sched/core_ctl: Refactor cpu data

Refactor cpu data into cpu data and cluster data to improve readability and
ease of understanding the code.

Change-Id: I96505aeb9d07a6fa3a2c28648ffa299e0cfa2e41
Signed-off-by: Olav Haugan <ohaugan@codeaurora.org>
This commit is contained in:
Olav Haugan 2016-06-27 11:35:43 -07:00
parent 5d1e98d51d
commit e7c8de6756

View file

@ -22,26 +22,16 @@
#include <trace/events/sched.h>
#define MAX_CPUS_PER_GROUP 4
#define MAX_CPUS_PER_CLUSTER 4
#define MAX_CLUSTERS 2
struct cpu_data {
/* Per CPU data. */
bool inited;
bool online;
bool rejected;
bool is_busy;
bool not_preferred;
unsigned int busy;
unsigned int cpu;
struct list_head sib;
unsigned int first_cpu;
/* Per cluster data set only on first CPU */
struct cluster_data {
bool inited;
unsigned int min_cpus;
unsigned int max_cpus;
unsigned int offline_delay_ms;
unsigned int busy_up_thres[MAX_CPUS_PER_GROUP];
unsigned int busy_down_thres[MAX_CPUS_PER_GROUP];
unsigned int busy_up_thres[MAX_CPUS_PER_CLUSTER];
unsigned int busy_down_thres[MAX_CPUS_PER_CLUSTER];
unsigned int online_cpus;
unsigned int avail_cpus;
unsigned int num_cpus;
@ -56,17 +46,36 @@ struct cpu_data {
bool nrrun_changed;
struct timer_list timer;
struct task_struct *hotplug_thread;
unsigned int first_cpu;
struct kobject kobj;
};
struct cpu_data {
bool online;
bool rejected;
bool is_busy;
unsigned int busy;
unsigned int cpu;
bool not_preferred;
struct cluster_data *cluster;
struct list_head sib;
};
static DEFINE_PER_CPU(struct cpu_data, cpu_state);
static struct cluster_data cluster_state[MAX_CLUSTERS];
static unsigned int num_clusters;
#define for_each_cluster(cluster, idx) \
for ((cluster) = &cluster_state[idx]; (idx) < num_clusters;\
(idx)++, (cluster) = &cluster_state[idx])
static DEFINE_SPINLOCK(state_lock);
static void apply_need(struct cpu_data *f);
static void wake_up_hotplug_thread(struct cpu_data *state);
static void apply_need(struct cluster_data *state);
static void wake_up_hotplug_thread(struct cluster_data *state);
/* ========================= sysfs interface =========================== */
static ssize_t store_min_cpus(struct cpu_data *state,
static ssize_t store_min_cpus(struct cluster_data *state,
const char *buf, size_t count)
{
unsigned int val;
@ -80,12 +89,12 @@ static ssize_t store_min_cpus(struct cpu_data *state,
return count;
}
static ssize_t show_min_cpus(struct cpu_data *state, char *buf)
static ssize_t show_min_cpus(const struct cluster_data *state, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", state->min_cpus);
}
static ssize_t store_max_cpus(struct cpu_data *state,
static ssize_t store_max_cpus(struct cluster_data *state,
const char *buf, size_t count)
{
unsigned int val;
@ -101,12 +110,12 @@ static ssize_t store_max_cpus(struct cpu_data *state,
return count;
}
static ssize_t show_max_cpus(struct cpu_data *state, char *buf)
static ssize_t show_max_cpus(const struct cluster_data *state, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", state->max_cpus);
}
static ssize_t store_offline_delay_ms(struct cpu_data *state,
static ssize_t store_offline_delay_ms(struct cluster_data *state,
const char *buf, size_t count)
{
unsigned int val;
@ -120,13 +129,13 @@ static ssize_t store_offline_delay_ms(struct cpu_data *state,
return count;
}
static ssize_t show_task_thres(struct cpu_data *state, char *buf)
static ssize_t show_task_thres(const struct cluster_data *state, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", state->task_thres);
}
static ssize_t store_task_thres(struct cpu_data *state,
const char *buf, size_t count)
static ssize_t store_task_thres(struct cluster_data *state,
const char *buf, size_t count)
{
unsigned int val;
@ -142,15 +151,16 @@ static ssize_t store_task_thres(struct cpu_data *state,
return count;
}
static ssize_t show_offline_delay_ms(struct cpu_data *state, char *buf)
static ssize_t show_offline_delay_ms(const struct cluster_data *state,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", state->offline_delay_ms);
}
static ssize_t store_busy_up_thres(struct cpu_data *state,
static ssize_t store_busy_up_thres(struct cluster_data *state,
const char *buf, size_t count)
{
unsigned int val[MAX_CPUS_PER_GROUP];
unsigned int val[MAX_CPUS_PER_CLUSTER];
int ret, i;
ret = sscanf(buf, "%u %u %u %u\n", &val[0], &val[1], &val[2], &val[3]);
@ -168,21 +178,22 @@ static ssize_t store_busy_up_thres(struct cpu_data *state,
return count;
}
static ssize_t show_busy_up_thres(struct cpu_data *state, char *buf)
static ssize_t show_busy_up_thres(const struct cluster_data *state, char *buf)
{
int i, count = 0;
for (i = 0; i < state->num_cpus; i++)
count += snprintf(buf + count, PAGE_SIZE - count, "%u ",
state->busy_up_thres[i]);
count += snprintf(buf + count, PAGE_SIZE - count, "\n");
return count;
}
static ssize_t store_busy_down_thres(struct cpu_data *state,
static ssize_t store_busy_down_thres(struct cluster_data *state,
const char *buf, size_t count)
{
unsigned int val[MAX_CPUS_PER_GROUP];
unsigned int val[MAX_CPUS_PER_CLUSTER];
int ret, i;
ret = sscanf(buf, "%u %u %u %u\n", &val[0], &val[1], &val[2], &val[3]);
@ -200,18 +211,19 @@ static ssize_t store_busy_down_thres(struct cpu_data *state,
return count;
}
static ssize_t show_busy_down_thres(struct cpu_data *state, char *buf)
static ssize_t show_busy_down_thres(const struct cluster_data *state, char *buf)
{
int i, count = 0;
for (i = 0; i < state->num_cpus; i++)
count += snprintf(buf + count, PAGE_SIZE - count, "%u ",
state->busy_down_thres[i]);
count += snprintf(buf + count, PAGE_SIZE - count, "\n");
return count;
}
static ssize_t store_is_big_cluster(struct cpu_data *state,
static ssize_t store_is_big_cluster(struct cluster_data *state,
const char *buf, size_t count)
{
unsigned int val;
@ -223,12 +235,12 @@ static ssize_t store_is_big_cluster(struct cpu_data *state,
return count;
}
static ssize_t show_is_big_cluster(struct cpu_data *state, char *buf)
static ssize_t show_is_big_cluster(const struct cluster_data *state, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", state->is_big_cluster);
}
static ssize_t show_cpus(struct cpu_data *state, char *buf)
static ssize_t show_cpus(const struct cluster_data *state, char *buf)
{
struct cpu_data *c;
ssize_t count = 0;
@ -237,26 +249,27 @@ static ssize_t show_cpus(struct cpu_data *state, char *buf)
spin_lock_irqsave(&state_lock, flags);
list_for_each_entry(c, &state->lru, sib) {
count += snprintf(buf + count, PAGE_SIZE - count,
"CPU%u (%s)\n", c->cpu,
c->online ? "Online" : "Offline");
"CPU%u (%s)\n", c->cpu,
c->online ? "Online" : "Offline");
}
spin_unlock_irqrestore(&state_lock, flags);
return count;
}
static ssize_t show_need_cpus(struct cpu_data *state, char *buf)
static ssize_t show_need_cpus(const struct cluster_data *state, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", state->need_cpus);
}
static ssize_t show_online_cpus(struct cpu_data *state, char *buf)
static ssize_t show_online_cpus(const struct cluster_data *state, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", state->online_cpus);
}
static ssize_t show_global_state(struct cpu_data *state, char *buf)
static ssize_t show_global_state(const struct cluster_data *state, char *buf)
{
struct cpu_data *c;
struct cluster_data *cluster;
ssize_t count = 0;
unsigned int cpu;
@ -264,8 +277,10 @@ static ssize_t show_global_state(struct cpu_data *state, char *buf)
count += snprintf(buf + count, PAGE_SIZE - count,
"CPU%u\n", cpu);
c = &per_cpu(cpu_state, cpu);
if (!c->inited)
cluster = c->cluster;
if (!cluster || !cluster->inited)
continue;
count += snprintf(buf + count, PAGE_SIZE - count,
"\tCPU: %u\n", c->cpu);
count += snprintf(buf + count, PAGE_SIZE - count,
@ -273,69 +288,65 @@ static ssize_t show_global_state(struct cpu_data *state, char *buf)
count += snprintf(buf + count, PAGE_SIZE - count,
"\tRejected: %u\n", c->rejected);
count += snprintf(buf + count, PAGE_SIZE - count,
"\tFirst CPU: %u\n", c->first_cpu);
"\tFirst CPU: %u\n",
cluster->first_cpu);
count += snprintf(buf + count, PAGE_SIZE - count,
"\tBusy%%: %u\n", c->busy);
count += snprintf(buf + count, PAGE_SIZE - count,
"\tIs busy: %u\n", c->is_busy);
if (c->cpu != c->first_cpu)
continue;
count += snprintf(buf + count, PAGE_SIZE - count,
"\tNr running: %u\n", c->nrrun);
"\tNr running: %u\n", cluster->nrrun);
count += snprintf(buf + count, PAGE_SIZE - count,
"\tAvail CPUs: %u\n", c->avail_cpus);
"\tAvail CPUs: %u\n", cluster->avail_cpus);
count += snprintf(buf + count, PAGE_SIZE - count,
"\tNeed CPUs: %u\n", c->need_cpus);
"\tNeed CPUs: %u\n", cluster->need_cpus);
}
return count;
}
static ssize_t store_not_preferred(struct cpu_data *state,
const char *buf, size_t count)
static ssize_t store_not_preferred(struct cluster_data *state,
const char *buf, size_t count)
{
struct cpu_data *c;
unsigned int i, first_cpu;
unsigned int val[MAX_CPUS_PER_GROUP];
unsigned int i;
unsigned int val[MAX_CPUS_PER_CLUSTER];
unsigned long flags;
int ret;
ret = sscanf(buf, "%u %u %u %u\n", &val[0], &val[1], &val[2], &val[3]);
if (ret != 1 && ret != state->num_cpus)
return -EINVAL;
first_cpu = state->first_cpu;
for (i = 0; i < state->num_cpus; i++) {
c = &per_cpu(cpu_state, first_cpu);
c->not_preferred = val[i];
first_cpu++;
}
i = 0;
spin_lock_irqsave(&state_lock, flags);
list_for_each_entry(c, &state->lru, sib)
c->not_preferred = val[i++];
spin_unlock_irqrestore(&state_lock, flags);
return count;
}
static ssize_t show_not_preferred(struct cpu_data *state, char *buf)
static ssize_t show_not_preferred(const struct cluster_data *state, char *buf)
{
struct cpu_data *c;
ssize_t count = 0;
unsigned int i, first_cpu;
unsigned long flags;
first_cpu = state->first_cpu;
for (i = 0; i < state->num_cpus; i++) {
c = &per_cpu(cpu_state, first_cpu);
spin_lock_irqsave(&state_lock, flags);
list_for_each_entry(c, &state->lru, sib)
count += snprintf(buf + count, PAGE_SIZE - count,
"\tCPU:%d %u\n", first_cpu, c->not_preferred);
first_cpu++;
}
"\tCPU:%d %u\n", c->cpu, c->not_preferred);
spin_unlock_irqrestore(&state_lock, flags);
return count;
}
struct core_ctl_attr {
struct attribute attr;
ssize_t (*show)(struct cpu_data *, char *);
ssize_t (*store)(struct cpu_data *, const char *, size_t count);
ssize_t (*show)(const struct cluster_data *, char *);
ssize_t (*store)(struct cluster_data *, const char *, size_t count);
};
#define core_ctl_attr_ro(_name) \
@ -375,11 +386,11 @@ static struct attribute *default_attrs[] = {
NULL
};
#define to_cpu_data(k) container_of(k, struct cpu_data, kobj)
#define to_cluster_data(k) container_of(k, struct cluster_data, kobj)
#define to_attr(a) container_of(a, struct core_ctl_attr, attr)
static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
{
struct cpu_data *data = to_cpu_data(kobj);
struct cluster_data *data = to_cluster_data(kobj);
struct core_ctl_attr *cattr = to_attr(attr);
ssize_t ret = -EIO;
@ -392,7 +403,7 @@ static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
static ssize_t store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
struct cpu_data *data = to_cpu_data(kobj);
struct cluster_data *data = to_cluster_data(kobj);
struct core_ctl_attr *cattr = to_attr(attr);
ssize_t ret = -EIO;
@ -424,11 +435,11 @@ static struct timer_list rq_avg_timer;
static void update_running_avg(bool trigger_update)
{
int cpu;
struct cpu_data *pcpu;
int avg, iowait_avg, big_avg, old_nrrun;
s64 now;
unsigned long flags;
struct cluster_data *cluster;
unsigned int index = 0;
spin_lock_irqsave(&state_lock, flags);
@ -457,11 +468,10 @@ static void update_running_avg(bool trigger_update)
avg = (avg + NR_RUNNING_TOLERANCE) / 100;
big_avg = (big_avg + NR_RUNNING_TOLERANCE) / 100;
for_each_possible_cpu(cpu) {
pcpu = &per_cpu(cpu_state, cpu);
if (!pcpu->inited || pcpu->first_cpu != cpu)
for_each_cluster(cluster, index) {
if (!cluster->inited)
continue;
old_nrrun = pcpu->nrrun;
old_nrrun = cluster->nrrun;
/*
* Big cluster only need to take care of big tasks, but if
* there are not enough big cores, big tasks need to be run
@ -471,25 +481,27 @@ static void update_running_avg(bool trigger_update)
* is not easy to get given core control reacts much slower
* than scheduler, and can't predict scheduler's behavior.
*/
pcpu->nrrun = pcpu->is_big_cluster ? big_avg : avg;
if (pcpu->nrrun != old_nrrun) {
cluster->nrrun = cluster->is_big_cluster ? big_avg : avg;
if (cluster->nrrun != old_nrrun) {
if (trigger_update)
apply_need(pcpu);
apply_need(cluster);
else
pcpu->nrrun_changed = true;
cluster->nrrun_changed = true;
}
}
return;
}
/* adjust needed CPUs based on current runqueue information */
static unsigned int apply_task_need(struct cpu_data *f, unsigned int new_need)
static unsigned int apply_task_need(const struct cluster_data *cluster,
unsigned int new_need)
{
/* Online all cores if there are enough tasks */
if (f->nrrun >= f->task_thres)
return f->num_cpus;
if (cluster->nrrun >= cluster->task_thres)
return cluster->num_cpus;
/* only online more cores if there are tasks to run */
if (f->nrrun > new_need)
if (cluster->nrrun > new_need)
return new_need + 1;
return new_need;
@ -512,12 +524,13 @@ static void rq_avg_timer_func(unsigned long not_used)
/* ======================= load based core count ====================== */
static unsigned int apply_limits(struct cpu_data *f, unsigned int need_cpus)
static unsigned int apply_limits(const struct cluster_data *cluster,
unsigned int need_cpus)
{
return min(max(f->min_cpus, need_cpus), f->max_cpus);
return min(max(cluster->min_cpus, need_cpus), cluster->max_cpus);
}
static bool eval_need(struct cpu_data *f)
static bool eval_need(struct cluster_data *cluster)
{
unsigned long flags;
struct cpu_data *c;
@ -526,26 +539,27 @@ static bool eval_need(struct cpu_data *f)
bool need_flag = false;
s64 now;
if (unlikely(!f->inited))
if (unlikely(!cluster->inited))
return 0;
spin_lock_irqsave(&state_lock, flags);
thres_idx = f->online_cpus ? f->online_cpus - 1 : 0;
list_for_each_entry(c, &f->lru, sib) {
if (c->busy >= f->busy_up_thres[thres_idx])
thres_idx = cluster->online_cpus ? cluster->online_cpus - 1 : 0;
list_for_each_entry(c, &cluster->lru, sib) {
if (c->busy >= cluster->busy_up_thres[thres_idx])
c->is_busy = true;
else if (c->busy < f->busy_down_thres[thres_idx])
else if (c->busy < cluster->busy_down_thres[thres_idx])
c->is_busy = false;
need_cpus += c->is_busy;
}
need_cpus = apply_task_need(f, need_cpus);
need_flag = apply_limits(f, need_cpus) != apply_limits(f, f->need_cpus);
last_need = f->need_cpus;
need_cpus = apply_task_need(cluster, need_cpus);
need_flag = apply_limits(cluster, need_cpus) !=
apply_limits(cluster, cluster->need_cpus);
last_need = cluster->need_cpus;
now = ktime_to_ms(ktime_get());
if (need_cpus == last_need) {
f->need_ts = now;
cluster->need_ts = now;
spin_unlock_irqrestore(&state_lock, flags);
return 0;
}
@ -553,51 +567,50 @@ static bool eval_need(struct cpu_data *f)
if (need_cpus > last_need) {
ret = 1;
} else if (need_cpus < last_need) {
s64 elapsed = now - f->need_ts;
s64 elapsed = now - cluster->need_ts;
if (elapsed >= f->offline_delay_ms) {
if (elapsed >= cluster->offline_delay_ms) {
ret = 1;
} else {
mod_timer(&f->timer, jiffies +
msecs_to_jiffies(f->offline_delay_ms));
mod_timer(&cluster->timer, jiffies +
msecs_to_jiffies(cluster->offline_delay_ms));
}
}
if (ret) {
f->need_ts = now;
f->need_cpus = need_cpus;
cluster->need_ts = now;
cluster->need_cpus = need_cpus;
}
trace_core_ctl_eval_need(f->cpu, last_need, need_cpus,
trace_core_ctl_eval_need(cluster->first_cpu, last_need, need_cpus,
ret && need_flag);
spin_unlock_irqrestore(&state_lock, flags);
return ret && need_flag;
}
static void apply_need(struct cpu_data *f)
static void apply_need(struct cluster_data *cluster)
{
if (eval_need(f))
wake_up_hotplug_thread(f);
if (eval_need(cluster))
wake_up_hotplug_thread(cluster);
}
static int core_ctl_set_busy(unsigned int cpu, unsigned int busy)
{
struct cpu_data *c = &per_cpu(cpu_state, cpu);
struct cpu_data *f;
struct cluster_data *cluster = c->cluster;
unsigned int old_is_busy = c->is_busy;
if (!c->inited)
if (!cluster || !cluster->inited)
return 0;
f = &per_cpu(cpu_state, c->first_cpu);
update_running_avg(false);
if (c->busy == busy && !f->nrrun_changed)
if (c->busy == busy && !cluster->nrrun_changed)
return 0;
c->busy = busy;
f->nrrun_changed = false;
cluster->nrrun_changed = false;
apply_need(f);
apply_need(cluster);
trace_core_ctl_set_busy(cpu, busy, old_is_busy, c->is_busy);
return 0;
}
@ -609,46 +622,44 @@ static int core_ctl_set_busy(unsigned int cpu, unsigned int busy)
* itself or other hotplug threads because it will deadlock. Instead,
* schedule a timer to fire in next timer tick and wake up the thread.
*/
static void wake_up_hotplug_thread(struct cpu_data *state)
static void wake_up_hotplug_thread(struct cluster_data *cluster)
{
unsigned long flags;
int cpu;
struct cpu_data *pcpu;
bool no_wakeup = false;
struct cluster_data *cls;
unsigned long index = 0;
for_each_possible_cpu(cpu) {
pcpu = &per_cpu(cpu_state, cpu);
if (cpu != pcpu->first_cpu)
continue;
if (pcpu->hotplug_thread == current) {
for_each_cluster(cls, index) {
if (cls->hotplug_thread == current) {
no_wakeup = true;
break;
}
}
spin_lock_irqsave(&state->pending_lock, flags);
state->pending = true;
spin_unlock_irqrestore(&state->pending_lock, flags);
spin_lock_irqsave(&cluster->pending_lock, flags);
cluster->pending = true;
spin_unlock_irqrestore(&cluster->pending_lock, flags);
if (no_wakeup) {
spin_lock_irqsave(&state_lock, flags);
mod_timer(&state->timer, jiffies);
mod_timer(&cluster->timer, jiffies);
spin_unlock_irqrestore(&state_lock, flags);
} else {
wake_up_process(state->hotplug_thread);
wake_up_process(cluster->hotplug_thread);
}
}
static void core_ctl_timer_func(unsigned long cpu)
static void core_ctl_timer_func(unsigned long data)
{
struct cpu_data *state = &per_cpu(cpu_state, cpu);
unsigned long flags;
struct cluster_data *cluster = (struct cluster_data *) data;
if (eval_need(state)) {
spin_lock_irqsave(&state->pending_lock, flags);
state->pending = true;
spin_unlock_irqrestore(&state->pending_lock, flags);
wake_up_process(state->hotplug_thread);
if (eval_need(cluster)) {
unsigned long flags;
spin_lock_irqsave(&cluster->pending_lock, flags);
cluster->pending = true;
spin_unlock_irqrestore(&cluster->pending_lock, flags);
wake_up_process(cluster->hotplug_thread);
}
}
@ -687,20 +698,20 @@ static int core_ctl_offline_core(unsigned int cpu)
return ret;
}
static void __ref do_hotplug(struct cpu_data *f)
static void __ref do_hotplug(struct cluster_data *cluster)
{
unsigned int need;
struct cpu_data *c, *tmp;
need = apply_limits(f, f->need_cpus);
pr_debug("Trying to adjust group %u to %u\n", f->first_cpu, need);
need = apply_limits(cluster, cluster->need_cpus);
pr_debug("Trying to adjust group %u to %u\n", cluster->first_cpu, need);
if (f->online_cpus > need) {
list_for_each_entry_safe(c, tmp, &f->lru, sib) {
if (cluster->online_cpus > need) {
list_for_each_entry_safe(c, tmp, &cluster->lru, sib) {
if (!c->online)
continue;
if (f->online_cpus == need)
if (cluster->online_cpus == need)
break;
/* Don't offline busy CPUs. */
@ -716,25 +727,25 @@ static void __ref do_hotplug(struct cpu_data *f)
* If the number of online CPUs is within the limits, then
* don't force any busy CPUs offline.
*/
if (f->online_cpus <= f->max_cpus)
if (cluster->online_cpus <= cluster->max_cpus)
return;
list_for_each_entry_safe(c, tmp, &f->lru, sib) {
list_for_each_entry_safe(c, tmp, &cluster->lru, sib) {
if (!c->online)
continue;
if (f->online_cpus <= f->max_cpus)
if (cluster->online_cpus <= cluster->max_cpus)
break;
pr_debug("Trying to Offline CPU%u\n", c->cpu);
if (core_ctl_offline_core(c->cpu))
pr_debug("Unable to Offline CPU%u\n", c->cpu);
}
} else if (f->online_cpus < need) {
list_for_each_entry_safe(c, tmp, &f->lru, sib) {
} else if (cluster->online_cpus < need) {
list_for_each_entry_safe(c, tmp, &cluster->lru, sib) {
if (c->online || c->rejected || c->not_preferred)
continue;
if (f->online_cpus == need)
if (cluster->online_cpus == need)
break;
pr_debug("Trying to Online CPU%u\n", c->cpu);
@ -742,14 +753,14 @@ static void __ref do_hotplug(struct cpu_data *f)
pr_debug("Unable to Online CPU%u\n", c->cpu);
}
if (f->online_cpus == need)
if (cluster->online_cpus == need)
return;
list_for_each_entry_safe(c, tmp, &f->lru, sib) {
list_for_each_entry_safe(c, tmp, &cluster->lru, sib) {
if (c->online || c->rejected || !c->not_preferred)
continue;
if (f->online_cpus == need)
if (cluster->online_cpus == need)
break;
pr_debug("Trying to Online CPU%u\n", c->cpu);
@ -762,24 +773,24 @@ static void __ref do_hotplug(struct cpu_data *f)
static int __ref try_hotplug(void *data)
{
struct cpu_data *f = data;
struct cluster_data *cluster = data;
unsigned long flags;
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&f->pending_lock, flags);
if (!f->pending) {
spin_unlock_irqrestore(&f->pending_lock, flags);
spin_lock_irqsave(&cluster->pending_lock, flags);
if (!cluster->pending) {
spin_unlock_irqrestore(&cluster->pending_lock, flags);
schedule();
if (kthread_should_stop())
break;
spin_lock_irqsave(&f->pending_lock, flags);
spin_lock_irqsave(&cluster->pending_lock, flags);
}
set_current_state(TASK_RUNNING);
f->pending = false;
spin_unlock_irqrestore(&f->pending_lock, flags);
cluster->pending = false;
spin_unlock_irqrestore(&cluster->pending_lock, flags);
do_hotplug(f);
do_hotplug(cluster);
}
return 0;
@ -790,7 +801,7 @@ static int __ref cpu_callback(struct notifier_block *nfb,
{
uint32_t cpu = (uintptr_t)hcpu;
struct cpu_data *state = &per_cpu(cpu_state, cpu);
struct cpu_data *f;
struct cluster_data *cluster = state->cluster;
int ret = NOTIFY_OK;
unsigned long flags;
@ -798,24 +809,22 @@ static int __ref cpu_callback(struct notifier_block *nfb,
if (action & CPU_TASKS_FROZEN)
return NOTIFY_OK;
if (unlikely(!state->inited))
if (unlikely(!cluster || !cluster->inited))
return NOTIFY_OK;
f = &per_cpu(cpu_state, state->first_cpu);
switch (action) {
case CPU_UP_PREPARE:
/* If online state of CPU somehow got out of sync, fix it. */
if (state->online) {
f->online_cpus--;
cluster->online_cpus--;
state->online = false;
pr_warn("CPU%d offline when state is online\n", cpu);
}
if (state->rejected) {
state->rejected = false;
f->avail_cpus++;
cluster->avail_cpus++;
}
/*
@ -823,12 +832,13 @@ static int __ref cpu_callback(struct notifier_block *nfb,
* so that there's no race with hotplug thread bringing up more
* CPUs than necessary.
*/
if (apply_limits(f, f->need_cpus) <= f->online_cpus) {
if (apply_limits(cluster, cluster->need_cpus) <=
cluster->online_cpus) {
pr_debug("Prevent CPU%d onlining\n", cpu);
ret = NOTIFY_BAD;
} else {
state->online = true;
f->online_cpus++;
cluster->online_cpus++;
}
break;
@ -841,7 +851,7 @@ static int __ref cpu_callback(struct notifier_block *nfb,
*/
spin_lock_irqsave(&state_lock, flags);
list_del(&state->sib);
list_add_tail(&state->sib, &f->lru);
list_add_tail(&state->sib, &cluster->lru);
spin_unlock_irqrestore(&state_lock, flags);
break;
@ -849,7 +859,7 @@ static int __ref cpu_callback(struct notifier_block *nfb,
/* Move a CPU to the end of the LRU when it goes offline. */
spin_lock_irqsave(&state_lock, flags);
list_del(&state->sib);
list_add_tail(&state->sib, &f->lru);
list_add_tail(&state->sib, &cluster->lru);
spin_unlock_irqrestore(&state_lock, flags);
/* Fall through */
@ -858,25 +868,25 @@ static int __ref cpu_callback(struct notifier_block *nfb,
/* If online state of CPU somehow got out of sync, fix it. */
if (!state->online) {
f->online_cpus++;
cluster->online_cpus++;
pr_warn("CPU%d online when state is offline\n", cpu);
}
if (!state->rejected && action == CPU_UP_CANCELED) {
state->rejected = true;
f->avail_cpus--;
cluster->avail_cpus--;
}
state->online = false;
state->busy = 0;
f->online_cpus--;
cluster->online_cpus--;
break;
}
if (f->online_cpus < apply_limits(f, f->need_cpus)
&& f->online_cpus < f->avail_cpus
if (cluster->online_cpus < apply_limits(cluster, cluster->need_cpus)
&& cluster->online_cpus < cluster->avail_cpus
&& action == CPU_DEAD)
wake_up_hotplug_thread(f);
wake_up_hotplug_thread(cluster);
return ret;
}
@ -887,16 +897,28 @@ static struct notifier_block __refdata cpu_notifier = {
/* ============================ init code ============================== */
static int group_init(struct cpumask *mask)
static struct cluster_data *find_cluster_by_first_cpu(unsigned int first_cpu)
{
unsigned int i;
for (i = 0; i < num_clusters; ++i) {
if (cluster_state[i].first_cpu == first_cpu)
return &cluster_state[i];
}
return NULL;
}
static int cluster_init(const struct cpumask *mask)
{
struct device *dev;
unsigned int first_cpu = cpumask_first(mask);
struct cpu_data *f = &per_cpu(cpu_state, first_cpu);
struct cluster_data *cluster;
struct cpu_data *state;
unsigned int cpu;
struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
if (likely(f->inited))
if (find_cluster_by_first_cpu(first_cpu))
return 0;
dev = get_cpu_device(first_cpu);
@ -905,50 +927,55 @@ static int group_init(struct cpumask *mask)
pr_info("Creating CPU group %d\n", first_cpu);
f->num_cpus = cpumask_weight(mask);
if (f->num_cpus > MAX_CPUS_PER_GROUP) {
if (num_clusters == MAX_CLUSTERS) {
pr_err("Unsupported number of clusters. Only %u supported\n",
MAX_CLUSTERS);
return -EINVAL;
}
cluster = &cluster_state[num_clusters];
++num_clusters;
cluster->num_cpus = cpumask_weight(mask);
if (cluster->num_cpus > MAX_CPUS_PER_CLUSTER) {
pr_err("HW configuration not supported\n");
return -EINVAL;
}
f->min_cpus = 1;
f->max_cpus = f->num_cpus;
f->need_cpus = f->num_cpus;
f->avail_cpus = f->num_cpus;
f->offline_delay_ms = 100;
f->task_thres = UINT_MAX;
f->nrrun = f->num_cpus;
INIT_LIST_HEAD(&f->lru);
init_timer(&f->timer);
spin_lock_init(&f->pending_lock);
f->timer.function = core_ctl_timer_func;
f->timer.data = first_cpu;
cluster->first_cpu = first_cpu;
cluster->min_cpus = 1;
cluster->max_cpus = cluster->num_cpus;
cluster->need_cpus = cluster->num_cpus;
cluster->avail_cpus = cluster->num_cpus;
cluster->offline_delay_ms = 100;
cluster->task_thres = UINT_MAX;
cluster->nrrun = cluster->num_cpus;
INIT_LIST_HEAD(&cluster->lru);
init_timer(&cluster->timer);
spin_lock_init(&cluster->pending_lock);
cluster->timer.function = core_ctl_timer_func;
cluster->timer.data = (unsigned long) cluster;
for_each_cpu(cpu, mask) {
pr_info("Init CPU%u state\n", cpu);
state = &per_cpu(cpu_state, cpu);
state->cluster = cluster;
state->cpu = cpu;
state->first_cpu = first_cpu;
if (cpu_online(cpu)) {
f->online_cpus++;
cluster->online_cpus++;
state->online = true;
}
list_add_tail(&state->sib, &f->lru);
list_add_tail(&state->sib, &cluster->lru);
}
f->hotplug_thread = kthread_run(try_hotplug, (void *) f,
cluster->hotplug_thread = kthread_run(try_hotplug, (void *) cluster,
"core_ctl/%d", first_cpu);
sched_setscheduler_nocheck(f->hotplug_thread, SCHED_FIFO, &param);
sched_setscheduler_nocheck(cluster->hotplug_thread, SCHED_FIFO,
&param);
for_each_cpu(cpu, mask) {
state = &per_cpu(cpu_state, cpu);
state->inited = true;
}
cluster->inited = true;
kobject_init(&f->kobj, &ktype_core_ctl);
return kobject_add(&f->kobj, &dev->kobj, "core_ctl");
kobject_init(&cluster->kobj, &ktype_core_ctl);
return kobject_add(&cluster->kobj, &dev->kobj, "core_ctl");
}
static int cpufreq_policy_cb(struct notifier_block *nb, unsigned long val,
@ -958,7 +985,7 @@ static int cpufreq_policy_cb(struct notifier_block *nb, unsigned long val,
switch (val) {
case CPUFREQ_CREATE_POLICY:
group_init(policy->related_cpus);
cluster_init(policy->related_cpus);
break;
}
@ -1002,7 +1029,7 @@ static int __init core_ctl_init(void)
for_each_online_cpu(cpu) {
policy = cpufreq_cpu_get(cpu);
if (policy) {
group_init(policy->related_cpus);
cluster_init(policy->related_cpus);
cpufreq_cpu_put(policy);
}
}