snd_pcm_runtime *dst_runtime;
if (dpcm == NULL || dpcm->substream == NULL)
return;
dst_runtime = dpcm->substream->runtime;
if (dst_runtime == NULL)
return;
dst_runtime->hw = dpcm->cable->hw;
}
static void params_change(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
@ -329,10 +317,6 @@ static void params_change(struct snd_pcm_substream *substream)
cable->hw.rate_max = runtime->rate;
cable->hw.channels_min = runtime->channels;
cable->hw.channels_max = runtime->channels;
params_change_substream(cable->streams[SNDRV_PCM_STREAM_PLAYBACK],
runtime);
params_change_substream(cable->streams[SNDRV_PCM_STREAM_CAPTURE],
runtime);
}
static int loopback_prepare(struct snd_pcm_substream *substream)
@ -620,26 +604,29 @@ static unsigned int get_cable_index(struct snd_pcm_substream *substream)
static int rule_format(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct loopback_pcm *dpcm = rule->private;
struct loopback_cable *cable = dpcm->cable;
struct snd_mask m;
struct snd_pcm_hardware *hw = rule->private;
struct snd_mask *maskp = hw_param_mask(params, rule->var);
maskp->bits[0] &= (u_int32_t)hw->formats;
maskp->bits[1] &= (u_int32_t)(hw->formats >> 32);
memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
if (! maskp->bits[0] && ! maskp->bits[1])
return -EINVAL;
return 0;
snd_mask_none(&m);
mutex_lock(&dpcm->loopback->cable_lock);
m.bits[0] = (u_int32_t)cable->hw.formats;
m.bits[1] = (u_int32_t)(cable->hw.formats >> 32);
mutex_unlock(&dpcm->loopback->cable_lock);
return snd_mask_refine(hw_param_mask(params, rule->var), &m);
}
static int rule_rate(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_pcm_hardware *hw = rule->private;
struct loopback_pcm *dpcm = rule->private;
struct loopback_cable *cable = dpcm->cable;
struct snd_interval t;
t.min = hw->rate_min;
t.max = hw->rate_max;
mutex_lock(&dpcm->loopback->cable_lock);
t.min = cable->hw.rate_min;
t.max = cable->hw.rate_max;
mutex_unlock(&dpcm->loopback->cable_lock);
t.openmin = t.openmax = 0;
t.integer = 0;
return snd_interval_refine(hw_param_interval(params, rule->var), &t);
@ -648,22 +635,44 @@ static int rule_rate(struct snd_pcm_hw_params *params,
static int rule_channels(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_pcm_hardware *hw = rule->private;
struct loopback_pcm *dpcm = rule->private;
struct loopback_cable *cable = dpcm->cable;
struct snd_interval t;
t.min = hw->channels_min;
t.max = hw->channels_max;
mutex_lock(&dpcm->loopback->cable_lock);
t.min = cable->hw.channels_min;
t.max = cable->hw.channels_max;
mutex_unlock(&dpcm->loopback->cable_lock);
t.openmin = t.openmax = 0;
t.integer = 0;
return snd_interval_refine(hw_param_interval(params, rule->var), &t);
}
static void free_cable(struct snd_pcm_substream *substream)
{
struct loopback *loopback = substream->private_data;
int dev = get_cable_index(substream);
struct loopback_cable *cable;
cable = loopback->cables[substream->number][dev];
if (!cable)
return;
if (cable->streams[!substream->stream]) {
/* other stream is still alive */
cable->streams[substream->stream] = NULL;
} else {
/* free the cable */
loopback->cables[substream->number][dev] = NULL;
kfree(cable);
}
}
static int loopback_open(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct loopback *loopback = substream->private_data;
struct loopback_pcm *dpcm;
struct loopback_cable *cable;
struct loopback_cable *cable = NULL;
int err = 0;
int dev = get_cable_index(substream);
@ -682,7 +691,6 @@ static int loopback_open(struct snd_pcm_substream *substream)
if (!cable) {
cable = kzalloc(sizeof(*cable), GFP_KERNEL);
if (!cable) {
kfree(dpcm);
err = -ENOMEM;
goto unlock;
}
@ -700,19 +708,19 @@ static int loopback_open(struct snd_pcm_substream *substream)
/* are cached -> they do not reflect the actual state */
err = snd_pcm_hw_rule_add(runtime, 0,
SNDRV_PCM_HW_PARAM_FORMAT,
rule_format, &runtime->hw,
rule_format, dpcm,
SNDRV_PCM_HW_PARAM_FORMAT, -1);
if (err < 0)
goto unlock;
err = snd_pcm_hw_rule_add(runtime, 0,
SNDRV_PCM_HW_PARAM_RATE,
rule_rate, &runtime->hw,
rule_rate, dpcm,
SNDRV_PCM_HW_PARAM_RATE, -1);
if (err < 0)
goto unlock;
err = snd_pcm_hw_rule_add(runtime, 0,
SNDRV_PCM_HW_PARAM_CHANNELS,
rule_channels, &runtime->hw,
rule_channels, dpcm,
SNDRV_PCM_HW_PARAM_CHANNELS, -1);
if (err < 0)
goto unlock;
@ -724,6 +732,10 @@ static int loopback_open(struct snd_pcm_substream *substream)
else
runtime->hw = cable->hw;
unlock:
if (err < 0) {
free_cable(substream);
kfree(dpcm);
}
mutex_unlock(&loopback->cable_lock);
return err;
}
@ -732,20 +744,10 @@ static int loopback_close(struct snd_pcm_substream *substream)
{
struct loopback *loopback = substream->private_data;
struct loopback_pcm *dpcm = substream->runtime->private_data;
struct loopback_cable *cable;
int dev = get_cable_index(substream);
loopback_timer_stop(dpcm);
mutex_lock(&loopback->cable_lock);
cable = loopback->cables[substream->number][dev];
if (cable->streams[!substream->stream]) {
/* other stream is still alive */
cable->streams[substream->stream] = NULL;
} else {
/* free the cable */
loopback->cables[substream->number][dev] = NULL;
kfree(cable);
}
free_cable(substream);
mutex_unlock(&loopback->cable_lock);
return 0;
}

View file

@ -1,9 +1,5 @@
# Makefile for vm selftests
ifndef OUTPUT
OUTPUT := $(shell pwd)
endif
CFLAGS = -Wall -I ../../../../usr/include $(EXTRA_CFLAGS)
BINARIES = compaction_test
BINARIES += hugepage-mmap

View file

@ -4,7 +4,8 @@ include ../lib.mk
.PHONY: all all_32 all_64 warn_32bit_failure clean
TARGETS_C_BOTHBITS := single_step_syscall sysret_ss_attrs ldt_gdt syscall_nt ptrace_syscall
TARGETS_C_BOTHBITS := single_step_syscall sysret_ss_attrs ldt_gdt syscall_nt ptrace_syscall \
test_vsyscall
TARGETS_C_32BIT_ONLY := entry_from_vm86 syscall_arg_fault sigreturn test_syscall_vdso unwind_vdso \
test_FCMOV test_FCOMI test_FISTTP

View file

@ -0,0 +1,500 @@
/* SPDX-License-Identifier: GPL-2.0 */
#define _GNU_SOURCE
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <stdlib.h>
#include <sys/syscall.h>
#include <unistd.h>
#include <dlfcn.h>
#include <string.h>
#include <inttypes.h>
#include <signal.h>
#include <sys/ucontext.h>
#include <errno.h>
#include <err.h>
#include <sched.h>
#include <stdbool.h>
#include <setjmp.h>
#ifdef __x86_64__
# define VSYS(x) (x)
#else
# define VSYS(x) 0
#endif
#ifndef SYS_getcpu
# ifdef __x86_64__
# define SYS_getcpu 309
# else
# define SYS_getcpu 318
# endif
#endif
static void sethandler(int sig, void (*handler)(int, siginfo_t *, void *),
int flags)
{
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_sigaction = handler;
sa.sa_flags = SA_SIGINFO | flags;
sigemptyset(&sa.sa_mask);
if (sigaction(sig, &sa, 0))
err(1, "sigaction");
}
/* vsyscalls and vDSO */
bool should_read_vsyscall = false;
typedef long (*gtod_t)(struct timeval *tv, struct timezone *tz);
gtod_t vgtod = (gtod_t)VSYS(0xffffffffff600000);
gtod_t vdso_gtod;
typedef int (*vgettime_t)(clockid_t, struct timespec *);
vgettime_t vdso_gettime;
typedef long (*time_func_t)(time_t *t);
time_func_t vtime = (time_func_t)VSYS(0xffffffffff600400);
time_func_t vdso_time;
typedef long (*getcpu_t)(unsigned *, unsigned *, void *);
getcpu_t vgetcpu = (getcpu_t)VSYS(0xffffffffff600800);
getcpu_t vdso_getcpu;
static void init_vdso(void)
{
void *vdso = dlopen("linux-vdso.so.1", RTLD_LAZY | RTLD_LOCAL | RTLD_NOLOAD);
if (!vdso)
vdso = dlopen("linux-gate.so.1", RTLD_LAZY | RTLD_LOCAL | RTLD_NOLOAD);
if (!vdso) {
printf("[WARN]\tfailed to find vDSO\n");
return;
}
vdso_gtod = (gtod_t)dlsym(vdso, "__vdso_gettimeofday");
if (!vdso_gtod)
printf("[WARN]\tfailed to find gettimeofday in vDSO\n");
vdso_gettime = (vgettime_t)dlsym(vdso, "__vdso_clock_gettime");
if (!vdso_gettime)
printf("[WARN]\tfailed to find clock_gettime in vDSO\n");
vdso_time = (time_func_t)dlsym(vdso, "__vdso_time");
if (!vdso_time)
printf("[WARN]\tfailed to find time in vDSO\n");
vdso_getcpu = (getcpu_t)dlsym(vdso, "__vdso_getcpu");
if (!vdso_getcpu) {
/* getcpu() was never wired up in the 32-bit vDSO. */
printf("[%s]\tfailed to find getcpu in vDSO\n",
sizeof(long) == 8 ? "WARN" : "NOTE");
}
}
static int init_vsys(void)
{
#ifdef __x86_64__
int nerrs = 0;
FILE *maps;
char line[128];
bool found = false;
maps = fopen("/proc/self/maps", "r");
if (!maps) {
printf("[WARN]\tCould not open /proc/self/maps -- assuming vsyscall is r-x\n");
should_read_vsyscall = true;
return 0;
}
while (fgets(line, sizeof(line), maps)) {
char r, x;
void *start, *end;
char name[128];
if (sscanf(line, "%p-%p %c-%cp %*x %*x:%*x %*u %s",
&start, &end, &r, &x, name) != 5)
continue;
if (strcmp(name, "[vsyscall]"))
continue;
printf("\tvsyscall map: %s", line);
if (start != (void *)0xffffffffff600000 ||
end != (void *)0xffffffffff601000) {
printf("[FAIL]\taddress range is nonsense\n");
nerrs++;
}
printf("\tvsyscall permissions are %c-%c\n", r, x);
should_read_vsyscall = (r == 'r');
if (x != 'x') {
vgtod = NULL;
vtime = NULL;
vgetcpu = NULL;
}
found = true;
break;
}
fclose(maps);
if (!found) {
printf("\tno vsyscall map in /proc/self/maps\n");
should_read_vsyscall = false;
vgtod = NULL;
vtime = NULL;
vgetcpu = NULL;
}
return nerrs;
#else
return 0;
#endif
}
/* syscalls */
static inline long sys_gtod(struct timeval *tv, struct timezone *tz)
{
return syscall(SYS_gettimeofday, tv, tz);
}
static inline int sys_clock_gettime(clockid_t id, struct timespec *ts)
{
return syscall(SYS_clock_gettime, id, ts);
}
static inline long sys_time(time_t *t)
{
return syscall(SYS_time, t);
}
static inline long sys_getcpu(unsigned * cpu, unsigned * node,
void* cache)
{
return syscall(SYS_getcpu, cpu, node, cache);
}
static jmp_buf jmpbuf;
static void sigsegv(int sig, siginfo_t *info, void *ctx_void)
{
siglongjmp(jmpbuf, 1);
}
static double tv_diff(const struct timeval *a, const struct timeval *b)
{
return (double)(a->tv_sec - b->tv_sec) +
(double)((int)a->tv_usec - (int)b->tv_usec) * 1e-6;
}
static int check_gtod(const struct timeval *tv_sys1,
const struct timeval *tv_sys2,
const struct timezone *tz_sys,
const char *which,
const struct timeval *tv_other,
const struct timezone *tz_other)
{
int nerrs = 0;
double d1, d2;
if (tz_other && (tz_sys->tz_minuteswest != tz_other->tz_minuteswest || tz_sys->tz_dsttime != tz_other->tz_dsttime)) {
printf("[FAIL] %s tz mismatch\n", which);
nerrs++;
}
d1 = tv_diff(tv_other, tv_sys1);
d2 = tv_diff(tv_sys2, tv_other);
printf("\t%s time offsets: %lf %lf\n", which, d1, d2);
if (d1 < 0 || d2 < 0) {
printf("[FAIL]\t%s time was inconsistent with the syscall\n", which);
nerrs++;
} else {
printf("[OK]\t%s gettimeofday()'s timeval was okay\n", which);
}
return nerrs;
}
static int test_gtod(void)
{
struct timeval tv_sys1, tv_sys2, tv_vdso, tv_vsys;
struct timezone tz_sys, tz_vdso, tz_vsys;
long ret_vdso = -1;
long ret_vsys = -1;
int nerrs = 0;
printf("[RUN]\ttest gettimeofday()\n");
if (sys_gtod(&tv_sys1, &tz_sys) != 0)
err(1, "syscall gettimeofday");
if (vdso_gtod)
ret_vdso = vdso_gtod(&tv_vdso, &tz_vdso);
if (vgtod)
ret_vsys = vgtod(&tv_vsys, &tz_vsys);
if (sys_gtod(&tv_sys2, &tz_sys) != 0)
err(1, "syscall gettimeofday");
if (vdso_gtod) {
if (ret_vdso == 0) {
nerrs += check_gtod(&tv_sys1, &tv_sys2, &tz_sys, "vDSO", &tv_vdso, &tz_vdso);
} else {
printf("[FAIL]\tvDSO gettimeofday() failed: %ld\n", ret_vdso);
nerrs++;
}
}
if (vgtod) {
if (ret_vsys == 0) {
nerrs += check_gtod(&tv_sys1, &tv_sys2, &tz_sys, "vsyscall", &tv_vsys, &tz_vsys);
} else {
printf("[FAIL]\tvsys gettimeofday() failed: %ld\n", ret_vsys);
nerrs++;
}
}
return nerrs;
}
static int test_time(void) {
int nerrs = 0;
printf("[RUN]\ttest time()\n");
long t_sys1, t_sys2, t_vdso = 0, t_vsys = 0;
long t2_sys1 = -1, t2_sys2 = -1, t2_vdso = -1, t2_vsys = -1;
t_sys1 = sys_time(&t2_sys1);
if (vdso_time)
t_vdso = vdso_time(&t2_vdso);
if (vtime)
t_vsys = vtime(&t2_vsys);
t_sys2 = sys_time(&t2_sys2);
if (t_sys1 < 0 || t_sys1 != t2_sys1 || t_sys2 < 0 || t_sys2 != t2_sys2) {
printf("[FAIL]\tsyscall failed (ret1:%ld output1:%ld ret2:%ld output2:%ld)\n", t_sys1, t2_sys1, t_sys2, t2_sys2);
nerrs++;
return nerrs;
}
if (vdso_time) {
if (t_vdso < 0 || t_vdso != t2_vdso) {
printf("[FAIL]\tvDSO failed (ret:%ld output:%ld)\n", t_vdso, t2_vdso);
nerrs++;
} else if (t_vdso < t_sys1 || t_vdso > t_sys2) {
printf("[FAIL]\tvDSO returned the wrong time (%ld %ld %ld)\n", t_sys1, t_vdso, t_sys2);
nerrs++;
} else {
printf("[OK]\tvDSO time() is okay\n");
}
}
if (vtime) {
if (t_vsys < 0 || t_vsys != t2_vsys) {
printf("[FAIL]\tvsyscall failed (ret:%ld output:%ld)\n", t_vsys, t2_vsys);
nerrs++;
} else if (t_vsys < t_sys1 || t_vsys > t_sys2) {
printf("[FAIL]\tvsyscall returned the wrong time (%ld %ld %ld)\n", t_sys1, t_vsys, t_sys2);
nerrs++;
} else {
printf("[OK]\tvsyscall time() is okay\n");
}
}
return nerrs;
}
static int test_getcpu(int cpu)
{
int nerrs = 0;
long ret_sys, ret_vdso = -1, ret_vsys = -1;
printf("[RUN]\tgetcpu() on CPU %d\n", cpu);
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(cpu, &cpuset);
if (sched_setaffinity(0, sizeof(cpuset), &cpuset) != 0) {
printf("[SKIP]\tfailed to force CPU %d\n", cpu);
return nerrs;
}
unsigned cpu_sys, cpu_vdso, cpu_vsys, node_sys, node_vdso, node_vsys;
unsigned node = 0;
bool have_node = false;
ret_sys = sys_getcpu(&cpu_sys, &node_sys, 0);
if (vdso_getcpu)
ret_vdso = vdso_getcpu(&cpu_vdso, &node_vdso, 0);
if (vgetcpu)
ret_vsys = vgetcpu(&cpu_vsys, &node_vsys, 0);
if (ret_sys == 0) {
if (cpu_sys != cpu) {
printf("[FAIL]\tsyscall reported CPU %hu but should be %d\n", cpu_sys, cpu);
nerrs++;
}
have_node = true;
node = node_sys;
}
if (vdso_getcpu) {
if (ret_vdso) {
printf("[FAIL]\tvDSO getcpu() failed\n");
nerrs++;
} else {
if (!have_node) {
have_node = true;
node = node_vdso;
}
if (cpu_vdso != cpu) {
printf("[FAIL]\tvDSO reported CPU %hu but should be %d\n", cpu_vdso, cpu);
nerrs++;
} else {
printf("[OK]\tvDSO reported correct CPU\n");
}
if (node_vdso != node) {
printf("[FAIL]\tvDSO reported node %hu but should be %hu\n", node_vdso, node);
nerrs++;
} else {
printf("[OK]\tvDSO reported correct node\n");
}
}
}
if (vgetcpu) {
if (ret_vsys) {
printf("[FAIL]\tvsyscall getcpu() failed\n");
nerrs++;
} else {
if (!have_node) {
have_node = true;
node = node_vsys;
}
if (cpu_vsys != cpu) {
printf("[FAIL]\tvsyscall reported CPU %hu but should be %d\n", cpu_vsys, cpu);
nerrs++;
} else {
printf("[OK]\tvsyscall reported correct CPU\n");
}
if (node_vsys != node) {
printf("[FAIL]\tvsyscall reported node %hu but should be %hu\n", node_vsys, node);
nerrs++;
} else {
printf("[OK]\tvsyscall reported correct node\n");
}
}
}
return nerrs;
}
static int test_vsys_r(void)
{
#ifdef __x86_64__
printf("[RUN]\tChecking read access to the vsyscall page\n");
bool can_read;
if (sigsetjmp(jmpbuf, 1) == 0) {
*(volatile int *)0xffffffffff600000;
can_read = true;
} else {
can_read = false;
}
if (can_read && !should_read_vsyscall) {
printf("[FAIL]\tWe have read access, but we shouldn't\n");
return 1;
} else if (!can_read && should_read_vsyscall) {
printf("[FAIL]\tWe don't have read access, but we should\n");
return 1;
} else {
printf("[OK]\tgot expected result\n");
}
#endif
return 0;
}
#ifdef __x86_64__
#define X86_EFLAGS_TF (1UL << 8)
static volatile sig_atomic_t num_vsyscall_traps;
static unsigned long get_eflags(void)
{
unsigned long eflags;
asm volatile ("pushfq\n\tpopq %0" : "=rm" (eflags));
return eflags;
}
static void set_eflags(unsigned long eflags)
{
asm volatile ("pushq %0\n\tpopfq" : : "rm" (eflags) : "flags");
}
static void sigtrap(int sig, siginfo_t *info, void *ctx_void)
{
ucontext_t *ctx = (ucontext_t *)ctx_void;
unsigned long ip = ctx->uc_mcontext.gregs[REG_RIP];
if (((ip ^ 0xffffffffff600000UL) & ~0xfffUL) == 0)
num_vsyscall_traps++;
}
static int test_native_vsyscall(void)
{
time_t tmp;
bool is_native;
if (!vtime)
return 0;
printf("[RUN]\tchecking for native vsyscall\n");
sethandler(SIGTRAP, sigtrap, 0);
set_eflags(get_eflags() | X86_EFLAGS_TF);
vtime(&tmp);
set_eflags(get_eflags() & ~X86_EFLAGS_TF);
/*
* If vsyscalls are emulated, we expect a single trap in the
* vsyscall page -- the call instruction will trap with RIP
* pointing to the entry point before emulation takes over.
* In native mode, we expect two traps, since whatever code
* the vsyscall page contains will be more than just a ret
* instruction.
*/
is_native = (num_vsyscall_traps > 1);
printf("\tvsyscalls are %s (%d instructions in vsyscall page)\n",
(is_native ? "native" : "emulated"),
(int)num_vsyscall_traps);
return 0;
}
#endif
int main(int argc, char **argv)
{
int nerrs = 0;
init_vdso();
nerrs += init_vsys();
nerrs += test_gtod();
nerrs += test_time();
nerrs += test_getcpu(0);
nerrs += test_getcpu(1);
sethandler(SIGSEGV, sigsegv, 0);
nerrs += test_vsys_r();
#ifdef __x86_64__
nerrs += test_native_vsyscall();
#endif
return nerrs ? 1 : 0;
}