ext4 crypto: enable HW based encryption with ICE

Numerous changes were introduced to various layers:
Block: removed dependency on selinux module for decision on bio merge
EXT4: Added feature controlled support for HW encryption
PFK: Major re-factoring, separation to eCryptfs and EXT4 sub-layers

Change-Id: I9256c8736e1c16175fe3f94733dda430ccc57980
Signed-off-by: Andrey Markovytch <andreym@codeaurora.org>
This commit is contained in:
Andrey Markovytch 2016-09-13 18:45:47 +03:00 committed by Gerrit - the friendly Code Review server
parent 9b82a4c589
commit a8059e6d39
29 changed files with 1532 additions and 644 deletions

View file

@ -6,7 +6,8 @@
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/scatterlist.h>
#include <linux/security.h>
#include <linux/pfk.h>
#include <linux/pft.h>
#include "blk.h"
@ -729,6 +730,12 @@ static void blk_account_io_merge(struct request *req)
}
}
static bool crypto_not_mergeable(const struct bio *bio, const struct bio *nxt)
{
return (!pft_allow_merge_bio(bio, nxt) ||
!pfk_allow_merge_bio(bio, nxt));
}
/*
* Has to be called with the request spinlock acquired
*/
@ -756,6 +763,9 @@ static int attempt_merge(struct request_queue *q, struct request *req,
!blk_write_same_mergeable(req->bio, next->bio))
return 0;
if (crypto_not_mergeable(req->bio, next->bio))
return 0;
/*
* If we are allowed to merge, then append bio list
* from next to rq and release next. merge_requests_fn
@ -860,11 +870,9 @@ bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
!blk_write_same_mergeable(rq->bio, bio))
return false;
/* Don't merge bios of files with different encryption */
if (!security_allow_merge_bio(rq->bio, bio))
if (crypto_not_mergeable(rq->bio, bio))
return false;
return true;
}

View file

@ -117,10 +117,16 @@ config EXT4_ENCRYPTION
decrypted pages in the page cache.
config EXT4_FS_ENCRYPTION
bool
default y
bool "Ext4 FS Encryption"
default n
depends on EXT4_ENCRYPTION
config EXT4_FS_ICE_ENCRYPTION
bool "Ext4 Encryption with ICE support"
default n
depends on EXT4_FS_ENCRYPTION
depends on PFK
config EXT4_DEBUG
bool "EXT4 debugging support"
depends on EXT4_FS

View file

@ -14,3 +14,5 @@ ext4-$(CONFIG_EXT4_FS_POSIX_ACL) += acl.o
ext4-$(CONFIG_EXT4_FS_SECURITY) += xattr_security.o
ext4-$(CONFIG_EXT4_FS_ENCRYPTION) += crypto_policy.o crypto.o \
crypto_key.o crypto_fname.o
ext4-$(CONFIG_EXT4_FS_ICE_ENCRYPTION) += ext4_ice.o

View file

@ -458,7 +458,8 @@ errout:
bool ext4_valid_contents_enc_mode(uint32_t mode)
{
return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS ||
mode == EXT4_ENCRYPTION_MODE_PRIVATE);
}
/**

View file

@ -15,6 +15,7 @@
#include <uapi/linux/keyctl.h>
#include "ext4.h"
#include "ext4_ice.h"
#include "xattr.h"
static void derive_crypt_complete(struct crypto_async_request *req, int rc)
@ -111,6 +112,12 @@ void ext4_free_encryption_info(struct inode *inode,
ext4_free_crypt_info(ci);
}
static int ext4_default_data_encryption_mode(void)
{
return ext4_is_ice_enabled() ? EXT4_ENCRYPTION_MODE_PRIVATE :
EXT4_ENCRYPTION_MODE_AES_256_XTS;
}
int _ext4_get_encryption_info(struct inode *inode)
{
struct ext4_inode_info *ei = EXT4_I(inode);
@ -124,8 +131,8 @@ int _ext4_get_encryption_info(struct inode *inode)
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct crypto_ablkcipher *ctfm;
const char *cipher_str;
char raw_key[EXT4_MAX_KEY_SIZE];
char mode;
int for_fname = 0;
int mode;
int res;
if (!ext4_read_workqueue) {
@ -150,7 +157,8 @@ retry:
if (res < 0) {
if (!DUMMY_ENCRYPTION_ENABLED(sbi))
return res;
ctx.contents_encryption_mode = EXT4_ENCRYPTION_MODE_AES_256_XTS;
ctx.contents_encryption_mode =
ext4_default_data_encryption_mode();
ctx.filenames_encryption_mode =
EXT4_ENCRYPTION_MODE_AES_256_CTS;
ctx.flags = 0;
@ -169,12 +177,12 @@ retry:
crypt_info->ci_keyring_key = NULL;
memcpy(crypt_info->ci_master_key, ctx.master_key_descriptor,
sizeof(crypt_info->ci_master_key));
if (S_ISREG(inode->i_mode))
mode = crypt_info->ci_data_mode;
else if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
mode = crypt_info->ci_filename_mode;
else
if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
for_fname = 1;
else if (!S_ISREG(inode->i_mode))
BUG();
mode = for_fname ? crypt_info->ci_filename_mode :
crypt_info->ci_data_mode;
switch (mode) {
case EXT4_ENCRYPTION_MODE_AES_256_XTS:
cipher_str = "xts(aes)";
@ -182,6 +190,9 @@ retry:
case EXT4_ENCRYPTION_MODE_AES_256_CTS:
cipher_str = "cts(cbc(aes))";
break;
case EXT4_ENCRYPTION_MODE_PRIVATE:
cipher_str = "bugon";
break;
default:
printk_once(KERN_WARNING
"ext4: unsupported key mode %d (ino %u)\n",
@ -190,7 +201,7 @@ retry:
goto out;
}
if (DUMMY_ENCRYPTION_ENABLED(sbi)) {
memset(raw_key, 0x42, EXT4_AES_256_XTS_KEY_SIZE);
memset(crypt_info->ci_raw_key, 0x42, EXT4_AES_256_XTS_KEY_SIZE);
goto got_key;
}
memcpy(full_key_descriptor, EXT4_KEY_DESC_PREFIX,
@ -232,28 +243,36 @@ retry:
goto out;
}
res = ext4_derive_key_aes(ctx.nonce, master_key->raw,
raw_key);
crypt_info->ci_raw_key);
up_read(&keyring_key->sem);
if (res)
goto out;
got_key:
ctfm = crypto_alloc_ablkcipher(cipher_str, 0, 0);
if (!ctfm || IS_ERR(ctfm)) {
res = ctfm ? PTR_ERR(ctfm) : -ENOMEM;
printk(KERN_DEBUG
"%s: error %d (inode %u) allocating crypto tfm\n",
__func__, res, (unsigned) inode->i_ino);
if (for_fname ||
(crypt_info->ci_data_mode != EXT4_ENCRYPTION_MODE_PRIVATE)) {
ctfm = crypto_alloc_ablkcipher(cipher_str, 0, 0);
if (!ctfm || IS_ERR(ctfm)) {
res = ctfm ? PTR_ERR(ctfm) : -ENOMEM;
pr_debug("%s: error %d (inode %u) allocating crypto tfm\n",
__func__, res, (unsigned) inode->i_ino);
goto out;
}
crypt_info->ci_ctfm = ctfm;
crypto_ablkcipher_clear_flags(ctfm, ~0);
crypto_tfm_set_flags(crypto_ablkcipher_tfm(ctfm),
CRYPTO_TFM_REQ_WEAK_KEY);
res = crypto_ablkcipher_setkey(ctfm, crypt_info->ci_raw_key,
ext4_encryption_key_size(mode));
if (res)
goto out;
memzero_explicit(crypt_info->ci_raw_key,
sizeof(crypt_info->ci_raw_key));
} else if (!ext4_is_ice_enabled()) {
pr_warn("%s: ICE support not available\n",
__func__);
res = -EINVAL;
goto out;
}
crypt_info->ci_ctfm = ctfm;
crypto_ablkcipher_clear_flags(ctfm, ~0);
crypto_tfm_set_flags(crypto_ablkcipher_tfm(ctfm),
CRYPTO_TFM_REQ_WEAK_KEY);
res = crypto_ablkcipher_setkey(ctfm, raw_key,
ext4_encryption_key_size(mode));
if (res)
goto out;
memzero_explicit(raw_key, sizeof(raw_key));
if (cmpxchg(&ei->i_crypt_info, NULL, crypt_info) != NULL) {
ext4_free_crypt_info(crypt_info);
goto retry;
@ -263,8 +282,9 @@ got_key:
out:
if (res == -ENOKEY)
res = 0;
memzero_explicit(crypt_info->ci_raw_key,
sizeof(crypt_info->ci_raw_key));
ext4_free_crypt_info(crypt_info);
memzero_explicit(raw_key, sizeof(raw_key));
return res;
}

View file

@ -588,6 +588,7 @@ enum {
#define EXT4_ENCRYPTION_MODE_AES_256_GCM 2
#define EXT4_ENCRYPTION_MODE_AES_256_CBC 3
#define EXT4_ENCRYPTION_MODE_AES_256_CTS 4
#define EXT4_ENCRYPTION_MODE_PRIVATE 127
#include "ext4_crypto.h"
@ -2328,6 +2329,19 @@ int _ext4_get_encryption_info(struct inode *inode);
#ifdef CONFIG_EXT4_FS_ENCRYPTION
int ext4_has_encryption_key(struct inode *inode);
static inline struct ext4_crypt_info *ext4_encryption_info(struct inode *inode)
{
return EXT4_I(inode)->i_crypt_info;
}
static inline int ext4_using_hardware_encryption(struct inode *inode)
{
struct ext4_crypt_info *ci = ext4_encryption_info(inode);
return S_ISREG(inode->i_mode) && ci &&
ci->ci_data_mode == EXT4_ENCRYPTION_MODE_PRIVATE;
}
static inline int ext4_get_encryption_info(struct inode *inode)
{
struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
@ -2341,11 +2355,6 @@ static inline int ext4_get_encryption_info(struct inode *inode)
return 0;
}
static inline struct ext4_crypt_info *ext4_encryption_info(struct inode *inode)
{
return EXT4_I(inode)->i_crypt_info;
}
#else
static inline int ext4_has_encryption_key(struct inode *inode)
{
@ -2359,6 +2368,10 @@ static inline struct ext4_crypt_info *ext4_encryption_info(struct inode *inode)
{
return NULL;
}
static inline int ext4_using_hardware_encryption(struct inode *inode)
{
return 0;
}
#endif

View file

@ -12,6 +12,7 @@
#define _EXT4_CRYPTO_H
#include <linux/fs.h>
#include <linux/pfk.h>
#define EXT4_KEY_DESCRIPTOR_SIZE 8
@ -61,6 +62,7 @@ struct ext4_encryption_context {
#define EXT4_AES_256_CBC_KEY_SIZE 32
#define EXT4_AES_256_CTS_KEY_SIZE 32
#define EXT4_AES_256_XTS_KEY_SIZE 64
#define EXT4_PRIVATE_KEY_SIZE 64
#define EXT4_MAX_KEY_SIZE 64
#define EXT4_KEY_DESC_PREFIX "ext4:"
@ -80,8 +82,11 @@ struct ext4_crypt_info {
struct crypto_ablkcipher *ci_ctfm;
struct key *ci_keyring_key;
char ci_master_key[EXT4_KEY_DESCRIPTOR_SIZE];
char ci_raw_key[EXT4_MAX_KEY_SIZE];
};
#define EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL 0x00000001
#define EXT4_WRITE_PATH_FL 0x00000002
@ -114,6 +119,7 @@ static inline int ext4_encryption_key_size(int mode)
{
switch (mode) {
case EXT4_ENCRYPTION_MODE_AES_256_XTS:
case EXT4_ENCRYPTION_MODE_PRIVATE:
return EXT4_AES_256_XTS_KEY_SIZE;
case EXT4_ENCRYPTION_MODE_AES_256_GCM:
return EXT4_AES_256_GCM_KEY_SIZE;

109
fs/ext4/ext4_ice.c Normal file
View file

@ -0,0 +1,109 @@
/* Copyright (c) 2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "ext4_ice.h"
#include "ext4_crypto.h"
/*
* Retrieves encryption key from the inode
*/
char *ext4_get_ice_encryption_key(const struct inode *inode)
{
struct ext4_crypt_info *ci = NULL;
if (!inode)
return NULL;
ci = ext4_encryption_info((struct inode *)inode);
if (!ci)
return NULL;
return &(ci->ci_raw_key[0]);
}
/*
* Retrieves encryption salt from the inode
*/
char *ext4_get_ice_encryption_salt(const struct inode *inode)
{
struct ext4_crypt_info *ci = NULL;
if (!inode)
return NULL;
ci = ext4_encryption_info((struct inode *)inode);
if (!ci)
return NULL;
return &(ci->ci_raw_key[ext4_get_ice_encryption_key_size(inode)]);
}
/*
* returns true if the cipher mode in inode is AES XTS
*/
int ext4_is_aes_xts_cipher(const struct inode *inode)
{
struct ext4_crypt_info *ci = NULL;
ci = ext4_encryption_info((struct inode *)inode);
if (!ci)
return 0;
return (ci->ci_data_mode == EXT4_ENCRYPTION_MODE_PRIVATE);
}
/*
* returns true if encryption info in both inodes is equal
*/
int ext4_is_ice_encryption_info_equal(const struct inode *inode1,
const struct inode *inode2)
{
char *key1 = NULL;
char *key2 = NULL;
char *salt1 = NULL;
char *salt2 = NULL;
if (!inode1 || !inode2)
return 0;
if (inode1 == inode2)
return 1;
/* both do not belong to ice, so we don't care, they are equal for us */
if (!ext4_should_be_processed_by_ice(inode1) &&
!ext4_should_be_processed_by_ice(inode2))
return 1;
/* one belongs to ice, the other does not -> not equal */
if (ext4_should_be_processed_by_ice(inode1) ^
ext4_should_be_processed_by_ice(inode2))
return 0;
key1 = ext4_get_ice_encryption_key(inode1);
key2 = ext4_get_ice_encryption_key(inode2);
salt1 = ext4_get_ice_encryption_salt(inode1);
salt2 = ext4_get_ice_encryption_salt(inode2);
/* key and salt should not be null by this point */
if (!key1 || !key2 || !salt1 || !salt2 ||
(ext4_get_ice_encryption_key_size(inode1) !=
ext4_get_ice_encryption_key_size(inode2)) ||
(ext4_get_ice_encryption_salt_size(inode1) !=
ext4_get_ice_encryption_salt_size(inode2)))
return 0;
return ((memcmp(key1, key2,
ext4_get_ice_encryption_key_size(inode1)) == 0) &&
(memcmp(salt1, salt2,
ext4_get_ice_encryption_salt_size(inode1)) == 0));
}

104
fs/ext4/ext4_ice.h Normal file
View file

@ -0,0 +1,104 @@
/* Copyright (c) 2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _EXT4_ICE_H
#define _EXT4_ICE_H
#include "ext4.h"
#include "ext4_crypto.h"
#ifdef CONFIG_EXT4_FS_ICE_ENCRYPTION
static inline int ext4_should_be_processed_by_ice(const struct inode *inode)
{
if (!ext4_encrypted_inode((struct inode *)inode))
return 0;
return ext4_using_hardware_encryption((struct inode *)inode);
}
static inline int ext4_is_ice_enabled(void)
{
return 1;
}
int ext4_is_aes_xts_cipher(const struct inode *inode);
char *ext4_get_ice_encryption_key(const struct inode *inode);
char *ext4_get_ice_encryption_salt(const struct inode *inode);
int ext4_is_ice_encryption_info_equal(const struct inode *inode1,
const struct inode *inode2);
static inline size_t ext4_get_ice_encryption_key_size(
const struct inode *inode)
{
return EXT4_AES_256_XTS_KEY_SIZE / 2;
}
static inline size_t ext4_get_ice_encryption_salt_size(
const struct inode *inode)
{
return EXT4_AES_256_XTS_KEY_SIZE / 2;
}
#else
static inline int ext4_should_be_processed_by_ice(const struct inode *inode)
{
return 0;
}
static inline int ext4_is_ice_enabled(void)
{
return 0;
}
static inline char *ext4_get_ice_encryption_key(const struct inode *inode)
{
return NULL;
}
static inline char *ext4_get_ice_encryption_salt(const struct inode *inode)
{
return NULL;
}
static inline size_t ext4_get_ice_encryption_key_size(
const struct inode *inode)
{
return 0;
}
static inline size_t ext4_get_ice_encryption_salt_size(
const struct inode *inode)
{
return 0;
}
static inline int ext4_is_xts_cipher(const struct inode *inode)
{
return 0;
}
static inline int ext4_is_ice_encryption_info_equal(
const struct inode *inode1,
const struct inode *inode2)
{
return 0;
}
static inline int ext4_is_aes_xts_cipher(const struct inode *inode)
{
return 0;
}
#endif
#endif /* _EXT4_ICE_H */

View file

@ -42,6 +42,7 @@
#include "xattr.h"
#include "acl.h"
#include "truncate.h"
#include "ext4_ice.h"
#include <trace/events/ext4.h>
@ -979,7 +980,8 @@ static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
ll_rw_block(READ, 1, &bh);
*wait_bh++ = bh;
decrypt = ext4_encrypted_inode(inode) &&
S_ISREG(inode->i_mode);
S_ISREG(inode->i_mode) &&
!ext4_is_ice_enabled();
}
}
/*
@ -3459,7 +3461,8 @@ static int __ext4_block_zero_page_range(handle_t *handle,
if (!buffer_uptodate(bh))
goto unlock;
if (S_ISREG(inode->i_mode) &&
ext4_encrypted_inode(inode)) {
ext4_encrypted_inode(inode) &&
!ext4_using_hardware_encryption(inode)) {
/* We expect the key to be set. */
BUG_ON(!ext4_has_encryption_key(inode));
BUG_ON(blocksize != PAGE_CACHE_SIZE);

View file

@ -28,6 +28,7 @@
#include "ext4_jbd2.h"
#include "xattr.h"
#include "acl.h"
#include "ext4_ice.h"
static struct kmem_cache *io_end_cachep;
@ -489,7 +490,11 @@ int ext4_bio_write_page(struct ext4_io_submit *io,
gfp_t gfp_flags = GFP_NOFS;
retry_encrypt:
data_page = ext4_encrypt(inode, page, gfp_flags);
if (!ext4_using_hardware_encryption(inode))
data_page = ext4_encrypt(inode, page, gfp_flags);
if (IS_ERR(data_page)) {
ret = PTR_ERR(data_page);
if (ret == ENOMEM && wbc->sync_mode == WB_SYNC_ALL) {

View file

@ -45,6 +45,7 @@
#include <linux/cleancache.h>
#include "ext4.h"
#include "ext4_ice.h"
/*
* Call ext4_decrypt on every single page, reusing the encryption
@ -62,12 +63,17 @@ static void completion_pages(struct work_struct *work)
bio_for_each_segment_all(bv, bio, i) {
struct page *page = bv->bv_page;
int ret = ext4_decrypt(page);
if (ret) {
WARN_ON_ONCE(1);
SetPageError(page);
} else
if (ext4_is_ice_enabled()) {
SetPageUptodate(page);
} else {
int ret = ext4_decrypt(page);
if (ret) {
WARN_ON_ONCE(1);
SetPageError(page);
} else
SetPageUptodate(page);
}
unlock_page(page);
}
ext4_release_crypto_ctx(ctx);
@ -324,5 +330,6 @@ int ext4_mpage_readpages(struct address_space *mapping,
BUG_ON(pages && !list_empty(pages));
if (bio)
submit_bio(READ, bio);
return 0;
}

View file

@ -130,7 +130,7 @@ struct ecryptfs_events {
size_t (*get_salt_key_size_cb)(const void *ecrytpfs_data);
};
#ifdef CONFIG_ECRYPT_FS
int ecryptfs_register_to_events(const struct ecryptfs_events *ops);
int ecryptfs_unregister_from_events(int user_handle);
@ -151,4 +151,55 @@ bool ecryptfs_is_page_in_metadata(const void *ecrytpfs_data, pgoff_t offset);
bool ecryptfs_is_data_equal(const void *ecrytpfs_data1,
const void *ecrytpfs_data2);
#else
static inline int ecryptfs_register_to_events(
const struct ecryptfs_events *ops)
{
return 1; /* dummy handle */
}
static int ecryptfs_unregister_from_events(int user_handle)
{
return 0;
}
static inline const unsigned char *ecryptfs_get_key(const void *ecrytpfs_data)
{
return NULL;
}
static inline size_t ecryptfs_get_key_size(const void *ecrytpfs_data)
{
return 0;
}
static inline const unsigned char *ecryptfs_get_salt(const void *ecrytpfs_data)
{
return NULL;
}
static inline size_t ecryptfs_get_salt_size(const void *ecrytpfs_data)
{
return 0;
}
static inline bool ecryptfs_cipher_match(const void *ecrytpfs_data,
const unsigned char *cipher, size_t cipher_size)
{
return false;
}
bool ecryptfs_is_page_in_metadata(const void *ecrytpfs_data, pgoff_t offset)
{
return false;
}
bool ecryptfs_is_data_equal(const void *ecrytpfs_data1,
const void *ecrytpfs_data2)
{
return false;
}
#endif /* CONFIG_ECRYPT_FS */
#endif /* _LINUX_ECRYPTFS_H */

View file

@ -1443,7 +1443,6 @@ union security_list_options {
int (*file_receive)(struct file *file);
int (*file_open)(struct file *file, const struct cred *cred);
int (*file_close)(struct file *file);
bool (*allow_merge_bio)(struct bio *bio1, struct bio *bio2);
int (*task_create)(unsigned long clone_flags);
void (*task_free)(struct task_struct *task);
@ -1708,7 +1707,6 @@ struct security_hook_heads {
struct list_head file_receive;
struct list_head file_open;
struct list_head file_close;
struct list_head allow_merge_bio;
struct list_head task_create;
struct list_head task_free;
struct list_head cred_alloc_blank;

View file

@ -23,7 +23,7 @@ int pfk_load_key_start(const struct bio *bio,
struct ice_crypto_setting *ice_setting, bool *is_pfe, bool);
int pfk_load_key_end(const struct bio *bio, bool *is_pfe);
int pfk_remove_key(const unsigned char *key, size_t key_size);
bool pfk_allow_merge_bio(struct bio *bio1, struct bio *bio2);
bool pfk_allow_merge_bio(const struct bio *bio1, const struct bio *bio2);
#else
static inline int pfk_load_key_start(const struct bio *bio,
@ -48,10 +48,6 @@ static inline bool pfk_allow_merge_bio(const struct bio *bio1,
return true;
}
static inline void pfk_remove_all_keys(void)
{
}
#endif /* CONFIG_PFK */
#endif /* PFK_H */

View file

@ -1,4 +1,4 @@
/* Copyright (c) 2014-2015, The Linux Foundation. All rights reserved.
/* Copyright (c) 2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
@ -55,7 +55,8 @@ static inline int pft_get_key_index(struct bio *bio, u32 *key_index,
bool *is_encrypted, bool *is_inplace)
{ return -ENODEV; }
static inline bool pft_allow_merge_bio(struct bio *bio1, struct bio *bio2)
static inline bool pft_allow_merge_bio(const struct bio *bio1,
const struct bio *bio2)
{ return true; }
static inline int pft_file_permission(struct file *file, int mask)

View file

@ -293,7 +293,6 @@ int security_file_send_sigiotask(struct task_struct *tsk,
int security_file_receive(struct file *file);
int security_file_open(struct file *file, const struct cred *cred);
int security_file_close(struct file *file);
bool security_allow_merge_bio(struct bio *bio1, struct bio *bio2);
int security_task_create(unsigned long clone_flags);
void security_task_free(struct task_struct *task);
int security_cred_alloc_blank(struct cred *cred, gfp_t gfp);
@ -826,11 +825,6 @@ static inline int security_file_close(struct file *file)
return 0;
}
static inline int security_allow_merge_bio(struct bio *bio1, struct bio *bio2)
{
return true;
}
static inline int security_task_create(unsigned long clone_flags)
{
return 0;

View file

@ -15,7 +15,6 @@ config PFT
config PFK
bool "Per-File-Key driver"
depends on SECURITY
depends on ECRYPT_FS
default n
help
This driver is used for storing eCryptfs information

View file

@ -3,6 +3,7 @@
#
ccflags-y += -Isecurity/selinux -Isecurity/selinux/include -Ifs/ecryptfs
ccflags-y += -Ifs/ext4
obj-$(CONFIG_PFT) += pft.o
obj-$(CONFIG_PFK) += pfk.o pfk_kc.o pfk_ice.o
obj-$(CONFIG_PFK) += pfk.o pfk_kc.o pfk_ice.o pfk_ext4.o pfk_ecryptfs.o

View file

@ -14,24 +14,27 @@
/*
* Per-File-Key (PFK).
*
* This driver is used for storing eCryptfs information (mainly file
* encryption key) in file node as part of eCryptfs hardware enhanced solution
* provided by Qualcomm Technologies, Inc.
* This driver is responsible for overall management of various
* Per File Encryption variants that work on top of or as part of different
* file systems.
*
* The information is stored in node when file is first opened (eCryptfs
* will fire a callback notifying PFK about this event) and will be later
* accessed by Block Device Driver to actually load the key to encryption hw.
* The driver has the following purpose :
* 1) Define priorities between PFE's if more than one is enabled
* 2) Extract key information from inode
* 3) Load and manage various keys in ICE HW engine
* 4) It should be invoked from various layers in FS/BLOCK/STORAGE DRIVER
* that need to take decision on HW encryption management of the data
* Some examples:
* BLOCK LAYER: when it takes decision on whether 2 chunks can be united
* to one encryption / decryption request sent to the HW
*
* PFK exposes API's for loading and removing keys from encryption hw
* and also API to determine whether 2 adjacent blocks can be agregated by
* Block Layer in one request to encryption hw.
* PFK is only supposed to be used by eCryptfs, except the below.
* UFS DRIVER: when it need to configure ICE HW with a particular key slot
* to be used for encryption / decryption
*
* PFE variants can differ on particular way of storing the cryptographic info
* inside inode, actions to be taken upon file operations, etc., but the common
* properties are described above
*
* Please note, the only API that uses EXPORT_SYMBOL() is pfk_remove_key,
* this is intentionally, as it is the only API that is intended to be used
* by any kernel module, including dynamically loaded ones. All other API's,
* as mentioned above are only supposed to be used by eCryptfs which is
* a static module.
*/
@ -45,7 +48,6 @@
#include <linux/printk.h>
#include <linux/bio.h>
#include <linux/security.h>
#include <linux/lsm_hooks.h>
#include <crypto/ice.h>
#include <linux/pfk.h>
@ -55,17 +57,99 @@
#include "objsec.h"
#include "ecryptfs_kernel.h"
#include "pfk_ice.h"
#include "pfk_ext4.h"
#include "pfk_ecryptfs.h"
#include "pfk_internal.h"
#include "ext4.h"
static DEFINE_MUTEX(pfk_lock);
static bool pfk_ready;
static int g_events_handle;
/* might be replaced by a table when more than one cipher is supported */
#define PFK_SUPPORTED_CIPHER "aes_xts"
#define PFK_SUPPORTED_KEY_SIZE 32
#define PFK_SUPPORTED_SALT_SIZE 32
/* Various PFE types and function tables to support each one of them */
enum pfe_type {ECRYPTFS_PFE, EXT4_CRYPT_PFE, INVALID_PFE};
typedef int (*pfk_parse_inode_type)(const struct bio *bio,
const struct inode *inode,
struct pfk_key_info *key_info,
enum ice_cryto_algo_mode *algo,
bool *is_pfe);
typedef bool (*pfk_allow_merge_bio_type)(const struct bio *bio1,
const struct bio *bio2, const struct inode *inode1,
const struct inode *inode2);
static const pfk_parse_inode_type pfk_parse_inode_ftable[] = {
/* ECRYPTFS_PFE */ &pfk_ecryptfs_parse_inode,
/* EXT4_CRYPT_PFE */ &pfk_ext4_parse_inode,
};
static const pfk_allow_merge_bio_type pfk_allow_merge_bio_ftable[] = {
/* ECRYPTFS_PFE */ &pfk_ecryptfs_allow_merge_bio,
/* EXT4_CRYPT_PFE */ &pfk_ext4_allow_merge_bio,
};
static void __exit pfk_exit(void)
{
pfk_ready = false;
pfk_ext4_deinit();
pfk_ecryptfs_deinit();
pfk_kc_deinit();
}
static int __init pfk_init(void)
{
int ret = 0;
ret = pfk_ecryptfs_init();
if (ret != 0)
goto fail;
ret = pfk_ext4_init();
if (ret != 0) {
pfk_ecryptfs_deinit();
goto fail;
}
ret = pfk_kc_init();
if (ret != 0) {
pr_err("could init pfk key cache, error %d\n", ret);
pfk_ext4_deinit();
pfk_ecryptfs_deinit();
goto fail;
}
pfk_ready = true;
pr_info("Driver initialized successfully\n");
return 0;
fail:
pr_err("Failed to init driver\n");
return -ENODEV;
}
/*
* If more than one type is supported simultaneously, this function will also
* set the priority between them
*/
static enum pfe_type pfk_get_pfe_type(const struct inode *inode)
{
if (!inode)
return INVALID_PFE;
if (pfk_is_ecryptfs_type(inode))
return ECRYPTFS_PFE;
if (pfk_is_ext4_type(inode))
return EXT4_CRYPT_PFE;
return INVALID_PFE;
}
/**
* inode_to_filename() - get the filename from inode pointer.
@ -75,7 +159,7 @@ static int g_events_handle;
*
* Return: filename string or "unknown".
*/
static char *inode_to_filename(struct inode *inode)
char *inode_to_filename(const struct inode *inode)
{
struct dentry *dentry = NULL;
char *filename = NULL;
@ -89,55 +173,6 @@ static char *inode_to_filename(struct inode *inode)
return filename;
}
static int pfk_inode_alloc_security(struct inode *inode)
{
struct inode_security_struct *i_sec = NULL;
if (inode == NULL)
return -EINVAL;
i_sec = kzalloc(sizeof(*i_sec), GFP_KERNEL);
if (i_sec == NULL)
return -ENOMEM;
inode->i_security = i_sec;
return 0;
}
static void pfk_inode_free_security(struct inode *inode)
{
if (inode == NULL)
return;
kzfree(inode->i_security);
}
static struct security_hook_list pfk_hooks[] = {
LSM_HOOK_INIT(inode_alloc_security, pfk_inode_alloc_security),
LSM_HOOK_INIT(inode_free_security, pfk_inode_free_security),
LSM_HOOK_INIT(allow_merge_bio, pfk_allow_merge_bio),
};
static int __init pfk_lsm_init(void)
{
/* Check if PFK is the chosen lsm via security_module_enable() */
if (security_module_enable("pfk")) {
security_add_hooks(pfk_hooks, ARRAY_SIZE(pfk_hooks));
pr_debug("pfk is the chosen lsm, registered successfully !\n");
} else {
pr_debug("pfk is not the chosen lsm.\n");
if (!selinux_is_enabled()) {
pr_err("se linux is not enabled.\n");
return -ENODEV;
}
}
return 0;
}
/**
* pfk_is_ready() - driver is initialized and ready.
*
@ -148,37 +183,6 @@ static inline bool pfk_is_ready(void)
return pfk_ready;
}
/**
* pfk_get_page_index() - get the inode from a bio.
* @bio: Pointer to BIO structure.
*
* Walk the bio struct links to get the inode.
* Please note, that in general bio may consist of several pages from
* several files, but in our case we always assume that all pages come
* from the same file, since our logic ensures it. That is why we only
* walk through the first page to look for inode.
*
* Return: pointer to the inode struct if successful, or NULL otherwise.
*
*/
static int pfk_get_page_index(const struct bio *bio, pgoff_t *page_index)
{
if (!bio || !page_index)
return -EINVAL;
if (!bio_has_data((struct bio *)bio))
return -EINVAL;
if (!bio->bi_io_vec)
return -EINVAL;
if (!bio->bi_io_vec->bv_page)
return -EINVAL;
*page_index = bio->bi_io_vec->bv_page->index;
return 0;
}
/**
* pfk_bio_get_inode() - get the inode from a bio.
* @bio: Pointer to BIO structure.
@ -196,10 +200,8 @@ static struct inode *pfk_bio_get_inode(const struct bio *bio)
{
if (!bio)
return NULL;
if (!bio_has_data((struct bio *)bio))
return NULL;
if (!bio->bi_io_vec)
return NULL;
if (!bio->bi_io_vec->bv_page)
@ -224,89 +226,6 @@ static struct inode *pfk_bio_get_inode(const struct bio *bio)
return bio->bi_io_vec->bv_page->mapping->host;
}
/**
* pfk_get_ecryptfs_data() - retrieves ecryptfs data stored inside node
* @inode: inode
*
* Return the data or NULL if there isn't any or in case of error
* Should be invoked under lock
*/
static void *pfk_get_ecryptfs_data(const struct inode *inode)
{
struct inode_security_struct *isec = NULL;
if (!inode)
return NULL;
isec = inode->i_security;
if (!isec) {
pr_debug("i_security is NULL, could be irrelevant file\n");
return NULL;
}
return isec->pfk_data;
}
/**
* pfk_set_ecryptfs_data() - stores ecryptfs data inside node
* @inode: inode to update
* @data: data to put inside the node
*
* Returns 0 in case of success, error otherwise
* Should be invoked under lock
*/
static int pfk_set_ecryptfs_data(struct inode *inode, void *ecryptfs_data)
{
struct inode_security_struct *isec = NULL;
if (!inode)
return -EINVAL;
isec = inode->i_security;
if (!isec) {
pr_err("i_security is NULL, not ready yet\n");
return -EINVAL;
}
isec->pfk_data = ecryptfs_data;
return 0;
}
/**
* pfk_parse_cipher() - parse cipher from ecryptfs to enum
* @ecryptfs_data: ecrypfs data
* @algo: pointer to store the output enum (can be null)
*
* return 0 in case of success, error otherwise (i.e not supported cipher)
*/
static int pfk_parse_cipher(const void *ecryptfs_data,
enum ice_cryto_algo_mode *algo)
{
/*
* currently only AES XTS algo is supported
* in the future, table with supported ciphers might
* be introduced
*/
if (!ecryptfs_data)
return -EINVAL;
if (!ecryptfs_cipher_match(ecryptfs_data,
PFK_SUPPORTED_CIPHER, sizeof(PFK_SUPPORTED_CIPHER))) {
pr_debug("ecryptfs alghoritm is not supported by pfk\n");
return -EINVAL;
}
if (algo)
*algo = ICE_CRYPTO_ALGO_MODE_AES_XTS;
return 0;
}
/**
* pfk_key_size_to_key_type() - translate key size to key size enum
* @key_size: key size in bytes
@ -314,7 +233,7 @@ static int pfk_parse_cipher(const void *ecryptfs_data,
*
* return 0 in case of success, error otherwise (i.e not supported key size)
*/
static int pfk_key_size_to_key_type(size_t key_size,
int pfk_key_size_to_key_type(size_t key_size,
enum ice_crpto_key_size *key_size_type)
{
/*
@ -334,100 +253,38 @@ static int pfk_key_size_to_key_type(size_t key_size,
return 0;
}
static int pfk_bio_to_key(const struct bio *bio, unsigned char const **key,
size_t *key_size, unsigned char const **salt, size_t *salt_size,
bool *is_pfe, bool start)
/*
* Retrieves filesystem type from inode's superblock
*/
bool pfe_is_inode_filesystem_type(const struct inode *inode,
const char *fs_type)
{
struct inode *inode = NULL;
int ret = 0;
void *ecryptfs_data = NULL;
pgoff_t offset;
bool is_metadata = false;
if (!inode || !fs_type)
return false;
/*
* only a few errors below can indicate that
* this function was not invoked within PFE context,
* otherwise we will consider it PFE
*/
*is_pfe = true;
if (!inode->i_sb)
return false;
if (!inode->i_sb->s_type)
return false;
if (!bio)
return -EINVAL;
if (!key || !salt || !key_size || !salt_size)
return -EINVAL;
inode = pfk_bio_get_inode(bio);
if (!inode) {
*is_pfe = false;
return -EINVAL;
}
ecryptfs_data = pfk_get_ecryptfs_data(inode);
if (!ecryptfs_data) {
*is_pfe = false;
return -EPERM;
}
pr_debug("loading key for file %s, start %d\n",
inode_to_filename(inode), start);
ret = pfk_get_page_index(bio, &offset);
if (ret != 0) {
pr_err("could not get page index from bio, probably bug %d\n",
ret);
return -EINVAL;
}
is_metadata = ecryptfs_is_page_in_metadata(ecryptfs_data, offset);
if (is_metadata == true) {
pr_debug("ecryptfs metadata, bypassing ICE\n");
*is_pfe = false;
return -EPERM;
}
*key = ecryptfs_get_key(ecryptfs_data);
if (!key) {
pr_err("could not parse key from ecryptfs\n");
return -EINVAL;
}
*key_size = ecryptfs_get_key_size(ecryptfs_data);
if (!(*key_size)) {
pr_err("could not parse key size from ecryptfs\n");
return -EINVAL;
}
*salt = ecryptfs_get_salt(ecryptfs_data);
if (!salt) {
pr_err("could not parse salt from ecryptfs\n");
return -EINVAL;
}
*salt_size = ecryptfs_get_salt_size(ecryptfs_data);
if (!(*salt_size)) {
pr_err("could not parse salt size from ecryptfs\n");
return -EINVAL;
}
return 0;
return (strcmp(inode->i_sb->s_type->name, fs_type) == 0);
}
/**
* pfk_load_key_start() - loads PFE encryption key to the ICE
* Can also be invoked from non
* PFE context, than it is not
* relevant and is_pfe flag is
* set to true
* Can also be invoked from non
* PFE context, in this case it
* is not relevant and is_pfe
* flag is set to false
*
* @bio: Pointer to the BIO structure
* @ice_setting: Pointer to ice setting structure that will be filled with
* ice configuration values, including the index to which the key was loaded
* @is_pfe: Pointer to is_pfe flag, which will be true if function was invoked
* from PFE context
* @is_pfe: will be false if inode is not relevant to PFE, in such a case
* it should be treated as non PFE by the block layer
*
* Via bio gets access to ecryptfs key stored in auxiliary structure inside
* inode and loads it to encryption hw.
* Returns the index where the key is stored in encryption hw and additional
* information that will be used later for configuration of the encryption hw.
*
@ -439,15 +296,12 @@ int pfk_load_key_start(const struct bio *bio,
bool async)
{
int ret = 0;
const unsigned char *key = NULL;
const unsigned char *salt = NULL;
size_t key_size = 0;
size_t salt_size = 0;
enum ice_cryto_algo_mode algo_mode = 0;
struct pfk_key_info key_info = {0};
enum ice_cryto_algo_mode algo_mode = ICE_CRYPTO_ALGO_MODE_AES_XTS;
enum ice_crpto_key_size key_size_type = 0;
void *ecryptfs_data = NULL;
u32 key_index = 0;
struct inode *inode = NULL;
enum pfe_type which_pfe = INVALID_PFE;
if (!is_pfe) {
pr_err("is_pfe is NULL\n");
@ -469,35 +323,32 @@ int pfk_load_key_start(const struct bio *bio,
return -EINVAL;
}
ret = pfk_bio_to_key(bio, &key, &key_size, &salt, &salt_size, is_pfe,
true);
if (ret != 0)
return ret;
inode = pfk_bio_get_inode(bio);
if (!inode) {
*is_pfe = false;
return -EINVAL;
}
ecryptfs_data = pfk_get_ecryptfs_data(inode);
if (!ecryptfs_data) {
which_pfe = pfk_get_pfe_type(inode);
if (which_pfe == INVALID_PFE) {
*is_pfe = false;
return -EPERM;
}
ret = pfk_parse_cipher(ecryptfs_data, &algo_mode);
if (ret != 0) {
pr_err("not supported cipher\n");
return ret;
}
pr_debug("parsing file %s with PFE %d\n",
inode_to_filename(inode), which_pfe);
ret = pfk_key_size_to_key_type(key_size, &key_size_type);
ret = (*(pfk_parse_inode_ftable[which_pfe]))
(bio, inode, &key_info, &algo_mode, is_pfe);
if (ret != 0)
return ret;
ret = pfk_kc_load_key_start(key, key_size, salt, salt_size, &key_index,
async);
ret = pfk_key_size_to_key_type(key_info.key_size, &key_size_type);
if (ret != 0)
return ret;
ret = pfk_kc_load_key_start(key_info.key, key_info.key_size,
key_info.salt, key_info.salt_size, &key_index, async);
if (ret) {
if (ret != -EBUSY && ret != -EAGAIN)
pr_err("start: could not load key into pfk key cache, error %d\n",
@ -512,30 +363,29 @@ int pfk_load_key_start(const struct bio *bio,
ice_setting->key_mode = ICE_CRYPTO_USE_LUT_SW_KEY;
ice_setting->key_index = key_index;
pr_debug("loaded key for file %s key_index %d\n",
inode_to_filename(inode), key_index);
return 0;
}
/**
* pfk_load_key_end() - marks the PFE key as no longer used by ICE
* Can also be invoked from non
* PFE context, than it is not
* relevant and is_pfe flag is
* set to true
* Can also be invoked from non
* PFE context, in this case it is not
* relevant and is_pfe flag is
* set to false
*
* @bio: Pointer to the BIO structure
* @is_pfe: Pointer to is_pfe flag, which will be true if function was invoked
* from PFE context
*
* Via bio gets access to ecryptfs key stored in auxiliary structure inside
* inode and loads it to encryption hw.
*
*/
int pfk_load_key_end(const struct bio *bio, bool *is_pfe)
{
int ret = 0;
const unsigned char *key = NULL;
const unsigned char *salt = NULL;
size_t key_size = 0;
size_t salt_size = 0;
struct pfk_key_info key_info = {0};
enum pfe_type which_pfe = INVALID_PFE;
struct inode *inode = NULL;
if (!is_pfe) {
pr_err("is_pfe is NULL\n");
@ -551,43 +401,32 @@ int pfk_load_key_end(const struct bio *bio, bool *is_pfe)
if (!pfk_is_ready())
return -ENODEV;
ret = pfk_bio_to_key(bio, &key, &key_size, &salt, &salt_size, is_pfe,
false);
inode = pfk_bio_get_inode(bio);
if (!inode) {
*is_pfe = false;
return -EINVAL;
}
which_pfe = pfk_get_pfe_type(inode);
if (which_pfe == INVALID_PFE) {
*is_pfe = false;
return -EPERM;
}
ret = (*(pfk_parse_inode_ftable[which_pfe]))
(bio, inode, &key_info, NULL, is_pfe);
if (ret != 0)
return ret;
pfk_kc_load_key_end(key, key_size, salt, salt_size);
pfk_kc_load_key_end(key_info.key, key_info.key_size,
key_info.salt, key_info.salt_size);
pr_debug("finished using key for file %s\n",
inode_to_filename(inode));
return 0;
}
/**
* pfk_remove_key() - removes key from hw
* @key: pointer to the key
* @key_size: key size
*
* Will be used by external clients to remove a particular key for security
* reasons.
* The only API that can be used by dynamically loaded modules,
* see explanations above at the beginning of this file.
* The key is removed securely (by memsetting the previous value)
*/
int pfk_remove_key(const unsigned char *key, size_t key_size)
{
int ret = 0;
if (!pfk_is_ready())
return -ENODEV;
if (!key)
return -EINVAL;
ret = pfk_kc_remove_key(key, key_size);
return ret;
}
EXPORT_SYMBOL(pfk_remove_key);
/**
* pfk_allow_merge_bio() - Check if 2 BIOs can be merged.
* @bio1: Pointer to first BIO structure.
@ -603,252 +442,39 @@ EXPORT_SYMBOL(pfk_remove_key);
* Return: true if the BIOs allowed to be merged, false
* otherwise.
*/
bool pfk_allow_merge_bio(struct bio *bio1, struct bio *bio2)
bool pfk_allow_merge_bio(const struct bio *bio1, const struct bio *bio2)
{
int ret;
void *ecryptfs_data1 = NULL;
void *ecryptfs_data2 = NULL;
pgoff_t offset1, offset2;
bool res = false;
struct inode *inode1 = NULL;
struct inode *inode2 = NULL;
enum pfe_type which_pfe1 = INVALID_PFE;
enum pfe_type which_pfe2 = INVALID_PFE;
/* if there is no pfk, don't disallow merging blocks */
if (!pfk_is_ready())
return true;
return false;
if (!bio1 || !bio2)
return false;
ecryptfs_data1 = pfk_get_ecryptfs_data(pfk_bio_get_inode(bio1));
ecryptfs_data2 = pfk_get_ecryptfs_data(pfk_bio_get_inode(bio2));
if (bio1 == bio2)
return true;
/*
* if we have 2 different encrypted files or 1 encrypted and 1 regular,
* merge is forbidden
*/
if (!ecryptfs_is_data_equal(ecryptfs_data1, ecryptfs_data2)) {
res = false;
goto end;
}
/*
* if both are equall in their NULLINNESS, we have 2 unencrypted files,
* allow merge
*/
if (!ecryptfs_data1) {
res = true;
goto end;
}
/*
* at this point both bio's are in the same file which is probably
* encrypted, last thing to check is header vs data
* We are assuming that we are not working in O_DIRECT mode,
* since it is not currently supported by eCryptfs
*/
ret = pfk_get_page_index(bio1, &offset1);
if (ret != 0) {
pr_err("could not get page index from bio1, probably bug %d\n",
ret);
res = false;
goto end;
}
ret = pfk_get_page_index(bio2, &offset2);
if (ret != 0) {
pr_err("could not get page index from bio2, bug %d\n", ret);
res = false;
goto end;
}
res = (ecryptfs_is_page_in_metadata(ecryptfs_data1, offset1) ==
ecryptfs_is_page_in_metadata(ecryptfs_data2, offset2));
/* fall through */
end:
return res;
}
/**
* pfk_open_cb() - callback function for file open event
* @inode: file inode
* @data: data provided by eCryptfs
*
* Will be invoked from eCryptfs in case of file open event
*/
static void pfk_open_cb(struct inode *inode, void *ecryptfs_data)
{
size_t key_size;
if (!pfk_is_ready())
return;
if (!inode) {
pr_err("inode is null\n");
return;
}
key_size = ecryptfs_get_key_size(ecryptfs_data);
if (!(key_size)) {
pr_err("could not parse key size from ecryptfs\n");
return;
}
if (0 != pfk_parse_cipher(ecryptfs_data, NULL)) {
pr_debug("open_cb: not supported cipher\n");
return;
}
inode1 = pfk_bio_get_inode(bio1);
inode2 = pfk_bio_get_inode(bio2);
if (0 != pfk_key_size_to_key_type(key_size, NULL))
return;
which_pfe1 = pfk_get_pfe_type(inode1);
which_pfe2 = pfk_get_pfe_type(inode2);
mutex_lock(&pfk_lock);
pfk_set_ecryptfs_data(inode, ecryptfs_data);
mutex_unlock(&pfk_lock);
}
/**
* pfk_release_cb() - callback function for file release event
* @inode: file inode
*
* Will be invoked from eCryptfs in case of file release event
*/
static void pfk_release_cb(struct inode *inode)
{
const unsigned char *key = NULL;
const unsigned char *salt = NULL;
size_t key_size = 0;
size_t salt_size = 0;
void *data = NULL;
if (!pfk_is_ready())
return;
if (!inode) {
pr_err("inode is null\n");
return;
}
data = pfk_get_ecryptfs_data(inode);
if (!data) {
pr_debug("could not get ecryptfs data from inode\n");
return;
}
key = ecryptfs_get_key(data);
if (!key) {
pr_err("could not parse key from ecryptfs\n");
return;
}
key_size = ecryptfs_get_key_size(data);
if (!(key_size)) {
pr_err("could not parse key size from ecryptfs\n");
return;
}
salt = ecryptfs_get_salt(data);
if (!salt) {
pr_err("could not parse salt from ecryptfs\n");
return;
}
salt_size = ecryptfs_get_salt_size(data);
if (!salt_size) {
pr_err("could not parse salt size from ecryptfs\n");
return;
}
pfk_kc_remove_key_with_salt(key, key_size, salt, salt_size);
mutex_lock(&pfk_lock);
pfk_set_ecryptfs_data(inode, NULL);
mutex_unlock(&pfk_lock);
}
static bool pfk_is_cipher_supported_cb(const void *ecryptfs_data)
{
if (!pfk_is_ready())
/* nodes with different encryption, do not merge */
if (which_pfe1 != which_pfe2)
return false;
if (!ecryptfs_data)
return false;
/* both nodes do not have encryption, allow merge */
if (which_pfe1 == INVALID_PFE)
return true;
return (pfk_parse_cipher(ecryptfs_data, NULL)) == 0;
}
static bool pfk_is_hw_crypt_cb(void)
{
if (!pfk_is_ready())
return false;
return true;
}
static size_t pfk_get_salt_key_size_cb(const void *ecryptfs_data)
{
if (!pfk_is_ready())
return 0;
if (!pfk_is_cipher_supported_cb(ecryptfs_data))
return 0;
return PFK_SUPPORTED_SALT_SIZE;
}
static void __exit pfk_exit(void)
{
pfk_ready = false;
ecryptfs_unregister_from_events(g_events_handle);
pfk_kc_deinit();
}
static int __init pfk_init(void)
{
int ret = 0;
struct ecryptfs_events events = {0};
events.open_cb = pfk_open_cb;
events.release_cb = pfk_release_cb;
events.is_cipher_supported_cb = pfk_is_cipher_supported_cb;
events.is_hw_crypt_cb = pfk_is_hw_crypt_cb;
events.get_salt_key_size_cb = pfk_get_salt_key_size_cb;
g_events_handle = ecryptfs_register_to_events(&events);
if (0 == g_events_handle) {
pr_err("could not register with eCryptfs, error %d\n", ret);
goto fail;
}
ret = pfk_kc_init();
if (ret != 0) {
pr_err("could init pfk key cache, error %d\n", ret);
ecryptfs_unregister_from_events(g_events_handle);
goto fail;
}
ret = pfk_lsm_init();
if (ret != 0) {
pr_debug("neither pfk nor se-linux sec modules are enabled\n");
pr_debug("not an error, just don't enable pfk\n");
pfk_kc_deinit();
ecryptfs_unregister_from_events(g_events_handle);
return 0;
}
pfk_ready = true;
pr_info("Driver initialized successfully\n");
return 0;
fail:
pr_err("Failed to init driver\n");
return -ENODEV;
return (*(pfk_allow_merge_bio_ftable[which_pfe1]))(bio1, bio2,
inode1, inode2);
}
module_init(pfk_init);

630
security/pfe/pfk_ecryptfs.c Normal file
View file

@ -0,0 +1,630 @@
/*
* Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* Per-File-Key (PFK) - eCryptfs.
*
* This driver is used for storing eCryptfs information (mainly file
* encryption key) in file node as part of eCryptfs hardware enhanced solution
* provided by Qualcomm Technologies, Inc.
*
* The information is stored in node when file is first opened (eCryptfs
* will fire a callback notifying PFK about this event) and will be later
* accessed by Block Device Driver to actually load the key to encryption hw.
*
* PFK exposes API's for loading and removing keys from encryption hw
* and also API to determine whether 2 adjacent blocks can be agregated by
* Block Layer in one request to encryption hw.
* PFK is only supposed to be used by eCryptfs, except the below.
*
*/
/* Uncomment the line below to enable debug messages */
/* #define DEBUG 1 */
#define pr_fmt(fmt) "pfk_ecryptfs [%s]: " fmt, __func__
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/printk.h>
#include <linux/bio.h>
#include <linux/security.h>
#include <linux/lsm_hooks.h>
#include <crypto/ice.h>
#include <linux/pfk.h>
#include <linux/ecryptfs.h>
#include "pfk_ecryptfs.h"
#include "pfk_kc.h"
#include "objsec.h"
#include "ecryptfs_kernel.h"
#include "pfk_ice.h"
static DEFINE_MUTEX(pfk_ecryptfs_lock);
static bool pfk_ecryptfs_ready;
static int g_events_handle;
/* might be replaced by a table when more than one cipher is supported */
#define PFK_SUPPORTED_CIPHER "aes_xts"
#define PFK_SUPPORTED_SALT_SIZE 32
static void *pfk_ecryptfs_get_data(const struct inode *inode);
static void pfk_ecryptfs_open_cb(struct inode *inode, void *ecryptfs_data);
static void pfk_ecryptfs_release_cb(struct inode *inode);
static bool pfk_ecryptfs_is_cipher_supported_cb(const void *ecryptfs_data);
static size_t pfk_ecryptfs_get_salt_key_size_cb(const void *ecryptfs_data);
static bool pfk_ecryptfs_is_hw_crypt_cb(void);
/**
* pfk_is_ecryptfs_type() - return true if inode belongs to ICE ecryptfs PFE
* @inode: inode pointer
*/
bool pfk_is_ecryptfs_type(const struct inode *inode)
{
void *ecryptfs_data = NULL;
/*
* the actual filesystem of an inode is still ext4, eCryptfs never
* reaches bio
*/
if (!pfe_is_inode_filesystem_type(inode, "ext4"))
return false;
ecryptfs_data = pfk_ecryptfs_get_data(inode);
if (!ecryptfs_data)
return false;
return true;
}
static int pfk_ecryptfs_inode_alloc_security(struct inode *inode)
{
struct inode_security_struct *i_sec = NULL;
if (inode == NULL)
return -EINVAL;
i_sec = kzalloc(sizeof(*i_sec), GFP_KERNEL);
if (i_sec == NULL)
return -ENOMEM;
inode->i_security = i_sec;
return 0;
}
static void pfk_ecryptfs_inode_free_security(struct inode *inode)
{
if (inode == NULL)
return;
kzfree(inode->i_security);
}
static struct security_hook_list pfk_ecryptfs_hooks[] = {
LSM_HOOK_INIT(inode_alloc_security, pfk_ecryptfs_inode_alloc_security),
LSM_HOOK_INIT(inode_free_security, pfk_ecryptfs_inode_free_security),
};
/*
* pfk_ecryptfs_lsm_init() - makes sure either se-linux or pfk_ecryptfs are
* registered as security module.
*
* This is required because ecryptfs uses a field inside security struct in
* inode to store its info
*/
static int __init pfk_ecryptfs_lsm_init(void)
{
/* Check if PFK is the chosen lsm via security_module_enable() */
if (security_module_enable("pfk_ecryptfs")) {
security_add_hooks(pfk_ecryptfs_hooks,
ARRAY_SIZE(pfk_ecryptfs_hooks));
pr_debug("pfk_ecryptfs is the chosen lsm, registered successfully !\n");
} else {
pr_debug("pfk_ecryptfs is not the chosen lsm.\n");
if (!selinux_is_enabled()) {
pr_err("se linux is not enabled.\n");
return -ENODEV;
}
}
return 0;
}
/*
* pfk_ecryptfs_deinit() - Deinit function, should be invoked by upper PFK layer
*/
void __exit pfk_ecryptfs_deinit(void)
{
pfk_ecryptfs_ready = false;
ecryptfs_unregister_from_events(g_events_handle);
}
/*
* pfk_ecryptfs_init() - Init function, should be invoked by upper PFK layer
*/
int __init pfk_ecryptfs_init(void)
{
int ret = 0;
struct ecryptfs_events events = {0};
events.open_cb = pfk_ecryptfs_open_cb;
events.release_cb = pfk_ecryptfs_release_cb;
events.is_cipher_supported_cb = pfk_ecryptfs_is_cipher_supported_cb;
events.is_hw_crypt_cb = pfk_ecryptfs_is_hw_crypt_cb;
events.get_salt_key_size_cb = pfk_ecryptfs_get_salt_key_size_cb;
g_events_handle = ecryptfs_register_to_events(&events);
if (g_events_handle == 0) {
pr_err("could not register with eCryptfs, error %d\n", ret);
goto fail;
}
ret = pfk_ecryptfs_lsm_init();
if (ret != 0) {
pr_debug("neither pfk nor se-linux sec modules are enabled\n");
pr_debug("not an error, just don't enable PFK ecryptfs\n");
ecryptfs_unregister_from_events(g_events_handle);
return 0;
}
pfk_ecryptfs_ready = true;
pr_info("PFK ecryptfs inited successfully\n");
return 0;
fail:
pr_err("Failed to init PFK ecryptfs\n");
return -ENODEV;
}
/**
* pfk_ecryptfs_is_ready() - driver is initialized and ready.
*
* Return: true if the driver is ready.
*/
static inline bool pfk_ecryptfs_is_ready(void)
{
return pfk_ecryptfs_ready;
}
/**
* pfk_ecryptfs_get_page_index() - get the inode from a bio.
* @bio: Pointer to BIO structure.
*
* Walk the bio struct links to get the inode.
* Please note, that in general bio may consist of several pages from
* several files, but in our case we always assume that all pages come
* from the same file, since our logic ensures it. That is why we only
* walk through the first page to look for inode.
*
* Return: pointer to the inode struct if successful, or NULL otherwise.
*
*/
static int pfk_ecryptfs_get_page_index(const struct bio *bio,
pgoff_t *page_index)
{
if (!bio || !page_index)
return -EINVAL;
if (!bio_has_data((struct bio *)bio))
return -EINVAL;
if (!bio->bi_io_vec)
return -EINVAL;
if (!bio->bi_io_vec->bv_page)
return -EINVAL;
*page_index = bio->bi_io_vec->bv_page->index;
return 0;
}
/**
* pfk_ecryptfs_get_data() - retrieves ecryptfs data stored inside node
* @inode: inode
*
* Return the data or NULL if there isn't any or in case of error
* Should be invoked under lock
*/
static void *pfk_ecryptfs_get_data(const struct inode *inode)
{
struct inode_security_struct *isec = NULL;
if (!inode)
return NULL;
isec = inode->i_security;
if (!isec) {
pr_debug("i_security is NULL, could be irrelevant file\n");
return NULL;
}
return isec->pfk_data;
}
/**
* pfk_ecryptfs_set_data() - stores ecryptfs data inside node
* @inode: inode to update
* @data: data to put inside the node
*
* Returns 0 in case of success, error otherwise
* Should be invoked under lock
*/
static int pfk_ecryptfs_set_data(struct inode *inode, void *ecryptfs_data)
{
struct inode_security_struct *isec = NULL;
if (!inode)
return -EINVAL;
isec = inode->i_security;
if (!isec) {
pr_err("i_security is NULL, not ready yet\n");
return -EINVAL;
}
isec->pfk_data = ecryptfs_data;
return 0;
}
/**
* pfk_ecryptfs_parse_cipher() - parse cipher from ecryptfs to enum
* @ecryptfs_data: ecrypfs data
* @algo: pointer to store the output enum (can be null)
*
* return 0 in case of success, error otherwise (i.e not supported cipher)
*/
static int pfk_ecryptfs_parse_cipher(const void *ecryptfs_data,
enum ice_cryto_algo_mode *algo)
{
/*
* currently only AES XTS algo is supported
* in the future, table with supported ciphers might
* be introduced
*/
if (!ecryptfs_data)
return -EINVAL;
if (!ecryptfs_cipher_match(ecryptfs_data,
PFK_SUPPORTED_CIPHER, sizeof(PFK_SUPPORTED_CIPHER))) {
pr_debug("ecryptfs alghoritm is not supported by pfk\n");
return -EINVAL;
}
if (algo)
*algo = ICE_CRYPTO_ALGO_MODE_AES_XTS;
return 0;
}
/*
* pfk_ecryptfs_parse_inode() - parses key and algo information from inode
*
* Should be invoked by upper pfk layer
* @bio: bio
* @inode: inode to be parsed
* @key_info: out, key and salt information to be stored
* @algo: out, algorithm to be stored (can be null)
* @is_pfe: out, will be false if inode is not relevant to PFE, in such a case
* it should be treated as non PFE by the block layer
*/
int pfk_ecryptfs_parse_inode(const struct bio *bio,
const struct inode *inode,
struct pfk_key_info *key_info,
enum ice_cryto_algo_mode *algo,
bool *is_pfe)
{
int ret = 0;
void *ecryptfs_data = NULL;
pgoff_t offset;
bool is_metadata = false;
if (!is_pfe)
return -EINVAL;
/*
* only a few errors below can indicate that
* this function was not invoked within PFE context,
* otherwise we will consider it PFE
*/
*is_pfe = true;
if (!pfk_ecryptfs_is_ready())
return -ENODEV;
if (!inode)
return -EINVAL;
if (!key_info)
return -EINVAL;
ecryptfs_data = pfk_ecryptfs_get_data(inode);
if (!ecryptfs_data) {
pr_err("internal error, no ecryptfs data\n");
return -EINVAL;
}
ret = pfk_ecryptfs_get_page_index(bio, &offset);
if (ret != 0) {
pr_err("could not get page index from bio, probably bug %d\n",
ret);
return -EINVAL;
}
is_metadata = ecryptfs_is_page_in_metadata(ecryptfs_data, offset);
if (is_metadata == true) {
pr_debug("ecryptfs metadata, bypassing ICE\n");
*is_pfe = false;
return -EPERM;
}
key_info->key = ecryptfs_get_key(ecryptfs_data);
if (!key_info->key) {
pr_err("could not parse key from ecryptfs\n");
return -EINVAL;
}
key_info->key_size = ecryptfs_get_key_size(ecryptfs_data);
if (!key_info->key_size) {
pr_err("could not parse key size from ecryptfs\n");
return -EINVAL;
}
key_info->salt = ecryptfs_get_salt(ecryptfs_data);
if (!key_info->salt) {
pr_err("could not parse salt from ecryptfs\n");
return -EINVAL;
}
key_info->salt_size = ecryptfs_get_salt_size(ecryptfs_data);
if (!key_info->salt_size) {
pr_err("could not parse salt size from ecryptfs\n");
return -EINVAL;
}
ret = pfk_ecryptfs_parse_cipher(ecryptfs_data, algo);
if (ret != 0) {
pr_err("not supported cipher\n");
return ret;
}
return 0;
}
/**
* pfk_ecryptfs_allow_merge_bio() - Check if 2 bios can be merged.
*
* Should be invoked by upper pfk layer
*
* @bio1: Pointer to first BIO structure.
* @bio2: Pointer to second BIO structure.
* @inode1: Pointer to inode from first bio
* @inode2: Pointer to inode from second bio
*
* Prevent merging of BIOs from encrypted and non-encrypted
* files, or files encrypted with different key.
* Also prevent non encrypted and encrypted data from the same file
* to be merged (ecryptfs header if stored inside file should be non
* encrypted)
*
* Return: true if the BIOs allowed to be merged, false
* otherwise.
*/
bool pfk_ecryptfs_allow_merge_bio(const struct bio *bio1,
const struct bio *bio2, const struct inode *inode1,
const struct inode *inode2)
{
int ret;
void *ecryptfs_data1 = NULL;
void *ecryptfs_data2 = NULL;
pgoff_t offset1, offset2;
/* if there is no ecryptfs pfk, don't disallow merging blocks */
if (!pfk_ecryptfs_is_ready())
return true;
if (!inode1 || !inode2)
return false;
ecryptfs_data1 = pfk_ecryptfs_get_data(inode1);
ecryptfs_data2 = pfk_ecryptfs_get_data(inode2);
if (!ecryptfs_data1 || !ecryptfs_data2) {
pr_err("internal error, ecryptfs data should not be null");
return false;
}
/*
* if we have 2 different encrypted files merge is not allowed
*/
if (!ecryptfs_is_data_equal(ecryptfs_data1, ecryptfs_data2))
return false;
/*
* at this point both bio's are in the same file which is probably
* encrypted, last thing to check is header vs data
* We are assuming that we are not working in O_DIRECT mode,
* since it is not currently supported by eCryptfs
*/
ret = pfk_ecryptfs_get_page_index(bio1, &offset1);
if (ret != 0) {
pr_err("could not get page index from bio1, probably bug %d\n",
ret);
return false;
}
ret = pfk_ecryptfs_get_page_index(bio2, &offset2);
if (ret != 0) {
pr_err("could not get page index from bio2, bug %d\n", ret);
return false;
}
return (ecryptfs_is_page_in_metadata(ecryptfs_data1, offset1) ==
ecryptfs_is_page_in_metadata(ecryptfs_data2, offset2));
}
/**
* pfk_ecryptfs_open_cb() - callback function for file open event
* @inode: file inode
* @data: data provided by eCryptfs
*
* Will be invoked from eCryptfs in case of file open event
*/
static void pfk_ecryptfs_open_cb(struct inode *inode, void *ecryptfs_data)
{
size_t key_size;
if (!pfk_ecryptfs_is_ready())
return;
if (!inode) {
pr_err("inode is null\n");
return;
}
key_size = ecryptfs_get_key_size(ecryptfs_data);
if (!(key_size)) {
pr_err("could not parse key size from ecryptfs\n");
return;
}
if (pfk_ecryptfs_parse_cipher(ecryptfs_data, NULL) != 0) {
pr_debug("open_cb: not supported cipher\n");
return;
}
if (pfk_key_size_to_key_type(key_size, NULL) != 0)
return;
mutex_lock(&pfk_ecryptfs_lock);
pfk_ecryptfs_set_data(inode, ecryptfs_data);
mutex_unlock(&pfk_ecryptfs_lock);
}
/**
* pfk_ecryptfs_release_cb() - callback function for file release event
* @inode: file inode
*
* Will be invoked from eCryptfs in case of file release event
*/
static void pfk_ecryptfs_release_cb(struct inode *inode)
{
const unsigned char *key = NULL;
const unsigned char *salt = NULL;
size_t key_size = 0;
size_t salt_size = 0;
void *data = NULL;
if (!pfk_ecryptfs_is_ready())
return;
if (!inode) {
pr_err("inode is null\n");
return;
}
data = pfk_ecryptfs_get_data(inode);
if (!data) {
pr_debug("could not get ecryptfs data from inode\n");
return;
}
key = ecryptfs_get_key(data);
if (!key) {
pr_err("could not parse key from ecryptfs\n");
return;
}
key_size = ecryptfs_get_key_size(data);
if (!(key_size)) {
pr_err("could not parse key size from ecryptfs\n");
return;
}
salt = ecryptfs_get_salt(data);
if (!salt) {
pr_err("could not parse salt from ecryptfs\n");
return;
}
salt_size = ecryptfs_get_salt_size(data);
if (!salt_size) {
pr_err("could not parse salt size from ecryptfs\n");
return;
}
pfk_kc_remove_key_with_salt(key, key_size, salt, salt_size);
mutex_lock(&pfk_ecryptfs_lock);
pfk_ecryptfs_set_data(inode, NULL);
mutex_unlock(&pfk_ecryptfs_lock);
}
/*
* pfk_ecryptfs_is_cipher_supported_cb() - callback function to determine
* whether a particular cipher (stored in ecryptfs_data) is cupported by pfk
*
* Ecryptfs should invoke this callback whenever it needs to determine whether
* pfk supports the particular cipher mode
*
* @ecryptfs_data: ecryptfs data
*/
static bool pfk_ecryptfs_is_cipher_supported_cb(const void *ecryptfs_data)
{
if (!pfk_ecryptfs_is_ready())
return false;
if (!ecryptfs_data)
return false;
return (pfk_ecryptfs_parse_cipher(ecryptfs_data, NULL)) == 0;
}
/*
* pfk_ecryptfs_is_hw_crypt_cb() - callback function that implements a query
* by ecryptfs whether PFK supports HW encryption
*/
static bool pfk_ecryptfs_is_hw_crypt_cb(void)
{
if (!pfk_ecryptfs_is_ready())
return false;
return true;
}
/*
* pfk_ecryptfs_get_salt_key_size_cb() - callback function to determine
* what is the salt size supported by PFK
*
* @ecryptfs_data: ecryptfs data
*/
static size_t pfk_ecryptfs_get_salt_key_size_cb(const void *ecryptfs_data)
{
if (!pfk_ecryptfs_is_ready())
return 0;
if (!pfk_ecryptfs_is_cipher_supported_cb(ecryptfs_data))
return 0;
return PFK_SUPPORTED_SALT_SIZE;
}

View file

@ -0,0 +1,39 @@
/* Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _PFK_ECRYPTFS_H_
#define _PFK_ECRYPTFS_H_
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <crypto/ice.h>
#include "pfk_internal.h"
bool pfk_is_ecryptfs_type(const struct inode *inode);
int pfk_ecryptfs_parse_inode(const struct bio *bio,
const struct inode *inode,
struct pfk_key_info *key_info,
enum ice_cryto_algo_mode *algo,
bool *is_pfe);
bool pfk_ecryptfs_allow_merge_bio(const struct bio *bio1,
const struct bio *bio2, const struct inode *inode1,
const struct inode *inode2);
int __init pfk_ecryptfs_init(void);
void __exit pfk_ecryptfs_deinit(void);
#endif /* _PFK_ECRYPTFS_H_ */

212
security/pfe/pfk_ext4.c Normal file
View file

@ -0,0 +1,212 @@
/*
* Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* Per-File-Key (PFK) - EXT4
*
* This driver is used for working with EXT4 crypt extension
*
* The key information is stored in node by EXT4 when file is first opened
* and will be later accessed by Block Device Driver to actually load the key
* to encryption hw.
*
* PFK exposes API's for loading and removing keys from encryption hw
* and also API to determine whether 2 adjacent blocks can be agregated by
* Block Layer in one request to encryption hw.
*
*/
/* Uncomment the line below to enable debug messages */
/* #define DEBUG 1 */
#define pr_fmt(fmt) "pfk_ext4 [%s]: " fmt, __func__
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/printk.h>
#include "ext4_ice.h"
#include "pfk_ext4.h"
static bool pfk_ext4_ready;
/*
* pfk_ext4_deinit() - Deinit function, should be invoked by upper PFK layer
*/
void __exit pfk_ext4_deinit(void)
{
pfk_ext4_ready = false;
}
/*
* pfk_ecryptfs_init() - Init function, should be invoked by upper PFK layer
*/
int __init pfk_ext4_init(void)
{
pfk_ext4_ready = true;
pr_info("PFK EXT4 inited successfully\n");
return 0;
}
/**
* pfk_ecryptfs_is_ready() - driver is initialized and ready.
*
* Return: true if the driver is ready.
*/
static inline bool pfk_ext4_is_ready(void)
{
return pfk_ext4_ready;
}
/**
* pfk_ext4_dump_inode() - dumps all interesting info about inode to the screen
*
*
*/
/*
* static void pfk_ext4_dump_inode(const struct inode* inode)
* {
* struct ext4_crypt_info *ci = ext4_encryption_info((struct inode*)inode);
*
* pr_debug("dumping inode with address 0x%p\n", inode);
* pr_debug("S_ISREG is %d\n", S_ISREG(inode->i_mode));
* pr_debug("EXT4_INODE_ENCRYPT flag is %d\n",
* ext4_test_inode_flag((struct inode*)inode, EXT4_INODE_ENCRYPT));
* if (ci) {
* pr_debug("crypt_info address 0x%p\n", ci);
* pr_debug("ci->ci_data_mode %d\n", ci->ci_data_mode);
* } else {
* pr_debug("crypt_info is NULL\n");
* }
* }
*/
/**
* pfk_is_ext4_type() - return true if inode belongs to ICE EXT4 PFE
* @inode: inode pointer
*/
bool pfk_is_ext4_type(const struct inode *inode)
{
if (!pfe_is_inode_filesystem_type(inode, "ext4"))
return false;
return ext4_should_be_processed_by_ice(inode);
}
/**
* pfk_ext4_parse_cipher() - parse cipher from inode to enum
* @inode: inode
* @algo: pointer to store the output enum (can be null)
*
* return 0 in case of success, error otherwise (i.e not supported cipher)
*/
static int pfk_ext4_parse_cipher(const struct inode *inode,
enum ice_cryto_algo_mode *algo)
{
/*
* currently only AES XTS algo is supported
* in the future, table with supported ciphers might
* be introduced
*/
if (!inode)
return -EINVAL;
if (!ext4_is_aes_xts_cipher(inode)) {
pr_err("ext4 alghoritm is not supported by pfk\n");
return -EINVAL;
}
if (algo)
*algo = ICE_CRYPTO_ALGO_MODE_AES_XTS;
return 0;
}
int pfk_ext4_parse_inode(const struct bio *bio,
const struct inode *inode,
struct pfk_key_info *key_info,
enum ice_cryto_algo_mode *algo,
bool *is_pfe)
{
int ret = 0;
if (!is_pfe)
return -EINVAL;
/*
* only a few errors below can indicate that
* this function was not invoked within PFE context,
* otherwise we will consider it PFE
*/
*is_pfe = true;
if (!pfk_ext4_is_ready())
return -ENODEV;
if (!inode)
return -EINVAL;
if (!key_info)
return -EINVAL;
key_info->key = ext4_get_ice_encryption_key(inode);
if (!key_info->key) {
pr_err("could not parse key from ext4\n");
return -EINVAL;
}
key_info->key_size = ext4_get_ice_encryption_key_size(inode);
if (!key_info->key_size) {
pr_err("could not parse key size from ext4\n");
return -EINVAL;
}
key_info->salt = ext4_get_ice_encryption_salt(inode);
if (!key_info->salt) {
pr_err("could not parse salt from ext4\n");
return -EINVAL;
}
key_info->salt_size = ext4_get_ice_encryption_salt_size(inode);
if (!key_info->salt_size) {
pr_err("could not parse salt size from ext4\n");
return -EINVAL;
}
ret = pfk_ext4_parse_cipher(inode, algo);
if (ret != 0) {
pr_err("not supported cipher\n");
return ret;
}
return 0;
}
bool pfk_ext4_allow_merge_bio(const struct bio *bio1,
const struct bio *bio2, const struct inode *inode1,
const struct inode *inode2)
{
/* if there is no ext4 pfk, don't disallow merging blocks */
if (!pfk_ext4_is_ready())
return true;
if (!inode1 || !inode2)
return false;
return ext4_is_ice_encryption_info_equal(inode1, inode2);
}

37
security/pfe/pfk_ext4.h Normal file
View file

@ -0,0 +1,37 @@
/* Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _PFK_EXT4_H_
#define _PFK_EXT4_H_
#include <linux/types.h>
#include <linux/fs.h>
#include <crypto/ice.h>
#include "pfk_internal.h"
bool pfk_is_ext4_type(const struct inode *inode);
int pfk_ext4_parse_inode(const struct bio *bio,
const struct inode *inode,
struct pfk_key_info *key_info,
enum ice_cryto_algo_mode *algo,
bool *is_pfe);
bool pfk_ext4_allow_merge_bio(const struct bio *bio1,
const struct bio *bio2, const struct inode *inode1,
const struct inode *inode2);
int __init pfk_ext4_init(void);
void __exit pfk_ext4_deinit(void);
#endif /* _PFK_EXT4_H_ */

View file

@ -1,4 +1,4 @@
/* Copyright (c) 2015, The Linux Foundation. All rights reserved.
/* Copyright (c) 2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
@ -22,7 +22,6 @@
#include <linux/types.h>
int pfk_ice_init(void);
int pfk_ice_deinit(void);

View file

@ -0,0 +1,34 @@
/* Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _PFK_INTERNAL_H_
#define _PFK_INTERNAL_H_
#include <linux/types.h>
#include <crypto/ice.h>
struct pfk_key_info {
const unsigned char *key;
const unsigned char *salt;
size_t key_size;
size_t salt_size;
};
int pfk_key_size_to_key_type(size_t key_size,
enum ice_crpto_key_size *key_size_type);
bool pfe_is_inode_filesystem_type(const struct inode *inode,
const char *fs_type);
char *inode_to_filename(const struct inode *inode);
#endif /* _PFK_INTERNAL_H_ */

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2014-2015, The Linux Foundation. All rights reserved.
* Copyright (c) 2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
@ -746,7 +746,7 @@ EXPORT_SYMBOL(pft_get_key_index);
* Return: true if the BIOs allowed to be merged, false
* otherwise.
*/
bool pft_allow_merge_bio(struct bio *bio1, struct bio *bio2)
bool pft_allow_merge_bio(const struct bio *bio1, const struct bio *bio2)
{
u32 key_index1 = 0, key_index2 = 0;
bool is_encrypted1 = false, is_encrypted2 = false;

View file

@ -857,11 +857,6 @@ int security_file_close(struct file *file)
return call_int_hook(file_close, 0, file);
}
bool security_allow_merge_bio(struct bio *bio1, struct bio *bio2)
{
return call_int_hook(allow_merge_bio, 1, bio1, bio2);
}
int security_task_create(unsigned long clone_flags)
{
return call_int_hook(task_create, 0, clone_flags);
@ -1693,7 +1688,6 @@ struct security_hook_heads security_hook_heads = {
.file_receive = LIST_HEAD_INIT(security_hook_heads.file_receive),
.file_open = LIST_HEAD_INIT(security_hook_heads.file_open),
.file_close = LIST_HEAD_INIT(security_hook_heads.file_close),
.allow_merge_bio = LIST_HEAD_INIT(security_hook_heads.allow_merge_bio),
.task_create = LIST_HEAD_INIT(security_hook_heads.task_create),
.task_free = LIST_HEAD_INIT(security_hook_heads.task_free),
.cred_alloc_blank =

View file

@ -3585,12 +3585,6 @@ static int selinux_file_close(struct file *file)
return pft_file_close(file);
}
static bool selinux_allow_merge_bio(struct bio *bio1, struct bio *bio2)
{
return pft_allow_merge_bio(bio1, bio2) &&
pfk_allow_merge_bio(bio1, bio2);
}
/* task security operations */
static int selinux_task_create(unsigned long clone_flags)
@ -6000,7 +5994,6 @@ static struct security_hook_list selinux_hooks[] = {
LSM_HOOK_INIT(file_open, selinux_file_open),
LSM_HOOK_INIT(file_close, selinux_file_close),
LSM_HOOK_INIT(allow_merge_bio, selinux_allow_merge_bio),
LSM_HOOK_INIT(task_create, selinux_task_create),
LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),