msm: mdss: hdcp_1x: add cp_irq support

Content Protection IRQ is a mechanism used by HDCP 1.3
protocol over DisplayPort to notify source device about
current hdcp status of receiver/repeater device. Handle
cp_irq to listen to sink receiver/repeater events and
update source hdcp state accordingly.

Change-Id: I63ecf6045f13e8b1d75bf6db2135671aa30c9e60
Signed-off-by: Ajay Singh Parmar <aparmar@codeaurora.org>
This commit is contained in:
Ajay Singh Parmar 2016-11-15 23:34:53 -08:00
parent 1e17007652
commit 8ac9f6ee3c
4 changed files with 251 additions and 130 deletions

View file

@ -2599,8 +2599,10 @@ static void mdss_dp_process_attention(struct mdss_dp_drv_pdata *dp_drv)
pr_debug("Attention: hpd_irq high\n"); pr_debug("Attention: hpd_irq high\n");
if (dp_drv->power_on && dp_drv->hdcp.ops && if (dp_drv->power_on && dp_drv->hdcp.ops &&
dp_drv->hdcp.ops->cp_irq) dp_drv->hdcp.ops->cp_irq) {
dp_drv->hdcp.ops->cp_irq(dp_drv->hdcp.data); if (!dp_drv->hdcp.ops->cp_irq(dp_drv->hdcp.data))
return;
}
if (!mdss_dp_process_hpd_irq_high(dp_drv)) if (!mdss_dp_process_hpd_irq_high(dp_drv))
return; return;

View file

@ -574,18 +574,6 @@ static void dp_hdcp2p2_link_work(struct kthread_work *work)
cdata.context = ctrl->lib_ctx; cdata.context = ctrl->lib_ctx;
ctrl->sink_rx_status = 0;
rc = mdss_dp_aux_read_rx_status(ctrl->init_data.cb_data,
&ctrl->sink_rx_status);
if (rc) {
pr_err("failed to read rx status\n");
cdata.cmd = HDCP_LIB_WKUP_CMD_LINK_FAILED;
atomic_set(&ctrl->auth_state, HDCP_STATE_AUTH_FAIL);
goto exit;
}
if (ctrl->sink_rx_status & ctrl->abort_mask) { if (ctrl->sink_rx_status & ctrl->abort_mask) {
if (ctrl->sink_rx_status & BIT(3)) if (ctrl->sink_rx_status & BIT(3))
pr_err("reauth_req set by sink\n"); pr_err("reauth_req set by sink\n");
@ -636,6 +624,7 @@ static void dp_hdcp2p2_auth_work(struct kthread_work *work)
static int dp_hdcp2p2_cp_irq(void *input) static int dp_hdcp2p2_cp_irq(void *input)
{ {
int rc = 0;
struct dp_hdcp2p2_ctrl *ctrl = input; struct dp_hdcp2p2_ctrl *ctrl = input;
if (!ctrl) { if (!ctrl) {
@ -643,9 +632,25 @@ static int dp_hdcp2p2_cp_irq(void *input)
return -EINVAL; return -EINVAL;
} }
ctrl->sink_rx_status = 0;
rc = mdss_dp_aux_read_rx_status(ctrl->init_data.cb_data,
&ctrl->sink_rx_status);
if (rc) {
pr_err("failed to read rx status\n");
goto error;
}
if (!ctrl->sink_rx_status) {
pr_debug("not a hdcp 2.2 irq\n");
rc = -EINVAL;
goto error;
}
queue_kthread_work(&ctrl->worker, &ctrl->link); queue_kthread_work(&ctrl->worker, &ctrl->link);
return 0; return 0;
error:
return rc;
} }
void dp_hdcp2p2_deinit(void *input) void dp_hdcp2p2_deinit(void *input)

View file

@ -185,6 +185,7 @@
#define DP_HDCP_RCVPORT_DATA6 (0x0C4) #define DP_HDCP_RCVPORT_DATA6 (0x0C4)
#define HDCP_SEC_DP_TZ_HV_HLOS_HDCP_SHA_CTRL (0x024) #define HDCP_SEC_DP_TZ_HV_HLOS_HDCP_SHA_CTRL (0x024)
#define HDCP_SEC_DP_TZ_HV_HLOS_HDCP_SHA_DATA (0x028)
#define HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA0 (0x004) #define HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA0 (0x004)
#define HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA1 (0x008) #define HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA1 (0x008)
#define HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA7 (0x00C) #define HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA7 (0x00C)

View file

@ -72,6 +72,7 @@ struct hdcp_sink_addr_map {
struct hdcp_sink_addr bksv; struct hdcp_sink_addr bksv;
struct hdcp_sink_addr r0; struct hdcp_sink_addr r0;
struct hdcp_sink_addr bstatus; struct hdcp_sink_addr bstatus;
struct hdcp_sink_addr cp_irq_status;
struct hdcp_sink_addr ksv_fifo; struct hdcp_sink_addr ksv_fifo;
struct hdcp_sink_addr v_h0; struct hdcp_sink_addr v_h0;
struct hdcp_sink_addr v_h1; struct hdcp_sink_addr v_h1;
@ -82,7 +83,6 @@ struct hdcp_sink_addr_map {
/* addresses to write to sink */ /* addresses to write to sink */
struct hdcp_sink_addr an; struct hdcp_sink_addr an;
struct hdcp_sink_addr aksv; struct hdcp_sink_addr aksv;
struct hdcp_sink_addr rep;
}; };
struct hdcp_int_set { struct hdcp_int_set {
@ -126,7 +126,9 @@ struct hdcp_reg_set {
u32 entropy_ctrl0; u32 entropy_ctrl0;
u32 entropy_ctrl1; u32 entropy_ctrl1;
u32 sha_ctrl; u32 sha_ctrl;
u32 sha_data;
u32 sec_sha_ctrl; u32 sec_sha_ctrl;
u32 sec_sha_data;
u32 sha_status; u32 sha_status;
u32 data0; u32 data0;
@ -154,13 +156,17 @@ struct hdcp_reg_set {
u32 reset; u32 reset;
u32 reset_bit; u32 reset_bit;
u32 repeater;
}; };
#define HDCP_REG_SET_CLIENT_HDMI \ #define HDCP_REG_SET_CLIENT_HDMI \
{HDMI_HDCP_LINK0_STATUS, 28, 24, 20, HDMI_HDCP_CTRL, \ {HDMI_HDCP_LINK0_STATUS, 28, 24, 20, HDMI_HDCP_CTRL, \
HDMI_HDCP_SW_LOWER_AKSV, HDMI_HDCP_SW_UPPER_AKSV, \ HDMI_HDCP_SW_LOWER_AKSV, HDMI_HDCP_SW_UPPER_AKSV, \
HDMI_HDCP_ENTROPY_CTRL0, HDMI_HDCP_ENTROPY_CTRL1, \ HDMI_HDCP_ENTROPY_CTRL0, HDMI_HDCP_ENTROPY_CTRL1, \
HDMI_HDCP_SHA_CTRL, HDCP_SEC_TZ_HV_HLOS_HDCP_SHA_CTRL, \ HDMI_HDCP_SHA_CTRL, HDMI_HDCP_SHA_DATA, \
HDCP_SEC_TZ_HV_HLOS_HDCP_SHA_CTRL, \
HDCP_SEC_TZ_HV_HLOS_HDCP_SHA_DATA, \
HDMI_HDCP_SHA_STATUS, HDMI_HDCP_RCVPORT_DATA0, \ HDMI_HDCP_SHA_STATUS, HDMI_HDCP_RCVPORT_DATA0, \
HDMI_HDCP_RCVPORT_DATA1, HDMI_HDCP_RCVPORT_DATA2_0, \ HDMI_HDCP_RCVPORT_DATA1, HDMI_HDCP_RCVPORT_DATA2_0, \
HDMI_HDCP_RCVPORT_DATA3, HDMI_HDCP_RCVPORT_DATA4, \ HDMI_HDCP_RCVPORT_DATA3, HDMI_HDCP_RCVPORT_DATA4, \
@ -176,13 +182,14 @@ struct hdcp_reg_set {
HDCP_SEC_TZ_HV_HLOS_HDCP_RCVPORT_DATA10, \ HDCP_SEC_TZ_HV_HLOS_HDCP_RCVPORT_DATA10, \
HDCP_SEC_TZ_HV_HLOS_HDCP_RCVPORT_DATA11, \ HDCP_SEC_TZ_HV_HLOS_HDCP_RCVPORT_DATA11, \
HDCP_SEC_TZ_HV_HLOS_HDCP_RCVPORT_DATA12, \ HDCP_SEC_TZ_HV_HLOS_HDCP_RCVPORT_DATA12, \
HDMI_HDCP_RESET, BIT(0)} HDMI_HDCP_RESET, BIT(0), BIT(6)}
#define HDCP_REG_SET_CLIENT_DP \ #define HDCP_REG_SET_CLIENT_DP \
{DP_HDCP_STATUS, 16, 14, 13, DP_HDCP_CTRL, \ {DP_HDCP_STATUS, 16, 14, 13, DP_HDCP_CTRL, \
DP_HDCP_SW_LOWER_AKSV, DP_HDCP_SW_UPPER_AKSV, \ DP_HDCP_SW_LOWER_AKSV, DP_HDCP_SW_UPPER_AKSV, \
DP_HDCP_ENTROPY_CTRL0, DP_HDCP_ENTROPY_CTRL1, \ DP_HDCP_ENTROPY_CTRL0, DP_HDCP_ENTROPY_CTRL1, \
0, HDCP_SEC_DP_TZ_HV_HLOS_HDCP_SHA_CTRL, \ 0, 0, HDCP_SEC_DP_TZ_HV_HLOS_HDCP_SHA_CTRL, \
HDCP_SEC_DP_TZ_HV_HLOS_HDCP_SHA_DATA, \
DP_HDCP_SHA_STATUS, 0, 0, DP_HDCP_RCVPORT_DATA2_0, \ DP_HDCP_SHA_STATUS, 0, 0, DP_HDCP_RCVPORT_DATA2_0, \
DP_HDCP_RCVPORT_DATA3, DP_HDCP_RCVPORT_DATA4, \ DP_HDCP_RCVPORT_DATA3, DP_HDCP_RCVPORT_DATA4, \
DP_HDCP_RCVPORT_DATA5, DP_HDCP_RCVPORT_DATA6, \ DP_HDCP_RCVPORT_DATA5, DP_HDCP_RCVPORT_DATA6, \
@ -195,21 +202,21 @@ struct hdcp_reg_set {
HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA10, \ HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA10, \
HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA11, \ HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA11, \
HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA12, \ HDCP_SEC_DP_TZ_HV_HLOS_HDCP_RCVPORT_DATA12, \
DP_SW_RESET, BIT(1)} DP_SW_RESET, BIT(1), BIT(1)}
#define HDCP_HDMI_SINK_ADDR_MAP \ #define HDCP_HDMI_SINK_ADDR_MAP \
{{"bcaps", 0x40, 1}, {"bksv", 0x00, 5}, {"r0'", 0x08, 2}, \ {{"bcaps", 0x40, 1}, {"bksv", 0x00, 5}, {"r0'", 0x08, 2}, \
{"bstatus", 0x41, 2}, {"ksv-fifo", 0x43, 0}, {"v_h0", 0x20, 4}, \ {"bstatus", 0x41, 2}, {"??", 0x0, 0}, {"ksv-fifo", 0x43, 0}, \
{"v_h1", 0x24, 4}, {"v_h2", 0x28, 4}, {"v_h3", 0x2c, 4}, \ {"v_h0", 0x20, 4}, {"v_h1", 0x24, 4}, {"v_h2", 0x28, 4}, \
{"v_h4", 0x30, 4}, {"an", 0x18, 8}, {"aksv", 0x10, 5}, \ {"v_h3", 0x2c, 4}, {"v_h4", 0x30, 4}, {"an", 0x18, 8}, \
{"repeater", 0x00, 0} } {"aksv", 0x10, 5} }
#define HDCP_DP_SINK_ADDR_MAP \ #define HDCP_DP_SINK_ADDR_MAP \
{{"bcaps", 0x68028, 1}, {"bksv", 0x68000, 5}, {"r0'", 0x68005, 2}, \ {{"bcaps", 0x68028, 1}, {"bksv", 0x68000, 5}, {"r0'", 0x68005, 2}, \
{"bstatus", 0x6802A, 2}, {"ksv-fifo", 0x6802A, 0}, \ {"binfo", 0x6802A, 2}, {"cp_irq_status", 0x68029, 2}, \
{"v_h0", 0x68014, 4}, {"v_h1", 0x68018, 4}, {"v_h2", 0x6801C, 4}, \ {"ksv-fifo", 0x6802C, 0}, {"v_h0", 0x68014, 4}, {"v_h1", 0x68018, 4}, \
{"v_h3", 0x68020, 4}, {"v_h4", 0x68024, 4}, {"an", 0x6800C, 8}, \ {"v_h2", 0x6801C, 4}, {"v_h3", 0x68020, 4}, {"v_h4", 0x68024, 4}, \
{"aksv", 0x68007, 5}, {"repeater", 0x68028, 1} } {"an", 0x6800C, 8}, {"aksv", 0x68007, 5} }
#define HDCP_HDMI_INT_SET \ #define HDCP_HDMI_INT_SET \
{HDMI_HDCP_INT_CTRL, \ {HDMI_HDCP_INT_CTRL, \
@ -227,17 +234,21 @@ struct hdcp_1x_ctrl {
u32 auth_retries; u32 auth_retries;
u32 tp_msgid; u32 tp_msgid;
u32 tz_hdcp; u32 tz_hdcp;
bool sink_r0_ready;
enum hdcp_states hdcp_state; enum hdcp_states hdcp_state;
struct HDCP_V2V1_MSG_TOPOLOGY cached_tp; struct HDCP_V2V1_MSG_TOPOLOGY cached_tp;
struct HDCP_V2V1_MSG_TOPOLOGY current_tp; struct HDCP_V2V1_MSG_TOPOLOGY current_tp;
struct delayed_work hdcp_auth_work; struct delayed_work hdcp_auth_work;
struct work_struct hdcp_int_work; struct work_struct hdcp_int_work;
struct completion r0_checked; struct completion r0_checked;
struct completion sink_r0_available;
struct completion sink_rep_ready;
struct hdcp_init_data init_data; struct hdcp_init_data init_data;
struct hdcp_ops *ops; struct hdcp_ops *ops;
struct hdcp_reg_set reg_set; struct hdcp_reg_set reg_set;
struct hdcp_int_set int_set; struct hdcp_int_set int_set;
struct hdcp_sink_addr_map sink_addr; struct hdcp_sink_addr_map sink_addr;
struct workqueue_struct *workq;
}; };
const char *hdcp_state_name(enum hdcp_states hdcp_state) const char *hdcp_state_name(enum hdcp_states hdcp_state)
@ -527,6 +538,7 @@ static int hdcp_1x_read(struct hdcp_1x_ctrl *hdcp_ctrl,
u8 *buf, bool realign) u8 *buf, bool realign)
{ {
u32 rc = 0; u32 rc = 0;
int const max_size = 15, edid_read_delay_us = 20;
struct hdmi_tx_ddc_data ddc_data; struct hdmi_tx_ddc_data ddc_data;
if (hdcp_ctrl->init_data.client_id == HDCP_CLIENT_HDMI) { if (hdcp_ctrl->init_data.client_id == HDCP_CLIENT_HDMI) {
@ -550,17 +562,30 @@ static int hdcp_1x_read(struct hdcp_1x_ctrl *hdcp_ctrl,
HDCP_STATE_NAME, sink->name); HDCP_STATE_NAME, sink->name);
} else if (IS_ENABLED(CONFIG_FB_MSM_MDSS_DP_PANEL) && } else if (IS_ENABLED(CONFIG_FB_MSM_MDSS_DP_PANEL) &&
hdcp_ctrl->init_data.client_id == HDCP_CLIENT_DP) { hdcp_ctrl->init_data.client_id == HDCP_CLIENT_DP) {
struct edp_cmd cmd = {0}; int size = sink->len;
cmd.read = 1; do {
cmd.addr = sink->addr; struct edp_cmd cmd = {0};
cmd.out_buf = buf; int read_size;
cmd.len = sink->len;
rc = dp_aux_read(hdcp_ctrl->init_data.cb_data, &cmd); read_size = min(size, max_size);
if (rc)
DEV_ERR("%s: %s: %s read failed\n", __func__, cmd.read = 1;
HDCP_STATE_NAME, sink->name); cmd.addr = sink->addr;
cmd.len = read_size;
cmd.out_buf = buf;
rc = dp_aux_read(hdcp_ctrl->init_data.cb_data, &cmd);
if (rc) {
pr_err("Aux read failed\n");
break;
}
/* give sink/repeater time to ready edid */
msleep(edid_read_delay_us);
buf += read_size;
size -= read_size;
} while (size > 0);
} }
return rc; return rc;
@ -621,12 +646,13 @@ static void hdcp_1x_enable_interrupts(struct hdcp_1x_ctrl *hdcp_ctrl)
static int hdcp_1x_authentication_part1(struct hdcp_1x_ctrl *hdcp_ctrl) static int hdcp_1x_authentication_part1(struct hdcp_1x_ctrl *hdcp_ctrl)
{ {
int rc; int rc, r0_retry = 3;
u32 const r0_read_delay_us = 1;
u32 const r0_read_timeout_us = r0_read_delay_us * 10;
u32 link0_aksv_0, link0_aksv_1; u32 link0_aksv_0, link0_aksv_1;
u32 link0_bksv_0, link0_bksv_1; u32 link0_bksv_0, link0_bksv_1;
u32 link0_an_0, link0_an_1; u32 link0_an_0, link0_an_1;
u32 timeout_count; u32 timeout_count;
bool is_match;
struct dss_io_data *io; struct dss_io_data *io;
struct dss_io_data *hdcp_io; struct dss_io_data *hdcp_io;
struct hdcp_reg_set *reg_set; struct hdcp_reg_set *reg_set;
@ -669,9 +695,8 @@ static int hdcp_1x_authentication_part1(struct hdcp_1x_ctrl *hdcp_ctrl)
hdcp_1x_enable_interrupts(hdcp_ctrl); hdcp_1x_enable_interrupts(hdcp_ctrl);
/* receiver (0), repeater (1) */ hdcp_ctrl->current_tp.ds_type = bcaps & reg_set->repeater ?
hdcp_ctrl->current_tp.ds_type = DS_REPEATER : DS_RECEIVER;
(bcaps & BIT(6)) >> 6 ? DS_REPEATER : DS_RECEIVER;
/* Write BCAPS to the hardware */ /* Write BCAPS to the hardware */
if (hdcp_ctrl->tz_hdcp) { if (hdcp_ctrl->tz_hdcp) {
@ -757,18 +782,6 @@ static int hdcp_1x_authentication_part1(struct hdcp_1x_ctrl *hdcp_ctrl)
an[6] = (link0_an_1 >> 16) & 0xFF; an[6] = (link0_an_1 >> 16) & 0xFF;
an[7] = (link0_an_1 >> 24) & 0xFF; an[7] = (link0_an_1 >> 24) & 0xFF;
rc = hdcp_1x_write(hdcp_ctrl, &hdcp_ctrl->sink_addr.an, an);
if (IS_ERR_VALUE(rc)) {
DEV_ERR("%s: error writing an to sink\n", __func__);
goto error;
}
rc = hdcp_1x_write(hdcp_ctrl, &hdcp_ctrl->sink_addr.aksv, aksv);
if (IS_ERR_VALUE(rc)) {
DEV_ERR("%s: error writing aksv to sink\n", __func__);
goto error;
}
rc = hdcp_1x_read(hdcp_ctrl, &hdcp_ctrl->sink_addr.bksv, bksv, false); rc = hdcp_1x_read(hdcp_ctrl, &hdcp_ctrl->sink_addr.bksv, bksv, false);
if (IS_ERR_VALUE(rc)) { if (IS_ERR_VALUE(rc)) {
DEV_ERR("%s: error reading bksv from sink\n", __func__); DEV_ERR("%s: error reading bksv from sink\n", __func__);
@ -818,12 +831,6 @@ static int hdcp_1x_authentication_part1(struct hdcp_1x_ctrl *hdcp_ctrl)
DSS_REG_W(io, reg_set->data1, link0_bksv_1); DSS_REG_W(io, reg_set->data1, link0_bksv_1);
} }
/*
* HDCP Compliace Test case 1A-01:
* Wait here at least 100ms before reading R0'
*/
msleep(125);
/* Wait for HDCP R0 computation to be completed */ /* Wait for HDCP R0 computation to be completed */
rc = readl_poll_timeout(io->base + reg_set->status, link0_status, rc = readl_poll_timeout(io->base + reg_set->status, link0_status,
link0_status & BIT(reg_set->r0_offset), link0_status & BIT(reg_set->r0_offset),
@ -833,6 +840,38 @@ static int hdcp_1x_authentication_part1(struct hdcp_1x_ctrl *hdcp_ctrl)
goto error; goto error;
} }
rc = hdcp_1x_write(hdcp_ctrl, &hdcp_ctrl->sink_addr.an, an);
if (IS_ERR_VALUE(rc)) {
DEV_ERR("%s: error writing an to sink\n", __func__);
goto error;
}
rc = hdcp_1x_write(hdcp_ctrl, &hdcp_ctrl->sink_addr.aksv, aksv);
if (IS_ERR_VALUE(rc)) {
DEV_ERR("%s: error writing aksv to sink\n", __func__);
goto error;
}
/*
* HDCP Compliace Test case 1A-01:
* Wait here at least 100ms before reading R0'
*/
if (hdcp_ctrl->init_data.client_id == HDCP_CLIENT_HDMI) {
msleep(125);
} else {
if (!hdcp_ctrl->sink_r0_ready) {
reinit_completion(&hdcp_ctrl->sink_r0_available);
timeout_count = wait_for_completion_timeout(
&hdcp_ctrl->sink_r0_available, HZ / 2);
if (!timeout_count) {
DEV_ERR("sink R0 not ready\n");
rc = -EINVAL;
goto error;
}
}
}
r0_read_retry:
memset(buf, 0, sizeof(buf)); memset(buf, 0, sizeof(buf));
rc = hdcp_1x_read(hdcp_ctrl, &hdcp_ctrl->sink_addr.r0, buf, false); rc = hdcp_1x_read(hdcp_ctrl, &hdcp_ctrl->sink_addr.r0, buf, false);
if (IS_ERR_VALUE(rc)) { if (IS_ERR_VALUE(rc)) {
@ -844,37 +883,29 @@ static int hdcp_1x_authentication_part1(struct hdcp_1x_ctrl *hdcp_ctrl)
buf[1], buf[0]); buf[1], buf[0]);
/* Write R0' to HDCP registers and check to see if it is a match */ /* Write R0' to HDCP registers and check to see if it is a match */
reinit_completion(&hdcp_ctrl->r0_checked);
DSS_REG_W(io, reg_set->data2_0, (((u32)buf[1]) << 8) | buf[0]); DSS_REG_W(io, reg_set->data2_0, (((u32)buf[1]) << 8) | buf[0]);
timeout_count = wait_for_completion_timeout( rc = readl_poll_timeout(io->base + reg_set->status, link0_status,
&hdcp_ctrl->r0_checked, HZ*2); link0_status & BIT(12),
link0_status = DSS_REG_R(io, reg_set->status); r0_read_delay_us, r0_read_timeout_us);
is_match = link0_status & BIT(12); if (IS_ERR_VALUE(rc)) {
if (!is_match) { DEV_ERR("%s: R0 mismatch\n", __func__);
DEV_DBG("%s: %s: Link0_Status=0x%08x\n", __func__, if (--r0_retry)
HDCP_STATE_NAME, link0_status); goto r0_read_retry;
if (!timeout_count) {
DEV_ERR("%s: %s: Timeout. No R0 mtch. R0'=%02x%02x\n", goto error;
__func__, HDCP_STATE_NAME, buf[1], buf[0]);
rc = -ETIMEDOUT;
goto error;
} else {
DEV_ERR("%s: %s: R0 mismatch. R0'=%02x%02x\n", __func__,
HDCP_STATE_NAME, buf[1], buf[0]);
rc = -EINVAL;
goto error;
}
} else {
DEV_DBG("%s: %s: R0 matches\n", __func__, HDCP_STATE_NAME);
} }
hdcp1_set_enc(true);
DEV_INFO("%s: %s: Authentication Part I successful\n", __func__,
hdcp_ctrl ? HDCP_STATE_NAME : "???");
return 0;
error: error:
if (rc) DEV_ERR("%s: %s: Authentication Part I failed\n", __func__,
DEV_ERR("%s: %s: Authentication Part I failed\n", __func__, hdcp_ctrl ? HDCP_STATE_NAME : "???");
hdcp_ctrl ? HDCP_STATE_NAME : "???");
else
DEV_INFO("%s: %s: Authentication Part I successful\n",
__func__, HDCP_STATE_NAME);
return rc; return rc;
} /* hdcp_1x_authentication_part1 */ } /* hdcp_1x_authentication_part1 */
@ -895,10 +926,6 @@ static int hdcp_1x_set_v_h(struct hdcp_1x_ctrl *hdcp_ctrl,
goto end; goto end;
} }
DEV_DBG("%s: %s: %s: buf[0]=%x, buf[1]=%x, buf[2]=%x, buf[3]=%x\n",
__func__, HDCP_STATE_NAME, rd->sink->name, buf[0], buf[1],
buf[2], buf[3]);
if (!hdcp_ctrl->tz_hdcp) if (!hdcp_ctrl->tz_hdcp)
DSS_REG_W(io, rd->reg_id, DSS_REG_W(io, rd->reg_id,
(buf[3] << 24 | buf[2] << 16 | buf[1] << 8 | buf[0])); (buf[3] << 24 | buf[2] << 16 | buf[1] << 8 | buf[0]));
@ -971,6 +998,7 @@ static int hdcp_1x_authentication_part2(struct hdcp_1x_ctrl *hdcp_ctrl)
u32 ret = 0; u32 ret = 0;
u32 resp = 0; u32 resp = 0;
u32 ksv_read_retry = 20; u32 ksv_read_retry = 20;
int v_retry = 3;
if (!hdcp_ctrl || !hdcp_ctrl->init_data.core_io) { if (!hdcp_ctrl || !hdcp_ctrl->init_data.core_io) {
DEV_ERR("%s: invalid input\n", __func__); DEV_ERR("%s: invalid input\n", __func__);
@ -999,16 +1027,35 @@ static int hdcp_1x_authentication_part2(struct hdcp_1x_ctrl *hdcp_ctrl)
* Wait until READY bit is set in BCAPS, as per HDCP specifications * Wait until READY bit is set in BCAPS, as per HDCP specifications
* maximum permitted time to check for READY bit is five seconds. * maximum permitted time to check for READY bit is five seconds.
*/ */
timeout_count = 50; rc = hdcp_1x_read(hdcp_ctrl, &hdcp_ctrl->sink_addr.bcaps, &bcaps, true);
do { if (IS_ERR_VALUE(rc)) {
rc = hdcp_1x_read(hdcp_ctrl, &hdcp_ctrl->sink_addr.bcaps, DEV_ERR("%s: error reading bcaps\n", __func__);
&bcaps, true); goto error;
if (IS_ERR_VALUE(rc)) { }
DEV_ERR("%s: error reading bcaps\n", __func__);
if (hdcp_ctrl->init_data.client_id == HDCP_CLIENT_HDMI) {
timeout_count = 50;
while (!(bcaps & BIT(5)) && --timeout_count) {
rc = hdcp_1x_read(hdcp_ctrl,
&hdcp_ctrl->sink_addr.bcaps, &bcaps, true);
if (IS_ERR_VALUE(rc)) {
DEV_ERR("%s: error reading bcaps\n", __func__);
goto error;
}
msleep(100);
}
} else {
reinit_completion(&hdcp_ctrl->sink_rep_ready);
timeout_count = wait_for_completion_timeout(
&hdcp_ctrl->sink_rep_ready, HZ * 5);
if (!timeout_count) {
DEV_ERR("sink not ready with DS KSV list\n");
rc = -EINVAL;
goto error; goto error;
} }
msleep(100); }
} while (!(bcaps & BIT(5)) && --timeout_count);
rc = hdcp_1x_read(hdcp_ctrl, &hdcp_ctrl->sink_addr.bstatus, rc = hdcp_1x_read(hdcp_ctrl, &hdcp_ctrl->sink_addr.bstatus,
buf, true); buf, true);
@ -1043,20 +1090,12 @@ static int hdcp_1x_authentication_part2(struct hdcp_1x_ctrl *hdcp_ctrl)
} }
down_stream_devices = bstatus & 0x7F; down_stream_devices = bstatus & 0x7F;
if (down_stream_devices == 0) {
/* DEV_DBG("%s: DEVICE_COUNT %d\n", __func__, down_stream_devices);
* If no downstream devices are attached to the repeater
* then part II fails.
* todo: The other approach would be to continue PART II.
*/
DEV_ERR("%s: %s: No downstream devices\n", __func__,
HDCP_STATE_NAME);
rc = -EINVAL;
goto error;
}
/* Cascaded repeater depth */ /* Cascaded repeater depth */
repeater_cascade_depth = (bstatus >> 8) & 0x7; repeater_cascade_depth = (bstatus >> 8) & 0x7;
DEV_DBG("%s: DEPTH %d\n", __func__, repeater_cascade_depth);
/* /*
* HDCP Compliance 1B-05: * HDCP Compliance 1B-05:
@ -1064,6 +1103,7 @@ static int hdcp_1x_authentication_part2(struct hdcp_1x_ctrl *hdcp_ctrl)
* exceed max_devices_connected from bit 7 of Bstatus. * exceed max_devices_connected from bit 7 of Bstatus.
*/ */
max_devs_exceeded = (bstatus & BIT(7)) >> 7; max_devs_exceeded = (bstatus & BIT(7)) >> 7;
DEV_DBG("%s: MAX_DEVS_EXCEEDED %d\n", __func__, max_devs_exceeded);
if (max_devs_exceeded == 0x01) { if (max_devs_exceeded == 0x01) {
DEV_ERR("%s: %s: no. of devs connected exceeds max allowed", DEV_ERR("%s: %s: no. of devs connected exceeds max allowed",
__func__, HDCP_STATE_NAME); __func__, HDCP_STATE_NAME);
@ -1077,6 +1117,8 @@ static int hdcp_1x_authentication_part2(struct hdcp_1x_ctrl *hdcp_ctrl)
* exceed max_cascade_connected from bit 11 of Bstatus. * exceed max_cascade_connected from bit 11 of Bstatus.
*/ */
max_cascade_exceeded = (bstatus & BIT(11)) >> 11; max_cascade_exceeded = (bstatus & BIT(11)) >> 11;
DEV_DBG("%s: MAX CASCADE_EXCEEDED %d\n", __func__,
max_cascade_exceeded);
if (max_cascade_exceeded == 0x01) { if (max_cascade_exceeded == 0x01) {
DEV_ERR("%s: %s: no. of cascade conn exceeds max allowed", DEV_ERR("%s: %s: no. of cascade conn exceeds max allowed",
__func__, HDCP_STATE_NAME); __func__, HDCP_STATE_NAME);
@ -1096,7 +1138,7 @@ static int hdcp_1x_authentication_part2(struct hdcp_1x_ctrl *hdcp_ctrl)
ksv_bytes = 5 * down_stream_devices; ksv_bytes = 5 * down_stream_devices;
hdcp_ctrl->sink_addr.ksv_fifo.len = ksv_bytes; hdcp_ctrl->sink_addr.ksv_fifo.len = ksv_bytes;
do { while (ksv_bytes && --ksv_read_retry) {
rc = hdcp_1x_read(hdcp_ctrl, &hdcp_ctrl->sink_addr.ksv_fifo, rc = hdcp_1x_read(hdcp_ctrl, &hdcp_ctrl->sink_addr.ksv_fifo,
ksv_fifo, false); ksv_fifo, false);
if (IS_ERR_VALUE(rc)) { if (IS_ERR_VALUE(rc)) {
@ -1108,19 +1150,24 @@ static int hdcp_1x_authentication_part2(struct hdcp_1x_ctrl *hdcp_ctrl)
* read from the KSV FIFO register. * read from the KSV FIFO register.
*/ */
msleep(25); msleep(25);
} else {
break;
} }
} while (rc && --ksv_read_retry); }
if (rc) { if (rc) {
DEV_ERR("%s: error reading ksv_fifo\n", __func__); DEV_ERR("%s: error reading ksv_fifo\n", __func__);
goto error; goto error;
} }
v_read_retry:
rc = hdcp_1x_transfer_v_h(hdcp_ctrl); rc = hdcp_1x_transfer_v_h(hdcp_ctrl);
if (rc) if (rc)
goto error; goto error;
/* do not proceed further if no downstream device connected */
if (!ksv_bytes)
goto error;
/* /*
* Write KSV FIFO to HDCP_SHA_DATA. * Write KSV FIFO to HDCP_SHA_DATA.
* This is done 1 byte at time starting with the LSB. * This is done 1 byte at time starting with the LSB.
@ -1161,7 +1208,7 @@ static int hdcp_1x_authentication_part2(struct hdcp_1x_ctrl *hdcp_ctrl)
if (hdcp_ctrl->tz_hdcp) { if (hdcp_ctrl->tz_hdcp) {
memset(scm_buf, 0x00, sizeof(scm_buf)); memset(scm_buf, 0x00, sizeof(scm_buf));
scm_buf[0].addr = phy_addr + reg_set->sha_ctrl; scm_buf[0].addr = phy_addr + reg_set->sha_data;
scm_buf[0].val = ksv_fifo[i] << 16; scm_buf[0].val = ksv_fifo[i] << 16;
ret = hdcp_scm_call(scm_buf, &resp); ret = hdcp_scm_call(scm_buf, &resp);
@ -1173,10 +1220,10 @@ static int hdcp_1x_authentication_part2(struct hdcp_1x_ctrl *hdcp_ctrl)
} }
} else if (hdcp_ctrl->init_data.sec_access) { } else if (hdcp_ctrl->init_data.sec_access) {
DSS_REG_W_ND(hdcp_ctrl->init_data.hdcp_io, DSS_REG_W_ND(hdcp_ctrl->init_data.hdcp_io,
reg_set->sec_sha_ctrl, reg_set->sec_sha_data,
ksv_fifo[i] << 16); ksv_fifo[i] << 16);
} else { } else {
DSS_REG_W_ND(io, reg_set->sha_ctrl, ksv_fifo[i] << 16); DSS_REG_W_ND(io, reg_set->sha_data, ksv_fifo[i] << 16);
} }
/* /*
@ -1199,7 +1246,7 @@ static int hdcp_1x_authentication_part2(struct hdcp_1x_ctrl *hdcp_ctrl)
if (hdcp_ctrl->tz_hdcp) { if (hdcp_ctrl->tz_hdcp) {
memset(scm_buf, 0x00, sizeof(scm_buf)); memset(scm_buf, 0x00, sizeof(scm_buf));
scm_buf[0].addr = phy_addr + reg_set->sha_ctrl; scm_buf[0].addr = phy_addr + reg_set->sha_data;
scm_buf[0].val = (ksv_fifo[ksv_bytes - 1] << 16) | 0x1; scm_buf[0].val = (ksv_fifo[ksv_bytes - 1] << 16) | 0x1;
ret = hdcp_scm_call(scm_buf, &resp); ret = hdcp_scm_call(scm_buf, &resp);
@ -1211,10 +1258,10 @@ static int hdcp_1x_authentication_part2(struct hdcp_1x_ctrl *hdcp_ctrl)
} }
} else if (hdcp_ctrl->init_data.sec_access) { } else if (hdcp_ctrl->init_data.sec_access) {
DSS_REG_W_ND(hdcp_ctrl->init_data.hdcp_io, DSS_REG_W_ND(hdcp_ctrl->init_data.hdcp_io,
reg_set->sec_sha_ctrl, reg_set->sec_sha_data,
(ksv_fifo[ksv_bytes - 1] << 16) | 0x1); (ksv_fifo[ksv_bytes - 1] << 16) | 0x1);
} else { } else {
DSS_REG_W_ND(io, reg_set->sha_ctrl, DSS_REG_W_ND(io, reg_set->sha_data,
(ksv_fifo[ksv_bytes - 1] << 16) | 0x1); (ksv_fifo[ksv_bytes - 1] << 16) | 0x1);
} }
@ -1223,7 +1270,7 @@ static int hdcp_1x_authentication_part2(struct hdcp_1x_ctrl *hdcp_ctrl)
sha_status & BIT(4), sha_status & BIT(4),
HDCP_POLL_SLEEP_US, HDCP_POLL_TIMEOUT_US); HDCP_POLL_SLEEP_US, HDCP_POLL_TIMEOUT_US);
if (IS_ERR_VALUE(rc)) { if (IS_ERR_VALUE(rc)) {
DEV_ERR("%s: comp not done\n", __func__); DEV_ERR("%s: V computation not done\n", __func__);
goto error; goto error;
} }
@ -1232,8 +1279,9 @@ static int hdcp_1x_authentication_part2(struct hdcp_1x_ctrl *hdcp_ctrl)
status & BIT(reg_set->v_offset), status & BIT(reg_set->v_offset),
HDCP_POLL_SLEEP_US, HDCP_POLL_TIMEOUT_US); HDCP_POLL_SLEEP_US, HDCP_POLL_TIMEOUT_US);
if (IS_ERR_VALUE(rc)) { if (IS_ERR_VALUE(rc)) {
DEV_ERR("%s: V not ready\n", __func__); DEV_ERR("%s: V mismatch\n", __func__);
goto error; if (--v_retry)
goto v_read_retry;
} }
error: error:
if (rc) if (rc)
@ -1330,6 +1378,8 @@ static void hdcp_1x_auth_work(struct work_struct *work)
return; return;
} }
hdcp_ctrl->sink_r0_ready = false;
io = hdcp_ctrl->init_data.core_io; io = hdcp_ctrl->init_data.core_io;
/* Enabling Software DDC for HDMI and REF timer for DP */ /* Enabling Software DDC for HDMI and REF timer for DP */
if (hdcp_ctrl->init_data.client_id == HDCP_CLIENT_HDMI) if (hdcp_ctrl->init_data.client_id == HDCP_CLIENT_HDMI)
@ -1388,8 +1438,6 @@ error:
hdcp_ctrl->init_data.cb_data, hdcp_ctrl->init_data.cb_data,
hdcp_ctrl->hdcp_state); hdcp_ctrl->hdcp_state);
} }
hdcp1_set_enc(true);
} else { } else {
DEV_DBG("%s: %s: HDCP state changed during authentication\n", DEV_DBG("%s: %s: HDCP state changed during authentication\n",
__func__, HDCP_STATE_NAME); __func__, HDCP_STATE_NAME);
@ -1419,12 +1467,12 @@ int hdcp_1x_authenticate(void *input)
if (!hdcp_1x_load_keys(input)) { if (!hdcp_1x_load_keys(input)) {
flush_delayed_work(&hdcp_ctrl->hdcp_auth_work); flush_delayed_work(&hdcp_ctrl->hdcp_auth_work);
queue_delayed_work(hdcp_ctrl->init_data.workq, queue_delayed_work(hdcp_ctrl->workq,
&hdcp_ctrl->hdcp_auth_work, HZ/2); &hdcp_ctrl->hdcp_auth_work, HZ/2);
} else { } else {
flush_work(&hdcp_ctrl->hdcp_int_work); flush_work(&hdcp_ctrl->hdcp_int_work);
queue_work(hdcp_ctrl->init_data.workq, queue_work(hdcp_ctrl->workq,
&hdcp_ctrl->hdcp_int_work); &hdcp_ctrl->hdcp_int_work);
} }
@ -1478,10 +1526,10 @@ int hdcp_1x_reauthenticate(void *input)
DSS_REG_W(io, reg_set->reset, reg & ~reg_set->reset_bit); DSS_REG_W(io, reg_set->reset, reg & ~reg_set->reset_bit);
if (!hdcp_1x_load_keys(input)) if (!hdcp_1x_load_keys(input))
queue_delayed_work(hdcp_ctrl->init_data.workq, queue_delayed_work(hdcp_ctrl->workq,
&hdcp_ctrl->hdcp_auth_work, HZ); &hdcp_ctrl->hdcp_auth_work, HZ);
else else
queue_work(hdcp_ctrl->init_data.workq, queue_work(hdcp_ctrl->workq,
&hdcp_ctrl->hdcp_int_work); &hdcp_ctrl->hdcp_int_work);
return ret; return ret;
@ -1531,7 +1579,7 @@ void hdcp_1x_off(void *input)
* No more reauthentiaction attempts will be scheduled since we * No more reauthentiaction attempts will be scheduled since we
* set the currect state to inactive. * set the currect state to inactive.
*/ */
rc = cancel_delayed_work_sync(&hdcp_ctrl->hdcp_auth_work); rc = cancel_delayed_work(&hdcp_ctrl->hdcp_auth_work);
if (rc) if (rc)
DEV_DBG("%s: %s: Deleted hdcp auth work\n", __func__, DEV_DBG("%s: %s: Deleted hdcp auth work\n", __func__,
HDCP_STATE_NAME); HDCP_STATE_NAME);
@ -1549,6 +1597,8 @@ void hdcp_1x_off(void *input)
DSS_REG_W(io, reg_set->reset, reg & ~reg_set->reset_bit); DSS_REG_W(io, reg_set->reset, reg & ~reg_set->reset_bit);
hdcp_ctrl->sink_r0_ready = false;
DEV_DBG("%s: %s: HDCP: Off\n", __func__, HDCP_STATE_NAME); DEV_DBG("%s: %s: HDCP: Off\n", __func__, HDCP_STATE_NAME);
} /* hdcp_1x_off */ } /* hdcp_1x_off */
@ -1599,7 +1649,7 @@ int hdcp_1x_isr(void *input)
__func__, HDCP_STATE_NAME, link_status); __func__, HDCP_STATE_NAME, link_status);
if (HDCP_STATE_AUTHENTICATED == hdcp_ctrl->hdcp_state) { if (HDCP_STATE_AUTHENTICATED == hdcp_ctrl->hdcp_state) {
/* Inform HDMI Tx of the failure */ /* Inform HDMI Tx of the failure */
queue_work(hdcp_ctrl->init_data.workq, queue_work(hdcp_ctrl->workq,
&hdcp_ctrl->hdcp_int_work); &hdcp_ctrl->hdcp_int_work);
/* todo: print debug log with auth fail reason */ /* todo: print debug log with auth fail reason */
} else if (HDCP_STATE_AUTHENTICATING == hdcp_ctrl->hdcp_state) { } else if (HDCP_STATE_AUTHENTICATING == hdcp_ctrl->hdcp_state) {
@ -1785,6 +1835,9 @@ void hdcp_1x_deinit(void *input)
return; return;
} }
if (hdcp_ctrl->workq)
destroy_workqueue(hdcp_ctrl->workq);
sysfs_remove_group(hdcp_ctrl->init_data.sysfs_kobj, sysfs_remove_group(hdcp_ctrl->init_data.sysfs_kobj,
&hdcp_1x_fs_attr_group); &hdcp_1x_fs_attr_group);
@ -1812,12 +1865,61 @@ static void hdcp_1x_update_client_reg_set(struct hdcp_1x_ctrl *hdcp_ctrl)
} }
} }
static int hdcp_1x_cp_irq(void *input)
{
struct hdcp_1x_ctrl *hdcp_ctrl = (struct hdcp_1x_ctrl *)input;
u8 buf = 0;
int ret = -EINVAL;
if (!hdcp_ctrl) {
DEV_ERR("%s: invalid input\n", __func__);
goto end;
}
ret = hdcp_1x_read(hdcp_ctrl, &hdcp_ctrl->sink_addr.cp_irq_status,
&buf, false);
if (IS_ERR_VALUE(ret)) {
DEV_ERR("%s: error reading cp_irq_status\n", __func__);
goto end;
}
if (!buf) {
DEV_DBG("%s: not a hdcp 1.x irq\n", __func__);
ret = -EINVAL;
goto end;
}
if ((buf & BIT(2)) || (buf & BIT(3))) {
DEV_ERR("%s: REAUTH REQUIRED\n", __func__);
queue_work(hdcp_ctrl->workq, &hdcp_ctrl->hdcp_int_work);
goto end;
}
if (buf & BIT(1)) {
DEV_DBG("%s: R0' AVAILABLE\n", __func__);
hdcp_ctrl->sink_r0_ready = true;
complete_all(&hdcp_ctrl->sink_r0_available);
goto end;
}
if (buf & BIT(0)) {
DEV_DBG("%s: KSVs READY\n", __func__);
complete_all(&hdcp_ctrl->sink_rep_ready);
goto end;
}
end:
return ret;
}
void *hdcp_1x_init(struct hdcp_init_data *init_data) void *hdcp_1x_init(struct hdcp_init_data *init_data)
{ {
struct hdcp_1x_ctrl *hdcp_ctrl = NULL; struct hdcp_1x_ctrl *hdcp_ctrl = NULL;
char name[20];
int ret; int ret;
static struct hdcp_ops ops = { static struct hdcp_ops ops = {
.isr = hdcp_1x_isr, .isr = hdcp_1x_isr,
.cp_irq = hdcp_1x_cp_irq,
.reauthenticate = hdcp_1x_reauthenticate, .reauthenticate = hdcp_1x_reauthenticate,
.authenticate = hdcp_1x_authenticate, .authenticate = hdcp_1x_authenticate,
.off = hdcp_1x_off .off = hdcp_1x_off
@ -1844,6 +1946,15 @@ void *hdcp_1x_init(struct hdcp_init_data *init_data)
hdcp_ctrl->init_data = *init_data; hdcp_ctrl->init_data = *init_data;
hdcp_ctrl->ops = &ops; hdcp_ctrl->ops = &ops;
snprintf(name, sizeof(name), "hdcp_1x_%d",
hdcp_ctrl->init_data.client_id);
hdcp_ctrl->workq = create_workqueue(name);
if (!hdcp_ctrl->workq) {
DEV_ERR("%s: Error creating workqueue\n", __func__);
goto error;
}
hdcp_1x_update_client_reg_set(hdcp_ctrl); hdcp_1x_update_client_reg_set(hdcp_ctrl);
if (sysfs_create_group(init_data->sysfs_kobj, if (sysfs_create_group(init_data->sysfs_kobj,
@ -1857,6 +1968,8 @@ void *hdcp_1x_init(struct hdcp_init_data *init_data)
hdcp_ctrl->hdcp_state = HDCP_STATE_INACTIVE; hdcp_ctrl->hdcp_state = HDCP_STATE_INACTIVE;
init_completion(&hdcp_ctrl->r0_checked); init_completion(&hdcp_ctrl->r0_checked);
init_completion(&hdcp_ctrl->sink_r0_available);
init_completion(&hdcp_ctrl->sink_rep_ready);
if (!hdcp_ctrl->init_data.sec_access) { if (!hdcp_ctrl->init_data.sec_access) {
ret = scm_is_call_available(SCM_SVC_HDCP, SCM_CMD_HDCP); ret = scm_is_call_available(SCM_SVC_HDCP, SCM_CMD_HDCP);