Every time _cpu_up() is called for a CPU, idle_thread_get() is called
which then re-initializes a CPU's idle thread that was already
previously created and cached in a global variable in
smpboot.c. idle_thread_get() calls init_idle() which then calls
__sched_fork(). __sched_fork() is where cpufreq_task_times_init() is,
and cpufreq_task_times_init() allocates memory for the task struct's
time_in_state array.
Since idle_thread_get() reuses a task struct instance that was already
previously created, this means that every time it calls init_idle(),
cpufreq_task_times_init() allocates this array again and overwrites
the existing allocation that the idle thread already had.
This causes memory to be leaked every time a CPU is onlined. In order
to fix this, move allocation of time_in_state into _do_fork to avoid
allocating it at all for idle threads. The cpufreq times interface is
intended to be used for tracking userspace tasks, so we can safely
remove it from the kernel's idle threads without killing any
functionality.
But that's not all!
Task structs can be freed outside of release_task(), which creates
another memory leak because a task struct can be freed without having
its cpufreq times allocation freed. To fix this, free the cpufreq
times allocation at the same time that task struct allocations are
freed, in free_task().
Since free_task() can also be called in error paths of copy_process()
after dup_task_struct(), set time_in_state to NULL immediately after
calling dup_task_struct() to avoid possible double free.
Bug description and fix adapted from patch submitted by
Sultan Alsawaf <sultanxda@gmail.com> at
https://android-review.googlesource.com/c/kernel/msm/+/700134
Bug: 110044919
Test: Hikey960 builds, boots & reports /proc/<pid>/time_in_state
correctly
Change-Id: I12fe7611fc88eb7f6c39f8f7629ad27b6ec4722c
Signed-off-by: Connor O'Brien <connoro@google.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAlpPj0wACgkQONu9yGCS
aT5QOhAAu3PoT3472I7zuWDUG0KQo5r0wdUO+YPW31VIHrxQ2H3sxR44rSHc5jW/
tTg2TIYNBkNoj4jJDJ9J7f6PSnN1vGFglFW4GzxE3cr2+W7u5M5ex8yCYMcBIY9U
56hbyqX5lf5KjGWJiQThwYsMBokrBJW2igAFN3cW39nNABhl0W39kiysGA9vbNrV
+QMA4+ZADA2EeIRcdJmj8uc/cez/7sGAfrSktvATkI+HFamnTs0mrx9cl0eQKvjm
y5PCxYUCbi4kqD4WM+UCYO3zpUD+r4iMDXwXBwLWkFvbumY4mVTItP+gq5M4Fb1g
MSauGUGH7BDsT9gspricCMcAmjcTn6hth7/7/ZhlNq3NZv89pOquhpE0JOSAmYbA
P4WaIRRWwpVrRt+THU7vZpAQWpFSwGmtE7tBfPMt2J7zqY3lMYmO3DoA+gejw3CV
igbvmV0UY2uYSFnjawUUJ+k+ggYfGyRkUl2DfcllPhZFqE1XEi3NyjI0wi8vtXTd
UlrU55TqsldCw1bjXH3lWrpoNybWvqUD2a249ZVs/h06Q5NKwNL8mTye+2BBQtCP
QzAqHYbkBKv/f8M6Kg+HtTzgqUbWxVCeQTWFXHMAPVo4bCwGvVGrXbGJIj15lBuQ
GWqc3dt69zxpn1tlcRHKH0P3KnkC67dARtY+8F8+D+HAHVY71Bg=
=Kpwd
-----END PGP SIGNATURE-----
Merge 4.4.110 into android-4.4
Changes in 4.4.110
x86/boot: Add early cmdline parsing for options with arguments
KAISER: Kernel Address Isolation
kaiser: merged update
kaiser: do not set _PAGE_NX on pgd_none
kaiser: stack map PAGE_SIZE at THREAD_SIZE-PAGE_SIZE
kaiser: fix build and FIXME in alloc_ldt_struct()
kaiser: KAISER depends on SMP
kaiser: fix regs to do_nmi() ifndef CONFIG_KAISER
kaiser: fix perf crashes
kaiser: ENOMEM if kaiser_pagetable_walk() NULL
kaiser: tidied up asm/kaiser.h somewhat
kaiser: tidied up kaiser_add/remove_mapping slightly
kaiser: kaiser_remove_mapping() move along the pgd
kaiser: cleanups while trying for gold link
kaiser: name that 0x1000 KAISER_SHADOW_PGD_OFFSET
kaiser: delete KAISER_REAL_SWITCH option
kaiser: vmstat show NR_KAISERTABLE as nr_overhead
kaiser: enhanced by kernel and user PCIDs
kaiser: load_new_mm_cr3() let SWITCH_USER_CR3 flush user
kaiser: PCID 0 for kernel and 128 for user
kaiser: x86_cr3_pcid_noflush and x86_cr3_pcid_user
kaiser: paranoid_entry pass cr3 need to paranoid_exit
kaiser: _pgd_alloc() without __GFP_REPEAT to avoid stalls
kaiser: fix unlikely error in alloc_ldt_struct()
kaiser: add "nokaiser" boot option, using ALTERNATIVE
x86/kaiser: Rename and simplify X86_FEATURE_KAISER handling
x86/kaiser: Check boottime cmdline params
kaiser: use ALTERNATIVE instead of x86_cr3_pcid_noflush
kaiser: drop is_atomic arg to kaiser_pagetable_walk()
kaiser: asm/tlbflush.h handle noPGE at lower level
kaiser: kaiser_flush_tlb_on_return_to_user() check PCID
x86/paravirt: Dont patch flush_tlb_single
x86/kaiser: Reenable PARAVIRT
kaiser: disabled on Xen PV
x86/kaiser: Move feature detection up
KPTI: Rename to PAGE_TABLE_ISOLATION
KPTI: Report when enabled
x86, vdso, pvclock: Simplify and speed up the vdso pvclock reader
x86/vdso: Get pvclock data from the vvar VMA instead of the fixmap
x86/kasan: Clear kasan_zero_page after TLB flush
kaiser: Set _PAGE_NX only if supported
Linux 4.4.110
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Kaiser only needs to map one page of the stack; and
kernel/fork.c did not build on powerpc (no __PAGE_KERNEL).
It's all cleaner if linux/kaiser.h provides kaiser_map_thread_stack()
and kaiser_unmap_thread_stack() wrappers around asm/kaiser.h's
kaiser_add_mapping() and kaiser_remove_mapping(). And use
linux/kaiser.h in init/main.c to avoid the #ifdefs there.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch introduces our implementation of KAISER (Kernel Address Isolation to
have Side-channels Efficiently Removed), a kernel isolation technique to close
hardware side channels on kernel address information.
More information about the patch can be found on:
https://github.com/IAIK/KAISER
From: Richard Fellner <richard.fellner@student.tugraz.at>
From: Daniel Gruss <daniel.gruss@iaik.tugraz.at>
X-Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode
Date: Thu, 4 May 2017 14:26:50 +0200
Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2
Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5
To: <linux-kernel@vger.kernel.org>
To: <kernel-hardening@lists.openwall.com>
Cc: <clementine.maurice@iaik.tugraz.at>
Cc: <moritz.lipp@iaik.tugraz.at>
Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at>
Cc: Richard Fellner <richard.fellner@student.tugraz.at>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: <kirill.shutemov@linux.intel.com>
Cc: <anders.fogh@gdata-adan.de>
After several recent works [1,2,3] KASLR on x86_64 was basically
considered dead by many researchers. We have been working on an
efficient but effective fix for this problem and found that not mapping
the kernel space when running in user mode is the solution to this
problem [4] (the corresponding paper [5] will be presented at ESSoS17).
With this RFC patch we allow anybody to configure their kernel with the
flag CONFIG_KAISER to add our defense mechanism.
If there are any questions we would love to answer them.
We also appreciate any comments!
Cheers,
Daniel (+ the KAISER team from Graz University of Technology)
[1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf
[2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf
[3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf
[4] https://github.com/IAIK/KAISER
[5] https://gruss.cc/files/kaiser.pdf
[patch based also on
https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch]
Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at>
Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at>
Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at>
Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing). Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system. A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/). However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.
kcov does not aim to collect as much coverage as possible. It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g. scheduler, locking).
Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes. Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch). I've
dropped the second mode for simplicity.
This patch adds the necessary support on kernel side. The complimentary
compiler support was added in gcc revision 231296.
We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:
https://github.com/google/syzkaller/wiki/Found-Bugs
We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation". For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.
Why not gcov. Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat. A
typical coverage can be just a dozen of basic blocks (e.g. an invalid
input). In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M). Cost of
kcov depends only on number of executed basic blocks/edges. On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.
kcov exposes kernel PCs and control flow to user-space which is
insecure. But debugfs should not be mapped as user accessible.
Based on a patch by Quentin Casasnovas.
[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bug: 64145065
(cherry-picked from 5c9a8750a6409c63a0f01d51a9024861022f6593)
Change-Id: I17b5e04f6e89b241924e78ec32ead79c38b860ce
Signed-off-by: Paul Lawrence <paullawrence@google.com>
(cherry picked from commit ec8d7c14ea14922fe21945b458a75e39f11dd832)
Tetsuo has properly noted that mmput slow path might get blocked waiting
for another party (e.g. exit_aio waits for an IO). If that happens the
oom_reaper would be put out of the way and will not be able to process
next oom victim. We should strive for making this context as reliable
and independent on other subsystems as much as possible.
Introduce mmput_async which will perform the slow path from an async
(WQ) context. This will delay the operation but that shouldn't be a
problem because the oom_reaper has reclaimed the victim's address space
for most cases as much as possible and the remaining context shouldn't
bind too much memory anymore. The only exception is when mmap_sem
trylock has failed which shouldn't happen too often.
The issue is only theoretical but not impossible.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Only backports mmput_async.
Change-Id: I5fe54abcc629e7d9eab9fe03908903d1174177f1
Signed-off-by: Arve Hjønnevåg <arve@android.com>
Commit b235beea9e99 ("Clarify naming of thread info/stack allocators")
breaks the build on some powerpc configs, where THREAD_SIZE < PAGE_SIZE:
kernel/fork.c:235:2: error: implicit declaration of function 'free_thread_stack'
kernel/fork.c:355:8: error: assignment from incompatible pointer type
stack = alloc_thread_stack_node(tsk, node);
^
Fix it by renaming free_stack() to free_thread_stack(), and updating the
return type of alloc_thread_stack_node().
Fixes: b235beea9e99 ("Clarify naming of thread info/stack allocators")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bug: 38331309
Change-Id: I5b7f920b459fb84adf5fc75f83bb488b855c4deb
(cherry picked from commit 9521d39976db20f8ef9b56af66661482a17d5364)
Signed-off-by: Zubin Mithra <zsm@google.com>
We've had the thread info allocated together with the thread stack for
most architectures for a long time (since the thread_info was split off
from the task struct), but that is about to change.
But the patches that move the thread info to be off-stack (and a part of
the task struct instead) made it clear how confused the allocator and
freeing functions are.
Because the common case was that we share an allocation with the thread
stack and the thread_info, the two pointers were identical. That
identity then meant that we would have things like
ti = alloc_thread_info_node(tsk, node);
...
tsk->stack = ti;
which certainly _worked_ (since stack and thread_info have the same
value), but is rather confusing: why are we assigning a thread_info to
the stack? And if we move the thread_info away, the "confusing" code
just gets to be entirely bogus.
So remove all this confusion, and make it clear that we are doing the
stack allocation by renaming and clarifying the function names to be
about the stack. The fact that the thread_info then shares the
allocation is an implementation detail, and not really about the
allocation itself.
This is a pure renaming and type fix: we pass in the same pointer, it's
just that we clarify what the pointer means.
The ia64 code that actually only has one single allocation (for all of
task_struct, thread_info and kernel thread stack) now looks a bit odd,
but since "tsk->stack" is actually not even used there, that oddity
doesn't matter. It would be a separate thing to clean that up, I
intentionally left the ia64 changes as a pure brute-force renaming and
type change.
Acked-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bug: 38331309
Change-Id: I870b5476fc900c9145134f9dd3ed18a32a490162
(cherry picked from commit b235beea9e996a4d36fed6cfef4801a3e7d7a9a5)
Signed-off-by: Zubin Mithra <zsm@google.com>
This reverts commit 9d19f72b43.
This fixes CVE-2017-0710.
SELinux allows more fine grained control: We grant processes that need
access to smaps CAP_SYS_PTRACE but prohibit them from using ptrace
attach().
Bug: 34951864
Bug: 36468447
Change-Id: I8ea67f8771ec212950bc251ee750bd8a7e7c0643
Signed-off-by: Daniel Mentz <danielmentz@google.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAllBIXAACgkQONu9yGCS
aT6T+w//VjXDZ+MddWJ4UeQDyIANYeFpa4tJNoqR3JsnT6yg1HODRZDR7aP5QJmN
GIoRWU/2Q2nmYbAO0c8RPxs07w2xtIZzTUn+H+i6sG7bRs5RbLM5AMg4W/A/X88L
V5c34kCvCf1HRfrdd4rXIZiibFnSZGqUv6o1YyQqCIvx15pyB6elMM714zt8uubk
iL4/WJ2M4SrmamHWA349ldEtPjQKpwpwdBcCn+M4awbimdc0pm8oZqNkAfwJ+vLO
HsuClO57I699ESU2Zt5bfEdVsW/gc7WiJOAr1Mrl2suToryrWfs2YT+sC/IQhkfC
gUsi9Cm/6YMu+tiP4o6aqYvTFoFplFErpEbC3mqAEvHGGHKhrgEDotYJ+FnvI3q7
Jaxix0B/Q/NIqsJPnqe5ONOCKFmW7rGR2e2j5+45GuiofioNVNF12HWfQkoItPOL
YeR2JB8K9aywzYM4gaJuy8ScJ1shN8TY1FKgZa5gBT2ym4pDDcQmxz7Jr7agREHe
F2sJ23zMU+o9guGA4Is2yqWCQ5yM+3kpPPISz+Pcgh8Q95o+ftCSyOeB2F5roW8I
EO22AlJPlQH0LWDQhOJ5ZuAVe+qB8EdrQqqdLbP4/oHp7MtlR5ge+idRuZc+AUsa
UoASccPsEwHyBErQmHoWNI4nPRciFrKliOqERmPLcuzewUwSatw=
=wXRR
-----END PGP SIGNATURE-----
Merge 4.4.72 into android-4.4
Changes in 4.4.72
bnx2x: Fix Multi-Cos
ipv6: xfrm: Handle errors reported by xfrm6_find_1stfragopt()
cxgb4: avoid enabling napi twice to the same queue
tcp: disallow cwnd undo when switching congestion control
vxlan: fix use-after-free on deletion
ipv6: Fix leak in ipv6_gso_segment().
net: ping: do not abuse udp_poll()
net: ethoc: enable NAPI before poll may be scheduled
net: bridge: start hello timer only if device is up
sparc64: mm: fix copy_tsb to correctly copy huge page TSBs
sparc: Machine description indices can vary
sparc64: reset mm cpumask after wrap
sparc64: combine activate_mm and switch_mm
sparc64: redefine first version
sparc64: add per-cpu mm of secondary contexts
sparc64: new context wrap
sparc64: delete old wrap code
arch/sparc: support NR_CPUS = 4096
serial: ifx6x60: fix use-after-free on module unload
ptrace: Properly initialize ptracer_cred on fork
KEYS: fix dereferencing NULL payload with nonzero length
KEYS: fix freeing uninitialized memory in key_update()
crypto: gcm - wait for crypto op not signal safe
drm/amdgpu/ci: disable mclk switching for high refresh rates (v2)
nfsd4: fix null dereference on replay
nfsd: Fix up the "supattr_exclcreat" attributes
kvm: async_pf: fix rcu_irq_enter() with irqs enabled
KVM: cpuid: Fix read/write out-of-bounds vulnerability in cpuid emulation
arm: KVM: Allow unaligned accesses at HYP
KVM: async_pf: avoid async pf injection when in guest mode
dmaengine: usb-dmac: Fix DMAOR AE bit definition
dmaengine: ep93xx: Always start from BASE0
xen/privcmd: Support correctly 64KB page granularity when mapping memory
xen-netfront: do not cast grant table reference to signed short
xen-netfront: cast grant table reference first to type int
ext4: fix SEEK_HOLE
ext4: keep existing extra fields when inode expands
ext4: fix fdatasync(2) after extent manipulation operations
usb: gadget: f_mass_storage: Serialize wake and sleep execution
usb: chipidea: udc: fix NULL pointer dereference if udc_start failed
usb: chipidea: debug: check before accessing ci_role
staging/lustre/lov: remove set_fs() call from lov_getstripe()
iio: light: ltr501 Fix interchanged als/ps register field
iio: proximity: as3935: fix AS3935_INT mask
drivers: char: random: add get_random_long()
random: properly align get_random_int_hash
stackprotector: Increase the per-task stack canary's random range from 32 bits to 64 bits on 64-bit platforms
cpufreq: cpufreq_register_driver() should return -ENODEV if init fails
target: Re-add check to reject control WRITEs with overflow data
drm/msm: Expose our reservation object when exporting a dmabuf.
Input: elantech - add Fujitsu Lifebook E546/E557 to force crc_enabled
cpuset: consider dying css as offline
fs: add i_blocksize()
ufs: restore proper tail allocation
fix ufs_isblockset()
ufs: restore maintaining ->i_blocks
ufs: set correct ->s_maxsize
ufs_extend_tail(): fix the braino in calling conventions of ufs_new_fragments()
ufs_getfrag_block(): we only grab ->truncate_mutex on block creation path
cxl: Fix error path on bad ioctl
btrfs: use correct types for page indices in btrfs_page_exists_in_range
btrfs: fix memory leak in update_space_info failure path
KVM: arm/arm64: Handle possible NULL stage2 pud when ageing pages
scsi: qla2xxx: don't disable a not previously enabled PCI device
powerpc/eeh: Avoid use after free in eeh_handle_special_event()
powerpc/numa: Fix percpu allocations to be NUMA aware
powerpc/hotplug-mem: Fix missing endian conversion of aa_index
perf/core: Drop kernel samples even though :u is specified
drm/vmwgfx: Handle vmalloc() failure in vmw_local_fifo_reserve()
drm/vmwgfx: limit the number of mip levels in vmw_gb_surface_define_ioctl()
drm/vmwgfx: Make sure backup_handle is always valid
drm/nouveau/tmr: fully separate alarm execution/pending lists
ALSA: timer: Fix race between read and ioctl
ALSA: timer: Fix missing queue indices reset at SNDRV_TIMER_IOCTL_SELECT
ASoC: Fix use-after-free at card unregistration
drivers: char: mem: Fix wraparound check to allow mappings up to the end
tty: Drop krefs for interrupted tty lock
serial: sh-sci: Fix panic when serial console and DMA are enabled
net: better skb->sender_cpu and skb->napi_id cohabitation
mm: consider memblock reservations for deferred memory initialization sizing
NFS: Ensure we revalidate attributes before using execute_ok()
NFSv4: Don't perform cached access checks before we've OPENed the file
Make __xfs_xattr_put_listen preperly report errors.
arm64: hw_breakpoint: fix watchpoint matching for tagged pointers
arm64: entry: improve data abort handling of tagged pointers
RDMA/qib,hfi1: Fix MR reference count leak on write with immediate
usercopy: Adjust tests to deal with SMAP/PAN
arm64: armv8_deprecated: ensure extension of addr
arm64: ensure extension of smp_store_release value
Linux 4.4.72
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
commit 5ea30e4e58040cfd6434c2f33dc3ea76e2c15b05 upstream.
The stack canary is an 'unsigned long' and should be fully initialized to
random data rather than only 32 bits of random data.
Signed-off-by: Daniel Micay <danielmicay@gmail.com>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Arjan van Ven <arjan@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-hardening@lists.openwall.com
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20170504133209.3053-1-danielmicay@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAlkm0zAACgkQONu9yGCS
aT5QnxAAh9uZYFJtQ7wYngD7cQcDH1KVztqEYxCP5OtxzAZBrSNBufLdhKBbc1ZP
C04Mo+FzzNiJtBwkmlOqYaEPYUSx/uwCEk9mNX85VtchIhKBrwWF7GxkeXCPs6e5
yP5TUXmxbbSp3qM4q2Z4XSW8eEPZ2l3zoy0fkjz2kS02e4RW0yQ34dvzw0BG2urr
+9ocyVjDBoU3QNKyVw3fd1AltKesSZK0fa2vEO+TOTW6Bm3xD4egCJdOzu9saUwK
hfSKXsJ0/pf1r1iyfz2foR/Hi3i4j6vRqnneyqozT7nxEJEuBQ3B5WhnsbDfzrXu
+CY23KBkDkQ1RBngmtTQd3ABHEN1E2StpBImG5RUr+5giV6/e4rdz0/HWGMvCvAz
iWqXdgZNdCnc96HPEWaDGUKxndCxsiaJOhgZwW2zm/0drVWRE+vjsOmFLyUp2Ky1
1vnKfwlvTFU4xjQ5H44AuuSHQsv+GNEtPPIHrbBv/wg90/2VuF0aYuNYjHSsc4Ca
3YM53S6/sjQqmsKixWboax8Kh2wRrEuFbqSFQV64JjFpGau61JQFMtRNl4+FFXzm
Cm+26Fan4Wtyo5zB9xnBZbDwCOXqwTXQYUP2SejtObq+Uk2tXxF05emeta9pURF3
vdgv6N0cTPm4K3VZyBZvj8JitEr2OEaIxoUqE2BXkA1MPmbqOoI=
=Z1no
-----END PGP SIGNATURE-----
Merge 4.4.70 into android-4.4
Changes in 4.4.70
usb: misc: legousbtower: Fix buffers on stack
usb: misc: legousbtower: Fix memory leak
USB: ene_usb6250: fix DMA to the stack
watchdog: pcwd_usb: fix NULL-deref at probe
char: lp: fix possible integer overflow in lp_setup()
USB: core: replace %p with %pK
ARM: tegra: paz00: Mark panel regulator as enabled on boot
tpm_crb: check for bad response size
infiniband: call ipv6 route lookup via the stub interface
dm btree: fix for dm_btree_find_lowest_key()
dm raid: select the Kconfig option CONFIG_MD_RAID0
dm bufio: avoid a possible ABBA deadlock
dm bufio: check new buffer allocation watermark every 30 seconds
dm cache metadata: fail operations if fail_io mode has been established
dm bufio: make the parameter "retain_bytes" unsigned long
dm thin metadata: call precommit before saving the roots
dm space map disk: fix some book keeping in the disk space map
md: update slab_cache before releasing new stripes when stripes resizing
rtlwifi: rtl8821ae: setup 8812ae RFE according to device type
mwifiex: pcie: fix cmd_buf use-after-free in remove/reset
ima: accept previously set IMA_NEW_FILE
KVM: x86: Fix load damaged SSEx MXCSR register
KVM: X86: Fix read out-of-bounds vulnerability in kvm pio emulation
regulator: tps65023: Fix inverted core enable logic.
s390/kdump: Add final note
s390/cputime: fix incorrect system time
ath9k_htc: Add support of AirTies 1eda:2315 AR9271 device
ath9k_htc: fix NULL-deref at probe
drm/amdgpu: Avoid overflows/divide-by-zero in latency_watermark calculations.
drm/amdgpu: Make display watermark calculations more accurate
drm/nouveau/therm: remove ineffective workarounds for alarm bugs
drm/nouveau/tmr: ack interrupt before processing alarms
drm/nouveau/tmr: fix corruption of the pending list when rescheduling an alarm
drm/nouveau/tmr: avoid processing completed alarms when adding a new one
drm/nouveau/tmr: handle races with hw when updating the next alarm time
cdc-acm: fix possible invalid access when processing notification
proc: Fix unbalanced hard link numbers
of: fix sparse warning in of_pci_range_parser_one
iio: dac: ad7303: fix channel description
pid_ns: Sleep in TASK_INTERRUPTIBLE in zap_pid_ns_processes
pid_ns: Fix race between setns'ed fork() and zap_pid_ns_processes()
USB: serial: ftdi_sio: fix setting latency for unprivileged users
USB: serial: ftdi_sio: add Olimex ARM-USB-TINY(H) PIDs
ext4 crypto: don't let data integrity writebacks fail with ENOMEM
ext4 crypto: fix some error handling
net: qmi_wwan: Add SIMCom 7230E
fscrypt: fix context consistency check when key(s) unavailable
f2fs: check entire encrypted bigname when finding a dentry
fscrypt: avoid collisions when presenting long encrypted filenames
sched/fair: Do not announce throttled next buddy in dequeue_task_fair()
sched/fair: Initialize throttle_count for new task-groups lazily
usb: host: xhci-plat: propagate return value of platform_get_irq()
xhci: apply PME_STUCK_QUIRK and MISSING_CAS quirk for Denverton
usb: host: xhci-mem: allocate zeroed Scratchpad Buffer
net: irda: irda-usb: fix firmware name on big-endian hosts
usbvision: fix NULL-deref at probe
mceusb: fix NULL-deref at probe
ttusb2: limit messages to buffer size
usb: musb: tusb6010_omap: Do not reset the other direction's packet size
USB: iowarrior: fix info ioctl on big-endian hosts
usb: serial: option: add Telit ME910 support
USB: serial: qcserial: add more Lenovo EM74xx device IDs
USB: serial: mct_u232: fix big-endian baud-rate handling
USB: serial: io_ti: fix div-by-zero in set_termios
USB: hub: fix SS hub-descriptor handling
USB: hub: fix non-SS hub-descriptor handling
ipx: call ipxitf_put() in ioctl error path
iio: proximity: as3935: fix as3935_write
ceph: fix recursion between ceph_set_acl() and __ceph_setattr()
gspca: konica: add missing endpoint sanity check
s5p-mfc: Fix unbalanced call to clock management
dib0700: fix NULL-deref at probe
zr364xx: enforce minimum size when reading header
dvb-frontends/cxd2841er: define symbol_rate_min/max in T/C fe-ops
cx231xx-audio: fix init error path
cx231xx-audio: fix NULL-deref at probe
cx231xx-cards: fix NULL-deref at probe
powerpc/book3s/mce: Move add_taint() later in virtual mode
powerpc/pseries: Fix of_node_put() underflow during DLPAR remove
powerpc/64e: Fix hang when debugging programs with relocated kernel
ARM: dts: at91: sama5d3_xplained: fix ADC vref
ARM: dts: at91: sama5d3_xplained: not all ADC channels are available
arm64: xchg: hazard against entire exchange variable
arm64: uaccess: ensure extension of access_ok() addr
arm64: documentation: document tagged pointer stack constraints
xc2028: Fix use-after-free bug properly
mm/huge_memory.c: respect FOLL_FORCE/FOLL_COW for thp
staging: rtl8192e: fix 2 byte alignment of register BSSIDR.
staging: rtl8192e: rtl92e_get_eeprom_size Fix read size of EPROM_CMD.
iommu/vt-d: Flush the IOTLB to get rid of the initial kdump mappings
metag/uaccess: Fix access_ok()
metag/uaccess: Check access_ok in strncpy_from_user
uwb: fix device quirk on big-endian hosts
genirq: Fix chained interrupt data ordering
osf_wait4(): fix infoleak
tracing/kprobes: Enforce kprobes teardown after testing
PCI: Fix pci_mmap_fits() for HAVE_PCI_RESOURCE_TO_USER platforms
PCI: Freeze PME scan before suspending devices
drm/edid: Add 10 bpc quirk for LGD 764 panel in HP zBook 17 G2
nfsd: encoders mustn't use unitialized values in error cases
drivers: char: mem: Check for address space wraparound with mmap()
Linux 4.4.70
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
commit 3fd37226216620c1a468afa999739d5016fbc349 upstream.
Imagine we have a pid namespace and a task from its parent's pid_ns,
which made setns() to the pid namespace. The task is doing fork(),
while the pid namespace's child reaper is dying. We have the race
between them:
Task from parent pid_ns Child reaper
copy_process() ..
alloc_pid() ..
.. zap_pid_ns_processes()
.. disable_pid_allocation()
.. read_lock(&tasklist_lock)
.. iterate over pids in pid_ns
.. kill tasks linked to pids
.. read_unlock(&tasklist_lock)
write_lock_irq(&tasklist_lock); ..
attach_pid(p, PIDTYPE_PID); ..
.. ..
So, just created task p won't receive SIGKILL signal,
and the pid namespace will be in contradictory state.
Only manual kill will help there, but does the userspace
care about this? I suppose, the most users just inject
a task into a pid namespace and wait a SIGCHLD from it.
The patch fixes the problem. It simply checks for
(pid_ns->nr_hashed & PIDNS_HASH_ADDING) in copy_process().
We do it under the tasklist_lock, and can't skip
PIDNS_HASH_ADDING as noted by Oleg:
"zap_pid_ns_processes() does disable_pid_allocation()
and then takes tasklist_lock to kill the whole namespace.
Given that copy_process() checks PIDNS_HASH_ADDING
under write_lock(tasklist) they can't race;
if copy_process() takes this lock first, the new child will
be killed, otherwise copy_process() can't miss
the change in ->nr_hashed."
If allocation is disabled, we just return -ENOMEM
like it's made for such cases in alloc_pid().
v2: Do not move disable_pid_allocation(), do not
introduce a new variable in copy_process() and simplify
the patch as suggested by Oleg Nesterov.
Account the problem with double irq enabling
found by Eric W. Biederman.
Fixes: c876ad7682 ("pidns: Stop pid allocation when init dies")
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Ingo Molnar <mingo@kernel.org>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Oleg Nesterov <oleg@redhat.com>
CC: Mike Rapoport <rppt@linux.vnet.ibm.com>
CC: Michal Hocko <mhocko@suse.com>
CC: Andy Lutomirski <luto@kernel.org>
CC: "Eric W. Biederman" <ebiederm@xmission.com>
CC: Andrei Vagin <avagin@openvz.org>
CC: Cyrill Gorcunov <gorcunov@openvz.org>
CC: Serge Hallyn <serge@hallyn.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAljXlGkACgkQONu9yGCS
aT6/mw/9G7QpBoLEwnQbw2NVeboOiM0E9iejUkwsZQzlWspREh43qW0x5Nwk9rxl
y+OAgiYzF6z2hxV6hHNaswEYdIzOBkSjMq2Xbjmjrbj3H8sv5GWT8yD9Cxmaoerx
oBJ21Pe7tMK5IQnThOLRef8ZVtCLKPlr789ifCzg7iuRUnzCdV2eyrthzgkfmt4y
rSHjoSGji1RaC9O7/7DmBvQAosfzr/eSopHz0cbLWLS17OfJ+Xa7+6xb42uzENq6
3mZUCyT0kg8Abz3e9E2wAmKyODkGnX7fPl97Mop5vwflrZTajWMqeCTi75SMIOgj
TONSTi5NIASjS9AKB/UTphXrGEmQV/tU+GaUB3eYqsJQygFQQgllL2S+nLaSQ2u4
LguWDltAfz0mY3/zv5bmf3C7LmpkBxJceaEAMYhsLmJsENsbPO1rRt3plSu9dNGv
f1g3p4xktE2BZMbsKbMZ78CsCe5gYitx/nEzCqpQsqNasw/C99N/I24nAF7g5OOa
Kwo9mY+hjamiqPdiII5rYiPnta/358xITLoLzemLbgjtfuLC5NGO3SppUZvW5DXW
bmn1MwChSqdNRGLeOpdlQ7lrE4DFUtIzA78WHdj7jsJgUpJGFKyZSbhAhXPX3ryV
Jqcngw/eSRtrkU6P7ZpZzFVUun98eLpIfbKgR/UMROjZIGmCrlA=
=sriX
-----END PGP SIGNATURE-----
Merge 4.4.57 to android-4.4
Changes in 4.4.57:
usb: core: hub: hub_port_init lock controller instead of bus
USB: don't free bandwidth_mutex too early
crypto: ghash-clmulni - Fix load failure
crypto: cryptd - Assign statesize properly
crypto: mcryptd - Fix load failure
cxlflash: Increase cmd_per_lun for better throughput
ACPI / video: skip evaluating _DOD when it does not exist
pinctrl: cherryview: Do not mask all interrupts in probe
Drivers: hv: balloon: don't crash when memory is added in non-sorted order
Drivers: hv: avoid vfree() on crash
xen/qspinlock: Don't kick CPU if IRQ is not initialized
KVM: PPC: Book3S PR: Fix illegal opcode emulation
s390/pci: fix use after free in dma_init
drm/amdgpu: add missing irq.h include
tpm_tis: Use devm_free_irq not free_irq
hv_netvsc: use skb_get_hash() instead of a homegrown implementation
kernek/fork.c: allocate idle task for a CPU always on its local node
give up on gcc ilog2() constant optimizations
perf/core: Fix event inheritance on fork()
cpufreq: Fix and clean up show_cpuinfo_cur_freq()
powerpc/boot: Fix zImage TOC alignment
md/raid1/10: fix potential deadlock
target/pscsi: Fix TYPE_TAPE + TYPE_MEDIMUM_CHANGER export
scsi: lpfc: Add shutdown method for kexec
scsi: libiscsi: add lock around task lists to fix list corruption regression
target: Fix VERIFY_16 handling in sbc_parse_cdb
isdn/gigaset: fix NULL-deref at probe
gfs2: Avoid alignment hole in struct lm_lockname
percpu: acquire pcpu_lock when updating pcpu_nr_empty_pop_pages
ext4: fix fencepost in s_first_meta_bg validation
Linux 4.4.57
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
commit 725fc629ff2545b061407305ae51016c9f928fce upstream.
Linux preallocates the task structs of the idle tasks for all possible
CPUs. This currently means they all end up on node 0. This also
implies that the cache line of MWAIT, which is around the flags field in
the task struct, are all located in node 0.
We see a noticeable performance improvement on Knights Landing CPUs when
the cache lines used for MWAIT are located in the local nodes of the
CPUs using them. I would expect this to give a (likely slight)
improvement on other systems too.
The patch implements placing the idle task in the node of its CPUs, by
passing the right target node to copy_process()
[akpm@linux-foundation.org: use NUMA_NO_NODE, not a bare -1]
Link: http://lkml.kernel.org/r/1463492694-15833-1-git-send-email-andi@firstfloor.org
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bfedb589252c01fa505ac9f6f2a3d5d68d707ef4 upstream.
During exec dumpable is cleared if the file that is being executed is
not readable by the user executing the file. A bug in
ptrace_may_access allows reading the file if the executable happens to
enter into a subordinate user namespace (aka clone(CLONE_NEWUSER),
unshare(CLONE_NEWUSER), or setns(fd, CLONE_NEWUSER).
This problem is fixed with only necessary userspace breakage by adding
a user namespace owner to mm_struct, captured at the time of exec, so
it is clear in which user namespace CAP_SYS_PTRACE must be present in
to be able to safely give read permission to the executable.
The function ptrace_may_access is modified to verify that the ptracer
has CAP_SYS_ADMIN in task->mm->user_ns instead of task->cred->user_ns.
This ensures that if the task changes it's cred into a subordinate
user namespace it does not become ptraceable.
The function ptrace_attach is modified to only set PT_PTRACE_CAP when
CAP_SYS_PTRACE is held over task->mm->user_ns. The intent of
PT_PTRACE_CAP is to be a flag to note that whatever permission changes
the task might go through the tracer has sufficient permissions for
it not to be an issue. task->cred->user_ns is always the same
as or descendent of mm->user_ns. Which guarantees that having
CAP_SYS_PTRACE over mm->user_ns is the worst case for the tasks
credentials.
To prevent regressions mm->dumpable and mm->user_ns are not considered
when a task has no mm. As simply failing ptrace_may_attach causes
regressions in privileged applications attempting to read things
such as /proc/<pid>/stat
Acked-by: Kees Cook <keescook@chromium.org>
Tested-by: Cyrill Gorcunov <gorcunov@openvz.org>
Fixes: 8409cca705 ("userns: allow ptrace from non-init user namespaces")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 735f2770a770156100f534646158cb58cb8b2939 upstream.
Commit fec1d01152 ("[PATCH] Disable CLONE_CHILD_CLEARTID for abnormal
exit") has caused a subtle regression in nscd which uses
CLONE_CHILD_CLEARTID to clear the nscd_certainly_running flag in the
shared databases, so that the clients are notified when nscd is
restarted. Now, when nscd uses a non-persistent database, clients that
have it mapped keep thinking the database is being updated by nscd, when
in fact nscd has created a new (anonymous) one (for non-persistent
databases it uses an unlinked file as backend).
The original proposal for the CLONE_CHILD_CLEARTID change claimed
(https://lkml.org/lkml/2006/10/25/233):
: The NPTL library uses the CLONE_CHILD_CLEARTID flag on clone() syscalls
: on behalf of pthread_create() library calls. This feature is used to
: request that the kernel clear the thread-id in user space (at an address
: provided in the syscall) when the thread disassociates itself from the
: address space, which is done in mm_release().
:
: Unfortunately, when a multi-threaded process incurs a core dump (such as
: from a SIGSEGV), the core-dumping thread sends SIGKILL signals to all of
: the other threads, which then proceed to clear their user-space tids
: before synchronizing in exit_mm() with the start of core dumping. This
: misrepresents the state of process's address space at the time of the
: SIGSEGV and makes it more difficult for someone to debug NPTL and glibc
: problems (misleading him/her to conclude that the threads had gone away
: before the fault).
:
: The fix below is to simply avoid the CLONE_CHILD_CLEARTID action if a
: core dump has been initiated.
The resulting patch from Roland (https://lkml.org/lkml/2006/10/26/269)
seems to have a larger scope than the original patch asked for. It
seems that limitting the scope of the check to core dumping should work
for SIGSEGV issue describe above.
[Changelog partly based on Andreas' description]
Fixes: fec1d01152 ("[PATCH] Disable CLONE_CHILD_CLEARTID for abnormal exit")
Link: http://lkml.kernel.org/r/1471968749-26173-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Tested-by: William Preston <wpreston@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Roland McGrath <roland@hack.frob.com>
Cc: Andreas Schwab <schwab@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cd81a9170e69e018bbaba547c1fd85a585f5697a upstream.
For more convenient access if one has a pointer to the task.
As a minor nit take advantage of the fact that only task lock + rcu are
needed to safely grab ->exe_file. This saves mm refcount dance.
Use the helper in proc_exe_link.
Signed-off-by: Mateusz Guzik <mguzik@redhat.com>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 568ac888215c7fb2fabe8ea739b00ec3c1f5d440 upstream.
cgroup_threadgroup_rwsem is acquired in read mode during process exit
and fork. It is also grabbed in write mode during
__cgroups_proc_write(). I've recently run into a scenario with lots
of memory pressure and OOM and I am beginning to see
systemd
__switch_to+0x1f8/0x350
__schedule+0x30c/0x990
schedule+0x48/0xc0
percpu_down_write+0x114/0x170
__cgroup_procs_write.isra.12+0xb8/0x3c0
cgroup_file_write+0x74/0x1a0
kernfs_fop_write+0x188/0x200
__vfs_write+0x6c/0xe0
vfs_write+0xc0/0x230
SyS_write+0x6c/0x110
system_call+0x38/0xb4
This thread is waiting on the reader of cgroup_threadgroup_rwsem to
exit. The reader itself is under memory pressure and has gone into
reclaim after fork. There are times the reader also ends up waiting on
oom_lock as well.
__switch_to+0x1f8/0x350
__schedule+0x30c/0x990
schedule+0x48/0xc0
jbd2_log_wait_commit+0xd4/0x180
ext4_evict_inode+0x88/0x5c0
evict+0xf8/0x2a0
dispose_list+0x50/0x80
prune_icache_sb+0x6c/0x90
super_cache_scan+0x190/0x210
shrink_slab.part.15+0x22c/0x4c0
shrink_zone+0x288/0x3c0
do_try_to_free_pages+0x1dc/0x590
try_to_free_pages+0xdc/0x260
__alloc_pages_nodemask+0x72c/0xc90
alloc_pages_current+0xb4/0x1a0
page_table_alloc+0xc0/0x170
__pte_alloc+0x58/0x1f0
copy_page_range+0x4ec/0x950
copy_process.isra.5+0x15a0/0x1870
_do_fork+0xa8/0x4b0
ppc_clone+0x8/0xc
In the meanwhile, all processes exiting/forking are blocked almost
stalling the system.
This patch moves the threadgroup_change_begin from before
cgroup_fork() to just before cgroup_canfork(). There is no nee to
worry about threadgroup changes till the task is actually added to the
threadgroup. This avoids having to call reclaim with
cgroup_threadgroup_rwsem held.
tj: Subject and description edits.
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
cgroup_threadgroup_rwsem is acquired in read mode during process exit
and fork. It is also grabbed in write mode during
__cgroups_proc_write(). I've recently run into a scenario with lots
of memory pressure and OOM and I am beginning to see
systemd
__switch_to+0x1f8/0x350
__schedule+0x30c/0x990
schedule+0x48/0xc0
percpu_down_write+0x114/0x170
__cgroup_procs_write.isra.12+0xb8/0x3c0
cgroup_file_write+0x74/0x1a0
kernfs_fop_write+0x188/0x200
__vfs_write+0x6c/0xe0
vfs_write+0xc0/0x230
SyS_write+0x6c/0x110
system_call+0x38/0xb4
This thread is waiting on the reader of cgroup_threadgroup_rwsem to
exit. The reader itself is under memory pressure and has gone into
reclaim after fork. There are times the reader also ends up waiting on
oom_lock as well.
__switch_to+0x1f8/0x350
__schedule+0x30c/0x990
schedule+0x48/0xc0
jbd2_log_wait_commit+0xd4/0x180
ext4_evict_inode+0x88/0x5c0
evict+0xf8/0x2a0
dispose_list+0x50/0x80
prune_icache_sb+0x6c/0x90
super_cache_scan+0x190/0x210
shrink_slab.part.15+0x22c/0x4c0
shrink_zone+0x288/0x3c0
do_try_to_free_pages+0x1dc/0x590
try_to_free_pages+0xdc/0x260
__alloc_pages_nodemask+0x72c/0xc90
alloc_pages_current+0xb4/0x1a0
page_table_alloc+0xc0/0x170
__pte_alloc+0x58/0x1f0
copy_page_range+0x4ec/0x950
copy_process.isra.5+0x15a0/0x1870
_do_fork+0xa8/0x4b0
ppc_clone+0x8/0xc
In the meanwhile, all processes exiting/forking are blocked almost
stalling the system.
This patch moves the threadgroup_change_begin from before
cgroup_fork() to just before cgroup_canfork(). There is no nee to
worry about threadgroup changes till the task is actually added to the
threadgroup. This avoids having to call reclaim with
cgroup_threadgroup_rwsem held.
tj: Subject and description edits.
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org # v4.2+
Signed-off-by: Tejun Heo <tj@kernel.org>
[jstultz: Cherry-picked from:
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup.git 568ac888215c7f]
Change-Id: Ie8ece84fb613cf6a7b08cea1468473a8df2b9661
Signed-off-by: John Stultz <john.stultz@linaro.org>
In the following commit:
7675104990 ("sched: Implement lockless wake-queues")
we gained lockless wake-queues.
The -RT kernel managed to lockup itself with those. There could be multiple
attempts for task X to enqueue it for a wakeup _even_ if task X is already
running.
The reason is that task X could be runnable but not yet on CPU. The the
task performing the wakeup did not leave the CPU it could performe
multiple wakeups.
With the proper timming task X could be running and enqueued for a
wakeup. If this happens while X is performing a fork() then its its
child will have a !NULL `wake_q` member copied.
This is not a problem as long as the child task does not participate in
lockless wakeups :)
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 7675104990 ("sched: Implement lockless wake-queues")
Link: http://lkml.kernel.org/r/20151221171710.GA5499@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If the new child migrates to another cgroup before cgroup_post_fork() calls
subsys->fork(), then both pids_can_attach() and pids_fork() will do the same
pids_uncharge(old_pids) + pids_charge(pids) sequence twice.
Change copy_process() to call threadgroup_change_begin/threadgroup_change_end
unconditionally. percpu_down_read() is cheap and this allows other cleanups,
see the next changes.
Also, this way we can unify cgroup_threadgroup_rwsem and dup_mmap_sem.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Merge patch-bomb from Andrew Morton:
- inotify tweaks
- some ocfs2 updates (many more are awaiting review)
- various misc bits
- kernel/watchdog.c updates
- Some of mm. I have a huge number of MM patches this time and quite a
lot of it is quite difficult and much will be held over to next time.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (162 commits)
selftests: vm: add tests for lock on fault
mm: mlock: add mlock flags to enable VM_LOCKONFAULT usage
mm: introduce VM_LOCKONFAULT
mm: mlock: add new mlock system call
mm: mlock: refactor mlock, munlock, and munlockall code
kasan: always taint kernel on report
mm, slub, kasan: enable user tracking by default with KASAN=y
kasan: use IS_ALIGNED in memory_is_poisoned_8()
kasan: Fix a type conversion error
lib: test_kasan: add some testcases
kasan: update reference to kasan prototype repo
kasan: move KASAN_SANITIZE in arch/x86/boot/Makefile
kasan: various fixes in documentation
kasan: update log messages
kasan: accurately determine the type of the bad access
kasan: update reported bug types for kernel memory accesses
kasan: update reported bug types for not user nor kernel memory accesses
mm/kasan: prevent deadlock in kasan reporting
mm/kasan: don't use kasan shadow pointer in generic functions
mm/kasan: MODULE_VADDR is not available on all archs
...
The cost of faulting in all memory to be locked can be very high when
working with large mappings. If only portions of the mapping will be used
this can incur a high penalty for locking.
For the example of a large file, this is the usage pattern for a large
statical language model (probably applies to other statical or graphical
models as well). For the security example, any application transacting in
data that cannot be swapped out (credit card data, medical records, etc).
This patch introduces the ability to request that pages are not
pre-faulted, but are placed on the unevictable LRU when they are finally
faulted in. The VM_LOCKONFAULT flag will be used together with VM_LOCKED
and has no effect when set without VM_LOCKED. Setting the VM_LOCKONFAULT
flag for a VMA will cause pages faulted into that VMA to be added to the
unevictable LRU when they are faulted or if they are already present, but
will not cause any missing pages to be faulted in.
Exposing this new lock state means that we cannot overload the meaning of
the FOLL_POPULATE flag any longer. Prior to this patch it was used to
mean that the VMA for a fault was locked. This means we need the new
FOLL_MLOCK flag to communicate the locked state of a VMA. FOLL_POPULATE
will now only control if the VMA should be populated and in the case of
VM_LOCKONFAULT, it will not be set.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
"The cgroup core saw several significant updates this cycle:
- percpu_rwsem for threadgroup locking is reinstated. This was
temporarily dropped due to down_write latency issues. Oleg's
rework of percpu_rwsem which is scheduled to be merged in this
merge window resolves the issue.
- On the v2 hierarchy, when controllers are enabled and disabled, all
operations are atomic and can fail and revert cleanly. This allows
->can_attach() failure which is necessary for cpu RT slices.
- Tasks now stay associated with the original cgroups after exit
until released. This allows tracking resources held by zombies
(e.g. pids) and makes it easy to find out where zombies came from
on the v2 hierarchy. The pids controller was broken before these
changes as zombies escaped the limits; unfortunately, updating this
behavior required too many invasive changes and I don't think it's
a good idea to backport them, so the pids controller on 4.3, the
first version which included the pids controller, will stay broken
at least until I'm sure about the cgroup core changes.
- Optimization of a couple common tests using static_key"
* 'for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (38 commits)
cgroup: fix race condition around termination check in css_task_iter_next()
blkcg: don't create "io.stat" on the root cgroup
cgroup: drop cgroup__DEVEL__legacy_files_on_dfl
cgroup: replace error handling in cgroup_init() with WARN_ON()s
cgroup: add cgroup_subsys->free() method and use it to fix pids controller
cgroup: keep zombies associated with their original cgroups
cgroup: make css_set_rwsem a spinlock and rename it to css_set_lock
cgroup: don't hold css_set_rwsem across css task iteration
cgroup: reorganize css_task_iter functions
cgroup: factor out css_set_move_task()
cgroup: keep css_set and task lists in chronological order
cgroup: make cgroup_destroy_locked() test cgroup_is_populated()
cgroup: make css_sets pin the associated cgroups
cgroup: relocate cgroup_[try]get/put()
cgroup: move check_for_release() invocation
cgroup: replace cgroup_has_tasks() with cgroup_is_populated()
cgroup: make cgroup->nr_populated count the number of populated css_sets
cgroup: remove an unused parameter from cgroup_task_migrate()
cgroup: fix too early usage of static_branch_disable()
cgroup: make cgroup_update_dfl_csses() migrate all target processes atomically
...
cgroup_exit() is called when a task exits and disassociates the
exiting task from its cgroups and half-attach it to the root cgroup.
This is unnecessary and undesirable.
No controller actually needs an exiting task to be disassociated with
non-root cgroups. Both cpu and perf_event controllers update the
association to the root cgroup from their exit callbacks just to keep
consistent with the cgroup core behavior.
Also, this disassociation makes it difficult to track resources held
by zombies or determine where the zombies came from. Currently, pids
controller is completely broken as it uncharges on exit and zombies
always escape the resource restriction. With cgroup association being
reset on exit, fixing it is pretty painful.
There's no reason to reset cgroup membership on exit. The zombie can
be removed from its css_set so that it doesn't show up on
"cgroup.procs" and thus can't be migrated or interfere with cgroup
removal. It can still pin and point to the css_set so that its cgroup
membership is maintained. This patch makes cgroup core keep zombies
associated with their cgroups at the time of exit.
* Previous patches decoupled populated_cnt tracking from css_set
lifetime, so a dying task can be simply unlinked from its css_set
while pinning and pointing to the css_set. This keeps css_set
association from task side alive while hiding it from "cgroup.procs"
and populated_cnt tracking. The css_set reference is dropped when
the task_struct is freed.
* ->exit() callback no longer needs the css arguments as the
associated css never changes once PF_EXITING is set. Removed.
* cpu and perf_events controllers no longer need ->exit() callbacks.
There's no reason to explicitly switch away on exit. The final
schedule out is enough. The callbacks are removed.
* On traditional hierarchies, nothing changes. "/proc/PID/cgroup"
still reports "/" for all zombies. On the default hierarchy,
"/proc/PID/cgroup" keeps reporting the cgroup that the task belonged
to at the time of exit. If the cgroup gets removed before the task
is reaped, " (deleted)" is appended.
v2: Build brekage due to missing dummy cgroup_free() when
!CONFIG_CGROUP fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
In the next patch in this series, a new field 'checking_timer' will
be added to 'struct thread_group_cputimer'. Both this and the
existing 'running' integer field are just used as boolean values. To
save space in the structure, we can make both of these fields booleans.
This is a preparatory patch to convert the existing running integer
field to a boolean.
Suggested-by: George Spelvin <linux@horizon.com>
Signed-off-by: Jason Low <jason.low2@hp.com>
Reviewed: George Spelvin <linux@horizon.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: hideaki.kimura@hpe.com
Cc: terry.rudd@hpe.com
Cc: scott.norton@hpe.com
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1444849677-29330-4-git-send-email-jason.low2@hp.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Note: This commit was originally committed as d59cfc09c3 but got
reverted by 0c986253b9 due to the performance regression from
the percpu_rwsem write down/up operations added to cgroup task
migration path. percpu_rwsem changes which alleviate the
performance issue are pending for v4.4-rc1 merge window.
Re-apply.
The cgroup side of threadgroup locking uses signal_struct->group_rwsem
to synchronize against threadgroup changes. This per-process rwsem
adds small overhead to thread creation, exit and exec paths, forces
cgroup code paths to do lock-verify-unlock-retry dance in a couple
places and makes it impossible to atomically perform operations across
multiple processes.
This patch replaces signal_struct->group_rwsem with a global
percpu_rwsem cgroup_threadgroup_rwsem which is cheaper on the reader
side and contained in cgroups proper. This patch converts one-to-one.
This does make writer side heavier and lower the granularity; however,
cgroup process migration is a fairly cold path, we do want to optimize
thread operations over it and cgroup migration operations don't take
enough time for the lower granularity to matter.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/g/55F8097A.7000206@de.ibm.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
This reverts commit d59cfc09c3.
d59cfc09c3 ("sched, cgroup: replace signal_struct->group_rwsem with
a global percpu_rwsem") and b5ba75b5fc ("cgroup: simplify
threadgroup locking") changed how cgroup synchronizes against task
fork and exits so that it uses global percpu_rwsem instead of
per-process rwsem; unfortunately, the write [un]lock paths of
percpu_rwsem always involve synchronize_rcu_expedited() which turned
out to be too expensive.
Improvements for percpu_rwsem are scheduled to be merged in the coming
v4.4-rc1 merge window which alleviates this issue. For now, revert
the two commits to restore per-process rwsem. They will be re-applied
for the v4.4-rc1 merge window.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/g/55F8097A.7000206@de.ibm.com
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org # v4.2+
These two flags gets set in vma->vm_flags to tell the VM common code
if the userfaultfd is armed and in which mode (only tracking missing
faults, only tracking wrprotect faults or both). If neither flags is
set it means the userfaultfd is not armed on the vma.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds the vm_userfaultfd_ctx to the vm_area_struct.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
- a new PIDs controller is added. It turns out that PIDs are actually
an independent resource from kmem due to the limited PID space.
- more core preparations for the v2 interface. Once cpu side interface
is settled, it should be ready for lifting the devel mask.
for-4.3-unified-base was temporarily branched so that other trees
(block) can pull cgroup core changes that blkcg changes depend on.
- a non-critical idr_preload usage bug fix.
* 'for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: pids: fix invalid get/put usage
cgroup: introduce cgroup_subsys->legacy_name
cgroup: don't print subsystems for the default hierarchy
cgroup: make cftype->private a unsigned long
cgroup: export cgrp_dfl_root
cgroup: define controller file conventions
cgroup: fix idr_preload usage
cgroup: add documentation for the PIDs controller
cgroup: implement the PIDs subsystem
cgroup: allow a cgroup subsystem to reject a fork
Pull user namespace updates from Eric Biederman:
"This finishes up the changes to ensure proc and sysfs do not start
implementing executable files, as the there are application today that
are only secure because such files do not exist.
It akso fixes a long standing misfeature of /proc/<pid>/mountinfo that
did not show the proper source for files bind mounted from
/proc/<pid>/ns/*.
It also straightens out the handling of clone flags related to user
namespaces, fixing an unnecessary failure of unshare(CLONE_NEWUSER)
when files such as /proc/<pid>/environ are read while <pid> is calling
unshare. This winds up fixing a minor bug in unshare flag handling
that dates back to the first version of unshare in the kernel.
Finally, this fixes a minor regression caused by the introduction of
sysfs_create_mount_point, which broke someone's in house application,
by restoring the size of /sys/fs/cgroup to 0 bytes. Apparently that
application uses the directory size to determine if a tmpfs is mounted
on /sys/fs/cgroup.
The bind mount escape fixes are present in Al Viros for-next branch.
and I expect them to come from there. The bind mount escape is the
last of the user namespace related security bugs that I am aware of"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
fs: Set the size of empty dirs to 0.
userns,pidns: Force thread group sharing, not signal handler sharing.
unshare: Unsharing a thread does not require unsharing a vm
nsfs: Add a show_path method to fix mountinfo
mnt: fs_fully_visible enforce noexec and nosuid if !SB_I_NOEXEC
vfs: Commit to never having exectuables on proc and sysfs.
Pull scheduler updates from Ingo Molnar:
"The biggest change in this cycle is the rewrite of the main SMP load
balancing metric: the CPU load/utilization. The main goal was to make
the metric more precise and more representative - see the changelog of
this commit for the gory details:
9d89c257df ("sched/fair: Rewrite runnable load and utilization average tracking")
It is done in a way that significantly reduces complexity of the code:
5 files changed, 249 insertions(+), 494 deletions(-)
and the performance testing results are encouraging. Nevertheless we
need to keep an eye on potential regressions, since this potentially
affects every SMP workload in existence.
This work comes from Yuyang Du.
Other changes:
- SCHED_DL updates. (Andrea Parri)
- Simplify architecture callbacks by removing finish_arch_switch().
(Peter Zijlstra et al)
- cputime accounting: guarantee stime + utime == rtime. (Peter
Zijlstra)
- optimize idle CPU wakeups some more - inspired by Facebook server
loads. (Mike Galbraith)
- stop_machine fixes and updates. (Oleg Nesterov)
- Introduce the 'trace_sched_waking' tracepoint. (Peter Zijlstra)
- sched/numa tweaks. (Srikar Dronamraju)
- misc fixes and small cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
sched/deadline: Fix comment in enqueue_task_dl()
sched/deadline: Fix comment in push_dl_tasks()
sched: Change the sched_class::set_cpus_allowed() calling context
sched: Make sched_class::set_cpus_allowed() unconditional
sched: Fix a race between __kthread_bind() and sched_setaffinity()
sched: Ensure a task has a non-normalized vruntime when returning back to CFS
sched/numa: Fix NUMA_DIRECT topology identification
tile: Reorganize _switch_to()
sched, sparc32: Update scheduler comments in copy_thread()
sched: Remove finish_arch_switch()
sched, tile: Remove finish_arch_switch
sched, sh: Fold finish_arch_switch() into switch_to()
sched, score: Remove finish_arch_switch()
sched, avr32: Remove finish_arch_switch()
sched, MIPS: Get rid of finish_arch_switch()
sched, arm: Remove finish_arch_switch()
sched/fair: Clean up load average references
sched/fair: Provide runnable_load_avg back to cfs_rq
sched/fair: Remove task and group entity load when they are dead
sched/fair: Init cfs_rq's sched_entity load average
...
The code that places signals in signal queues computes the uids, gids,
and pids at the time the signals are enqueued. Which means that tasks
that share signal queues must be in the same pid and user namespaces.
Sharing signal handlers is fine, but bizarre.
So make the code in fork and userns_install clearer by only testing
for what is functionally necessary.
Also update the comment in unshare about unsharing a user namespace to
be a little more explicit and make a little more sense.
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
In the logic in the initial commit of unshare made creating a new
thread group for a process, contingent upon creating a new memory
address space for that process. That is wrong. Two separate
processes in different thread groups can share a memory address space
and clone allows creation of such proceses.
This is significant because it was observed that mm_users > 1 does not
mean that a process is multi-threaded, as reading /proc/PID/maps
temporarily increments mm_users, which allows other processes to
(accidentally) interfere with unshare() calls.
Correct the check in check_unshare_flags() to test for
!thread_group_empty() for CLONE_THREAD, CLONE_SIGHAND, and CLONE_VM.
For sighand->count > 1 for CLONE_SIGHAND and CLONE_VM.
For !current_is_single_threaded instead of mm_users > 1 for CLONE_VM.
By using the correct checks in unshare this removes the possibility of
an accidental denial of service attack.
Additionally using the correct checks in unshare ensures that only an
explicit unshare(CLONE_VM) can possibly trigger the slow path of
current_is_single_threaded(). As an explict unshare(CLONE_VM) is
pointless it is not expected there are many applications that make
that call.
Cc: stable@vger.kernel.org
Fixes: b2e0d98705 userns: Implement unshare of the user namespace
Reported-by: Ricky Zhou <rickyz@chromium.org>
Reported-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
While the current code guarantees monotonicity for stime and utime
independently of one another, it does not guarantee that the sum of
both is equal to the total time we started out with.
This confuses things (and peoples) who look at this sum, like top, and
will report >100% usage followed by a matching period of 0%.
Rework the code to provide both individual monotonicity and a coherent
sum.
Suggested-by: Fredrik Markstrom <fredrik.markstrom@gmail.com>
Reported-by: Fredrik Markstrom <fredrik.markstrom@gmail.com>
Tested-by: Fredrik Markstrom <fredrik.markstrom@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jason.low2@hp.com
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Don't burden architectures without dynamic task_struct sizing
with the overhead of dynamic sizing.
Also optimize the x86 code a bit by caching task_struct_size.
Acked-and-Tested-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1437128892-9831-3-git-send-email-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The FPU rewrite removed the dynamic allocations of 'struct fpu'.
But, this potentially wastes massive amounts of memory (2k per
task on systems that do not have AVX-512 for instance).
Instead of having a separate slab, this patch just appends the
space that we need to the 'task_struct' which we dynamically
allocate already. This saves from doing an extra slab
allocation at fork().
The only real downside here is that we have to stick everything
and the end of the task_struct. But, I think the
BUILD_BUG_ON()s I stuck in there should keep that from being too
fragile.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1437128892-9831-2-git-send-email-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a new cgroup subsystem callback can_fork that conditionally
states whether or not the fork is accepted or rejected by a cgroup
policy. In addition, add a cancel_fork callback so that if an error
occurs later in the forking process, any state modified by can_fork can
be reverted.
Allow for a private opaque pointer to be passed from cgroup_can_fork to
cgroup_post_fork, allowing for the fork state to be stored by each
subsystem separately.
Also add a tagging system for cgroup_subsys.h to allow for CGROUP_<TAG>
enumerations to be be defined and used. In addition, explicitly add a
CGROUP_CANFORK_COUNT macro to make arrays easier to define.
This is in preparation for implementing the pids cgroup subsystem.
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull cgroup updates from Tejun Heo:
- threadgroup_lock got reorganized so that its users can pick the
actual locking mechanism to use. Its only user - cgroups - is
updated to use a percpu_rwsem instead of per-process rwsem.
This makes things a bit lighter on hot paths and allows cgroups to
perform and fail multi-task (a process) migrations atomically.
Multi-task migrations are used in several places including the
unified hierarchy.
- Delegation rule and documentation added to unified hierarchy. This
will likely be the last interface update from the cgroup core side
for unified hierarchy before lifting the devel mask.
- Some groundwork for the pids controller which is scheduled to be
merged in the coming devel cycle.
* 'for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: add delegation section to unified hierarchy documentation
cgroup: require write perm on common ancestor when moving processes on the default hierarchy
cgroup: separate out cgroup_procs_write_permission() from __cgroup_procs_write()
kernfs: make kernfs_get_inode() public
MAINTAINERS: add a cgroup core co-maintainer
cgroup: fix uninitialised iterator in for_each_subsys_which
cgroup: replace explicit ss_mask checking with for_each_subsys_which
cgroup: use bitmask to filter for_each_subsys
cgroup: add seq_file forward declaration for struct cftype
cgroup: simplify threadgroup locking
sched, cgroup: replace signal_struct->group_rwsem with a global percpu_rwsem
sched, cgroup: reorganize threadgroup locking
cgroup: switch to unsigned long for bitmasks
cgroup: reorganize include/linux/cgroup.h
cgroup: separate out include/linux/cgroup-defs.h
cgroup: fix some comment typos
clone has some of the quirkiest syscall handling in the kernel, with a
pile of special cases, historical curiosities, and architecture-specific
calling conventions. In particular, clone with CLONE_SETTLS accepts a
parameter "tls" that the C entry point completely ignores and some
assembly entry points overwrite; instead, the low-level arch-specific
code pulls the tls parameter out of the arch-specific register captured
as part of pt_regs on entry to the kernel. That's a massive hack, and
it makes the arch-specific code only work when called via the specific
existing syscall entry points; because of this hack, any new clone-like
system call would have to accept an identical tls argument in exactly
the same arch-specific position, rather than providing a unified system
call entry point across architectures.
The first patch allows architectures to handle the tls argument via
normal C parameter passing, if they opt in by selecting
HAVE_COPY_THREAD_TLS. The second patch makes 32-bit and 64-bit x86 opt
into this.
These two patches came out of the clone4 series, which isn't ready for
this merge window, but these first two cleanup patches were entirely
uncontroversial and have acks. I'd like to go ahead and submit these
two so that other architectures can begin building on top of this and
opting into HAVE_COPY_THREAD_TLS. However, I'm also happy to wait and
send these through the next merge window (along with v3 of clone4) if
anyone would prefer that.
This patch (of 2):
clone with CLONE_SETTLS accepts an argument to set the thread-local
storage area for the new thread. sys_clone declares an int argument
tls_val in the appropriate point in the argument list (based on the
various CLONE_BACKWARDS variants), but doesn't actually use or pass along
that argument. Instead, sys_clone calls do_fork, which calls
copy_process, which calls the arch-specific copy_thread, and copy_thread
pulls the corresponding syscall argument out of the pt_regs captured at
kernel entry (knowing what argument of clone that architecture passes tls
in).
Apart from being awful and inscrutable, that also only works because only
one code path into copy_thread can pass the CLONE_SETTLS flag, and that
code path comes from sys_clone with its architecture-specific
argument-passing order. This prevents introducing a new version of the
clone system call without propagating the same architecture-specific
position of the tls argument.
However, there's no reason to pull the argument out of pt_regs when
sys_clone could just pass it down via C function call arguments.
Introduce a new CONFIG_HAVE_COPY_THREAD_TLS for architectures to opt into,
and a new copy_thread_tls that accepts the tls parameter as an additional
unsigned long (syscall-argument-sized) argument. Change sys_clone's tls
argument to an unsigned long (which does not change the ABI), and pass
that down to copy_thread_tls.
Architectures that don't opt into copy_thread_tls will continue to ignore
the C argument to sys_clone in favor of the pt_regs captured at kernel
entry, and thus will be unable to introduce new versions of the clone
syscall.
Patch co-authored by Josh Triplett and Thiago Macieira.
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thiago Macieira <thiago.macieira@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The cgroup side of threadgroup locking uses signal_struct->group_rwsem
to synchronize against threadgroup changes. This per-process rwsem
adds small overhead to thread creation, exit and exec paths, forces
cgroup code paths to do lock-verify-unlock-retry dance in a couple
places and makes it impossible to atomically perform operations across
multiple processes.
This patch replaces signal_struct->group_rwsem with a global
percpu_rwsem cgroup_threadgroup_rwsem which is cheaper on the reader
side and contained in cgroups proper. This patch converts one-to-one.
This does make writer side heavier and lower the granularity; however,
cgroup process migration is a fairly cold path, we do want to optimize
thread operations over it and cgroup migration operations don't take
enough time for the lower granularity to matter.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
While running a database workload, we found a scalability issue with itimers.
Much of the problem was caused by the thread_group_cputimer spinlock.
Each time we account for group system/user time, we need to obtain a
thread_group_cputimer's spinlock to update the timers. On larger systems
(such as a 16 socket machine), this caused more than 30% of total time
spent trying to obtain this kernel lock to update these group timer stats.
This patch converts the timers to 64-bit atomic variables and use
atomic add to update them without a lock. With this patch, the percent
of total time spent updating thread group cputimer timers was reduced
from 30% down to less than 1%.
Note: On 32-bit systems using the generic 64-bit atomics, this causes
sample_group_cputimer() to take locks 3 times instead of just 1 time.
However, we tested this patch on a 32-bit system ARM system using the
generic atomics and did not find the overhead to be much of an issue.
An explanation for why this isn't an issue is that 32-bit systems usually
have small numbers of CPUs, and cacheline contention from extra spinlocks
called periodically is not really apparent on smaller systems.
Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Waiman Long <Waiman.Long@hp.com>
Link: http://lkml.kernel.org/r/1430251224-5764-4-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>