Commit graph

2213 commits

Author SHA1 Message Date
Mark Rutland
06dd8281a7 arm64: uaccess: ensure extension of access_ok() addr
commit a06040d7a791a9177581dcf7293941bd92400856 upstream.

Our access_ok() simply hands its arguments over to __range_ok(), which
implicitly assummes that the addr parameter is 64 bits wide. This isn't
necessarily true for compat code, which might pass down a 32-bit address
parameter.

In these cases, we don't have a guarantee that the address has been zero
extended to 64 bits, and the upper bits of the register may contain
unknown values, potentially resulting in a suprious failure.

Avoid this by explicitly casting the addr parameter to an unsigned long
(as is done on other architectures), ensuring that the parameter is
widened appropriately.

Fixes: 0aea86a217 ("arm64: User access library functions")
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-25 14:30:15 +02:00
Mark Rutland
c23fee69f5 arm64: xchg: hazard against entire exchange variable
commit fee960bed5e857eb126c4e56dd9ff85938356579 upstream.

The inline assembly in __XCHG_CASE() uses a +Q constraint to hazard
against other accesses to the memory location being exchanged. However,
the pointer passed to the constraint is a u8 pointer, and thus the
hazard only applies to the first byte of the location.

GCC can take advantage of this, assuming that other portions of the
location are unchanged, as demonstrated with the following test case:

union u {
	unsigned long l;
	unsigned int i[2];
};

unsigned long update_char_hazard(union u *u)
{
	unsigned int a, b;

	a = u->i[1];
	asm ("str %1, %0" : "+Q" (*(char *)&u->l) : "r" (0UL));
	b = u->i[1];

	return a ^ b;
}

unsigned long update_long_hazard(union u *u)
{
	unsigned int a, b;

	a = u->i[1];
	asm ("str %1, %0" : "+Q" (*(long *)&u->l) : "r" (0UL));
	b = u->i[1];

	return a ^ b;
}

The linaro 15.08 GCC 5.1.1 toolchain compiles the above as follows when
using -O2 or above:

0000000000000000 <update_char_hazard>:
   0:	d2800001 	mov	x1, #0x0                   	// #0
   4:	f9000001 	str	x1, [x0]
   8:	d2800000 	mov	x0, #0x0                   	// #0
   c:	d65f03c0 	ret

0000000000000010 <update_long_hazard>:
  10:	b9400401 	ldr	w1, [x0,#4]
  14:	d2800002 	mov	x2, #0x0                   	// #0
  18:	f9000002 	str	x2, [x0]
  1c:	b9400400 	ldr	w0, [x0,#4]
  20:	4a000020 	eor	w0, w1, w0
  24:	d65f03c0 	ret

This patch fixes the issue by passing an unsigned long pointer into the
+Q constraint, as we do for our cmpxchg code. This may hazard against
more than is necessary, but this is better than missing a necessary
hazard.

Fixes: 305d454aaa ("arm64: atomics: implement native {relaxed, acquire, release} atomics")
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-25 14:30:15 +02:00
Marc Zyngier
db467fee7f arm64: KVM: Fix decoding of Rt/Rt2 when trapping AArch32 CP accesses
commit c667186f1c01ca8970c785888868b7ffd74e51ee upstream.

Our 32bit CP14/15 handling inherited some of the ARMv7 code for handling
the trapped system registers, completely missing the fact that the
fields for Rt and Rt2 are now 5 bit wide, and not 4...

Let's fix it, and provide an accessor for the most common Rt case.

Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-20 14:27:02 +02:00
Daniel Borkmann
6003cc55c1 bpf, arm64: fix jit branch offset related to ldimm64
[ Upstream commit ddc665a4bb4b728b4e6ecec8db1b64efa9184b9c ]

When the instruction right before the branch destination is
a 64 bit load immediate, we currently calculate the wrong
jump offset in the ctx->offset[] array as we only account
one instruction slot for the 64 bit load immediate although
it uses two BPF instructions. Fix it up by setting the offset
into the right slot after we incremented the index.

Before (ldimm64 test 1):

  [...]
  00000020:  52800007  mov w7, #0x0 // #0
  00000024:  d2800060  mov x0, #0x3 // #3
  00000028:  d2800041  mov x1, #0x2 // #2
  0000002c:  eb01001f  cmp x0, x1
  00000030:  54ffff82  b.cs 0x00000020
  00000034:  d29fffe7  mov x7, #0xffff // #65535
  00000038:  f2bfffe7  movk x7, #0xffff, lsl #16
  0000003c:  f2dfffe7  movk x7, #0xffff, lsl #32
  00000040:  f2ffffe7  movk x7, #0xffff, lsl #48
  00000044:  d29dddc7  mov x7, #0xeeee // #61166
  00000048:  f2bdddc7  movk x7, #0xeeee, lsl #16
  0000004c:  f2ddddc7  movk x7, #0xeeee, lsl #32
  00000050:  f2fdddc7  movk x7, #0xeeee, lsl #48
  [...]

After (ldimm64 test 1):

  [...]
  00000020:  52800007  mov w7, #0x0 // #0
  00000024:  d2800060  mov x0, #0x3 // #3
  00000028:  d2800041  mov x1, #0x2 // #2
  0000002c:  eb01001f  cmp x0, x1
  00000030:  540000a2  b.cs 0x00000044
  00000034:  d29fffe7  mov x7, #0xffff // #65535
  00000038:  f2bfffe7  movk x7, #0xffff, lsl #16
  0000003c:  f2dfffe7  movk x7, #0xffff, lsl #32
  00000040:  f2ffffe7  movk x7, #0xffff, lsl #48
  00000044:  d29dddc7  mov x7, #0xeeee // #61166
  00000048:  f2bdddc7  movk x7, #0xeeee, lsl #16
  0000004c:  f2ddddc7  movk x7, #0xeeee, lsl #32
  00000050:  f2fdddc7  movk x7, #0xeeee, lsl #48
  [...]

Also, add a couple of test cases to make sure JITs pass
this test. Tested on Cavium ThunderX ARMv8. The added
test cases all pass after the fix.

Fixes: 8eee539dde ("arm64: bpf: fix out-of-bounds read in bpf2a64_offset()")
Reported-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Xi Wang <xi.wang@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-14 13:32:58 +02:00
Marc Zyngier
e83a28c521 arm/arm64: KVM: Enforce unconditional flush to PoC when mapping to stage-2
commit 8f36ebaf21fdae99c091c67e8b6fab33969f2667 upstream.

When we fault in a page, we flush it to the PoC (Point of Coherency)
if the faulting vcpu has its own caches off, so that it can observe
the page we just brought it.

But if the vcpu has its caches on, we skip that step. Bad things
happen when *another* vcpu tries to access that page with its own
caches disabled. At that point, there is no garantee that the
data has made it to the PoC, and we access stale data.

The obvious fix is to always flush to PoC when a page is faulted
in, no matter what the state of the vcpu is.

Fixes: 2d58b733c8 ("arm64: KVM: force cache clean on page fault when caches are off")
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-03-12 06:37:28 +01:00
Ard Biesheuvel
72bb4b5490 crypto: arm64/aes-blk - honour iv_out requirement in CBC and CTR modes
commit 11e3b725cfc282efe9d4a354153e99d86a16af08 upstream.

Update the ARMv8 Crypto Extensions and the plain NEON AES implementations
in CBC and CTR modes to return the next IV back to the skcipher API client.
This is necessary for chaining to work correctly.

Note that for CTR, this is only done if the request is a round multiple of
the block size, since otherwise, chaining is impossible anyway.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-02-09 08:02:45 +01:00
Mark Rutland
8323d0555f arm64: avoid returning from bad_mode
commit 7d9e8f71b989230bc613d121ca38507d34ada849 upstream.

Generally, taking an unexpected exception should be a fatal event, and
bad_mode is intended to cater for this. However, it should be possible
to contain unexpected synchronous exceptions from EL0 without bringing
the kernel down, by sending a SIGILL to the task.

We tried to apply this approach in commit 9955ac47f4 ("arm64:
don't kill the kernel on a bad esr from el0"), by sending a signal for
any bad_mode call resulting from an EL0 exception.

However, this also applies to other unexpected exceptions, such as
SError and FIQ. The entry paths for these exceptions branch to bad_mode
without configuring the link register, and have no kernel_exit. Thus, if
we take one of these exceptions from EL0, bad_mode will eventually
return to the original user link register value.

This patch fixes this by introducing a new bad_el0_sync handler to cater
for the recoverable case, and restoring bad_mode to its original state,
whereby it calls panic() and never returns. The recoverable case
branches to bad_el0_sync with a bl, and returns to userspace via the
usual ret_to_user mechanism.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Fixes: 9955ac47f4 ("arm64: don't kill the kernel on a bad esr from el0")
Reported-by: Mark Salter <msalter@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-01-26 08:23:50 +01:00
Dave Martin
c55f8aaf4a arm64/ptrace: Reject attempts to set incomplete hardware breakpoint fields
commit ad9e202aa1ce571b1d7fed969d06f66067f8a086 upstream.

We cannot preserve partial fields for hardware breakpoints, because
the values written by userspace to the hardware breakpoint
registers can't subsequently be recovered intact from the hardware.

So, just reject attempts to write incomplete fields with -EINVAL.

Fixes: 478fcb2cdb ("arm64: Debugging support")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <Will.Deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-01-26 08:23:49 +01:00
Dave Martin
4c87fc7f20 arm64/ptrace: Avoid uninitialised struct padding in fpr_set()
commit aeb1f39d814b2e21e5e5706a48834bfd553d0059 upstream.

This patch adds an explicit __reserved[] field to user_fpsimd_state
to replace what was previously unnamed padding.

This ensures that data in this region are propagated across
assignment rather than being left possibly uninitialised at the
destination.

Fixes: 60ffc30d56 ("arm64: Exception handling")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <Will.Deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-01-26 08:23:49 +01:00
Dave Martin
03ee97d68d arm64/ptrace: Preserve previous registers for short regset write - 3
commit a672401c00f82e4e19704aff361d9bad18003714 upstream.

Ensure that if userspace supplies insufficient data to
PTRACE_SETREGSET to fill all the registers, the thread's old
registers are preserved.

Fixes: 5d220ff942 ("arm64: Better native ptrace support for compat tasks")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <Will.Deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-01-26 08:23:49 +01:00
Dave Martin
d8263f1753 arm64/ptrace: Preserve previous registers for short regset write - 2
commit 9dd73f72f218320c6c90da5f834996e7360dc227 upstream.

Ensure that if userspace supplies insufficient data to
PTRACE_SETREGSET to fill all the registers, the thread's old
registers are preserved.

Fixes: 766a85d7bc ("arm64: ptrace: add NT_ARM_SYSTEM_CALL regset")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <Will.Deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-01-26 08:23:49 +01:00
Dave Martin
76e08d2966 arm64/ptrace: Preserve previous registers for short regset write
commit 9a17b876b573441bfb3387ad55d98bf7184daf9d upstream.

Ensure that if userspace supplies insufficient data to
PTRACE_SETREGSET to fill all the registers, the thread's old
registers are preserved.

Fixes: 478fcb2cdb ("arm64: Debugging support")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <Will.Deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-01-26 08:23:49 +01:00
Ard Biesheuvel
1d3124821f crypto: arm64/aes-ce - fix for big endian
commit 1803b9a52c4e5a5dbb8a27126f6bc06939359753 upstream.

The core AES cipher implementation that uses ARMv8 Crypto Extensions
instructions erroneously loads the round keys as 64-bit quantities,
which causes the algorithm to fail when built for big endian. In
addition, the key schedule generation routine fails to take endianness
into account as well, when loading the combining the input key with
the round constants. So fix both issues.

Fixes: 12ac3efe74 ("arm64/crypto: use crypto instructions to generate AES key schedule")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-01-12 11:22:50 +01:00
Ard Biesheuvel
5b21c54892 crypto: arm64/aes-xts-ce: fix for big endian
commit caf4b9e2b326cc2a5005a5c557274306536ace61 upstream.

Emit the XTS tweak literal constants in the appropriate order for a
single 128-bit scalar literal load.

Fixes: 49788fe2a1 ("arm64/crypto: AES-ECB/CBC/CTR/XTS using ARMv8 NEON and Crypto Extensions")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-01-12 11:22:50 +01:00
Ard Biesheuvel
abca9c2d2c crypto: arm64/sha1-ce - fix for big endian
commit ee71e5f1e7d25543ee63a80451871f8985b8d431 upstream.

The SHA1 digest is an array of 5 32-bit quantities, so we should refer
to them as such in order for this code to work correctly when built for
big endian. So replace 16 byte scalar loads and stores with 4x4 vector
ones where appropriate.

Fixes: 2c98833a42 ("arm64/crypto: SHA-1 using ARMv8 Crypto Extensions")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-01-12 11:22:50 +01:00
Ard Biesheuvel
83f8a200af crypto: arm64/aes-neon - fix for big endian
commit a2c435cc99862fd3d165e1b66bf48ac72c839c62 upstream.

The AES implementation using pure NEON instructions relies on the generic
AES key schedule generation routines, which store the round keys as arrays
of 32-bit quantities stored in memory using native endianness. This means
we should refer to these round keys using 4x4 loads rather than 16x1 loads.
In addition, the ShiftRows tables are loading using a single scalar load,
which is also affected by endianness, so emit these tables in the correct
order depending on whether we are building for big endian or not.

Fixes: 49788fe2a1 ("arm64/crypto: AES-ECB/CBC/CTR/XTS using ARMv8 NEON and Crypto Extensions")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-01-12 11:22:50 +01:00
Ard Biesheuvel
bd17e2d366 crypto: arm64/aes-ccm-ce: fix for big endian
commit 56e4e76c68fcb51547b5299e5b66a135935ff414 upstream.

The AES-CCM implementation that uses ARMv8 Crypto Extensions instructions
refers to the AES round keys as pairs of 64-bit quantities, which causes
failures when building the code for big endian. In addition, it byte swaps
the input counter unconditionally, while this is only required for little
endian builds. So fix both issues.

Fixes: 12ac3efe74 ("arm64/crypto: use crypto instructions to generate AES key schedule")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-01-12 11:22:50 +01:00
Ard Biesheuvel
4c575a30db crypto: arm64/ghash-ce - fix for big endian
commit 9c433ad5083fd4a4a3c721d86cbfbd0b2a2326a5 upstream.

The GHASH key and digest are both pairs of 64-bit quantities, but the
GHASH code does not always refer to them as such, causing failures when
built for big endian. So replace the 16x1 loads and stores with 2x8 ones.

Fixes: b913a6404c ("arm64/crypto: improve performance of GHASH algorithm")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-01-12 11:22:50 +01:00
Ard Biesheuvel
820c2ac4c9 crypto: arm64/sha2-ce - fix for big endian
commit 174122c39c369ed924d2608fc0be0171997ce800 upstream.

The SHA256 digest is an array of 8 32-bit quantities, so we should refer
to them as such in order for this code to work correctly when built for
big endian. So replace 16 byte scalar loads and stores with 4x32 vector
ones where appropriate.

Fixes: 6ba6c74dfc ("arm64/crypto: SHA-224/SHA-256 using ARMv8 Crypto Extensions")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-01-12 11:22:49 +01:00
James Morse
55e15b2f44 arm64: futex.h: Add missing PAN toggling
commit 811d61e384e24759372bb3f01772f3744b0a8327 upstream.

futex.h's futex_atomic_cmpxchg_inatomic() does not use the
__futex_atomic_op() macro and needs its own PAN toggling. This was missed
when the feature was implemented.

Fixes: 338d4f49d6 ("arm64: kernel: Add support for Privileged Access Never")
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Mian Yousaf Kaukab <yousaf.kaukab@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-12-15 08:49:23 -08:00
James Morse
71710cd35a arm64: suspend: Reconfigure PSTATE after resume from idle
commit d08544127d9fb4505635e3cb6871fd50a42947bd upstream.

The suspend/resume path in kernel/sleep.S, as used by cpu-idle, does not
save/restore PSTATE. As a result of this cpufeatures that were detected
and have bits in PSTATE get lost when we resume from idle.

UAO gets set appropriately on the next context switch. PAN will be
re-enabled next time we return from user-space, but on a preemptible
kernel we may run work accessing user space before this point.

Add code to re-enable theses two features in __cpu_suspend_exit().
We re-use uao_thread_switch() passing current.

Signed-off-by: James Morse <james.morse@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
[Removed UAO hooks and commit-message references: this feature is not
 present in v4.4]
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-12-08 07:15:25 +01:00
James Morse
d24207a0d8 arm64: mm: Set PSTATE.PAN from the cpu_enable_pan() call
commit 7209c868600bd8926e37c10b9aae83124ccc1dd8 upstream.

Commit 338d4f49d6 ("arm64: kernel: Add support for Privileged Access
Never") enabled PAN by enabling the 'SPAN' feature-bit in SCTLR_EL1.
This means the PSTATE.PAN bit won't be set until the next return to the
kernel from userspace. On a preemptible kernel we may schedule work that
accesses userspace on a CPU before it has done this.

Now that cpufeature enable() calls are scheduled via stop_machine(), we
can set PSTATE.PAN from the cpu_enable_pan() call.

Add WARN_ON_ONCE(in_interrupt()) to check the PSTATE value we updated
is not immediately discarded.

Reported-by: Tony Thompson <anthony.thompson@arm.com>
Reported-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
[will: fixed typo in comment]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-12-08 07:15:24 +01:00
James Morse
da643dc17f arm64: cpufeature: Schedule enable() calls instead of calling them via IPI
commit 2a6dcb2b5f3e21592ca8dfa198dcce7bec09b020 upstream.

The enable() call for a cpufeature/errata is called using on_each_cpu().
This issues a cross-call IPI to get the work done. Implicitly, this
stashes the running PSTATE in SPSR when the CPU receives the IPI, and
restores it when we return. This means an enable() call can never modify
PSTATE.

To allow PAN to do this, change the on_each_cpu() call to use
stop_machine(). This schedules the work on each CPU which allows
us to modify PSTATE.

This involves changing the protype of all the enable() functions.

enable_cpu_capabilities() is called during boot and enables the feature
on all online CPUs. This path now uses stop_machine(). CPU features for
hotplug'd CPUs are enabled by verify_local_cpu_features() which only
acts on the local CPU, and can already modify the running PSTATE as it
is called from secondary_start_kernel().

Reported-by: Tony Thompson <anthony.thompson@arm.com>
Reported-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
[Removed enable() hunks for features/errata v4.4. doesn't have. Changed
 caps->enable arg in enable_cpu_capabilities()]
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-12-08 07:15:24 +01:00
Marc Zyngier
08cd19c602 arm64: kernel: Init MDCR_EL2 even in the absence of a PMU
commit 850540351bb1a4fa5f192e5ce55b89928cc57f42 upstream.

Commit f436b2ac90a0 ("arm64: kernel: fix architected PMU registers
unconditional access") made sure we wouldn't access unimplemented
PMU registers, but also left MDCR_EL2 uninitialized in that case,
leading to trap bits being potentially left set.

Make sure we always write something in that register.

Fixes: f436b2ac90a0 ("arm64: kernel: fix architected PMU registers unconditional access")
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-10-28 03:01:35 -04:00
Will Deacon
b31070890d arm64: percpu: rewrite ll/sc loops in assembly
commit 1e6e57d9b34a9075d5f9e2048ea7b09756590d11 upstream.

Writing the outer loop of an LL/SC sequence using do {...} while
constructs potentially allows the compiler to hoist memory accesses
between the STXR and the branch back to the LDXR. On CPUs that do not
guarantee forward progress of LL/SC loops when faced with memory
accesses to the same ERG (up to 2k) between the failed STXR and the
branch back, we may end up livelocking.

This patch avoids this issue in our percpu atomics by rewriting the
outer loop as part of the LL/SC inline assembly block.

Fixes: f97fc81079 ("arm64: percpu: Implement this_cpu operations")
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-10-28 03:01:35 -04:00
Will Deacon
9b228c19dd arm64: debug: avoid resetting stepping state machine when TIF_SINGLESTEP
commit 3a402a709500c5a3faca2111668c33d96555e35a upstream.

When TIF_SINGLESTEP is set for a task, the single-step state machine is
enabled and we must take care not to reset it to the active-not-pending
state if it is already in the active-pending state.

Unfortunately, that's exactly what user_enable_single_step does, by
unconditionally setting the SS bit in the SPSR for the current task.
This causes failures in the GDB testsuite, where GDB ends up missing
expected step traps if the instruction being stepped generates another
trap, e.g. PTRACE_EVENT_FORK from an SVC instruction.

This patch fixes the problem by preserving the current state of the
stepping state machine when TIF_SINGLESTEP is set on the current thread.

Cc: <stable@vger.kernel.org>
Reported-by: Yao Qi <yao.qi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-10-07 15:23:42 +02:00
Ard Biesheuvel
3e2d986d8b crypto: arm64/aes-ctr - fix NULL dereference in tail processing
commit 2db34e78f126c6001d79d3b66ab1abb482dc7caa upstream.

The AES-CTR glue code avoids calling into the blkcipher API for the
tail portion of the walk, by comparing the remainder of walk.nbytes
modulo AES_BLOCK_SIZE with the residual nbytes, and jumping straight
into the tail processing block if they are equal. This tail processing
block checks whether nbytes != 0, and does nothing otherwise.

However, in case of an allocation failure in the blkcipher layer, we
may enter this code with walk.nbytes == 0, while nbytes > 0. In this
case, we should not dereference the source and destination pointers,
since they may be NULL. So instead of checking for nbytes != 0, check
for (walk.nbytes % AES_BLOCK_SIZE) != 0, which implies the former in
non-error conditions.

Fixes: 49788fe2a1 ("arm64/crypto: AES-ECB/CBC/CTR/XTS using ARMv8 NEON and Crypto Extensions")
Reported-by: xiakaixu <xiakaixu@huawei.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-30 10:18:34 +02:00
Will Deacon
554b0ee1e8 arm64: spinlocks: implement smp_mb__before_spinlock() as smp_mb()
commit 872c63fbf9e153146b07f0cece4da0d70b283eeb upstream.

smp_mb__before_spinlock() is intended to upgrade a spin_lock() operation
to a full barrier, such that prior stores are ordered with respect to
loads and stores occuring inside the critical section.

Unfortunately, the core code defines the barrier as smp_wmb(), which
is insufficient to provide the required ordering guarantees when used in
conjunction with our load-acquire-based spinlock implementation.

This patch overrides the arm64 definition of smp_mb__before_spinlock()
to map to a full smp_mb().

Cc: Peter Zijlstra <peterz@infradead.org>
Reported-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-24 10:07:41 +02:00
Ganapatrao Kulkarni
80cce3cde8 irqchip/gicv3-its: numa: Enable workaround for Cavium thunderx erratum 23144
[ Upstream commit fbf8f40e1658cb2f17452dbd3c708e329c5d27e0 ]

The erratum fixes the hang of ITS SYNC command by avoiding inter node
io and collections/cpu mapping on thunderx dual-socket platform.

This fix is only applicable for Cavium's ThunderX dual-socket platform.

Reviewed-by: Robert Richter <rrichter@cavium.com>
Signed-off-by: Ganapatrao Kulkarni <gkulkarni@caviumnetworks.com>
Signed-off-by: Robert Richter <rrichter@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-15 08:27:47 +02:00
Andrew Pinski
950464b230 arm64: Add workaround for Cavium erratum 27456
[ Upstream commit 104a0c02e8b1936c049e18a6d4e4ab040fb61213 ]

On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
instructions may cause the icache to become corrupted if it contains
data for a non-current ASID.

This patch implements the workaround (which invalidates the local
icache when switching the mm) by using code patching.

Signed-off-by: Andrew Pinski <apinski@cavium.com>
Signed-off-by: David Daney <david.daney@cavium.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-15 08:27:44 +02:00
Tirumalesh Chalamarla
849e28efb0 arm64: KVM: Configure TCR_EL2.PS at runtime
[ Upstream commit 3c5b1d92b3b02be07873d611a27950addff544d3 ]

Setting TCR_EL2.PS to 40 bits is wrong on systems with less that
less than 40 bits of physical addresses. and breaks KVM on systems
where the RAM is above 40 bits.

This patch uses ID_AA64MMFR0_EL1.PARange to set TCR_EL2.PS dynamically,
just like we already do for VTCR_EL2.PS.

[Marc: rewrote commit message, patch tidy up]

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Tirumalesh Chalamarla <tchalamarla@caviumnetworks.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-15 08:27:43 +02:00
Tirumalesh Chalamarla
d5251a1952 irqchip/gic-v3: Make sure read from ICC_IAR1_EL1 is visible on redestributor
[ Upstream commit 1a1ebd5fb1e203ee8cc73508cc7a38ac4b804596 ]

The ARM GICv3 specification mentions the need for dsb after a read
from the ICC_IAR1_EL1 register:

	4.1.1 Physical CPU Interface:
	The effects of reading ICC_IAR0_EL1 and ICC_IAR1_EL1
	on the state of a returned INTID are not guaranteed
	to be visible until after the execution of a DSB.

Not having this could result in missed interrupts, so let's add the
required barrier.

[Marc: fixed commit message]

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Tirumalesh Chalamarla <tchalamarla@caviumnetworks.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-15 08:27:43 +02:00
Caesar Wang
df4fe6f8c7 arm64: dts: rockchip: add reset saradc node for rk3368 SoCs
commit 78ec79bfd59e126e1cb394302bfa531a420b3ecd upstream.

SARADC controller needs to be reset before programming it, otherwise
it will not function properly.

Signed-off-by: Caesar Wang <wxt@rock-chips.com>
Acked-by: Heiko Stuebner <heiko@sntech.de>
Signed-off-by: Jonathan Cameron <jic23@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-07 08:32:41 +02:00
James Hogan
4919b2a3b4 arm64: Define AT_VECTOR_SIZE_ARCH for ARCH_DLINFO
commit 3146bc64d12377a74dbda12b96ea32da3774ae07 upstream.

AT_VECTOR_SIZE_ARCH should be defined with the maximum number of
NEW_AUX_ENT entries that ARCH_DLINFO can contain, but it wasn't defined
for arm64 at all even though ARCH_DLINFO will contain one NEW_AUX_ENT
for the VDSO address.

This shouldn't be a problem as AT_VECTOR_SIZE_BASE includes space for
AT_BASE_PLATFORM which arm64 doesn't use, but lets define it now and add
the comment above ARCH_DLINFO as found in several other architectures to
remind future modifiers of ARCH_DLINFO to keep AT_VECTOR_SIZE_ARCH up to
date.

Fixes: f668cd1673 ("arm64: ELF definitions")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-07 08:32:36 +02:00
Ard Biesheuvel
be7acd281e arm64: mm: avoid fdt_check_header() before the FDT is fully mapped
commit 04a848106193b134741672f7e4e444b50c70b631 upstream.

As reported by Zijun, the fdt_check_header() call in __fixmap_remap_fdt()
is not safe since it is not guaranteed that the FDT header is mapped
completely. Due to the minimum alignment of 8 bytes, the only fields we
can assume to be mapped are 'magic' and 'totalsize'.

Since the OF layer is in charge of validating the FDT image, and we are
only interested in making reasonably sure that the size field contains
a meaningful value, replace the fdt_check_header() call with an explicit
comparison of the magic field's value against the expected value.

Reported-by: Zijun Hu <zijun_hu@htc.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-08-20 18:09:17 +02:00
Caesar Wang
6d894c3f0f arm64: dts: rockchip: fixes the gic400 2nd region size for rk3368
commit ad1cfdf518976447e6b0d31517bad4e3ebbce6bb upstream.

The 2nd additional region is the GIC virtual cpu interface register
base and size.

As the gic400 of rk3368 says, the cpu interface register map as below

:

-0x0000 GICC_CTRL
.
.
.
-0x00fc GICC_IIDR
-0x1000 GICC_IDR

Obviously, the region size should be greater than 0x1000.
So we should make sure to include the GICC_IDR since the kernel will access
it in some cases.

Fixes: b790c2cab5 ("arm64: dts: add Rockchip rk3368 core dtsi and board dts for the r88 board")
Signed-off-by: Caesar Wang <wxt@rock-chips.com>
Reviewed-by: Shawn Lin <shawn.lin@rock-chips.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

[added Fixes and stable-cc]
Signed-off-by: Heiko Stuebner <heiko@sntech.de>
2016-08-20 18:09:17 +02:00
Suzuki K Poulose
ec2fdbebce arm64: Fix incorrect per-cpu usage for boot CPU
commit 9113c2aa05e9848cd4f1154abee17d4f265f012d upstream.

In smp_prepare_boot_cpu(), we invoke cpuinfo_store_boot_cpu to  store
the cpuinfo in a per-cpu ptr, before initialising the per-cpu offset for
the boot CPU. This patch reorders the sequence to make sure we initialise
the per-cpu offset before accessing the per-cpu area.

Commit 4b998ff188 ("arm64: Delay cpuinfo_store_boot_cpu") fixed the
issue where we modified the per-cpu area even before the kernel initialises
the per-cpu areas, but failed to wait until the boot cpu updated it's
offset.

Fixes: 4b998ff188 ("arm64: Delay cpuinfo_store_boot_cpu")
Cc: <stable@vger.kernel.org> # 4.4+
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-08-20 18:09:16 +02:00
Will Deacon
f4a65209dd arm64: debug: unmask PSTATE.D earlier
commit 2ce39ad15182604beb6c8fa8bed5e46b59fd1082 upstream.

Clearing PSTATE.D is one of the requirements for generating a debug
exception. The arm64 booting protocol requires that PSTATE.D is set,
since many of the debug registers (for example, the hw_breakpoint
registers) are UNKNOWN out of reset and could potentially generate
spurious, fatal debug exceptions in early boot code if PSTATE.D was
clear. Once the debug registers have been safely initialised, PSTATE.D
is cleared, however this is currently broken for two reasons:

(1) The boot CPU clears PSTATE.D in a postcore_initcall and secondary
    CPUs clear PSTATE.D in secondary_start_kernel. Since the initcall
    runs after SMP (and the scheduler) have been initialised, there is
    no guarantee that it is actually running on the boot CPU. In this
    case, the boot CPU is left with PSTATE.D set and is not capable of
    generating debug exceptions.

(2) In a preemptible kernel, we may explicitly schedule on the IRQ
    return path to EL1. If an IRQ occurs with PSTATE.D set in the idle
    thread, then we may schedule the kthread_init thread, run the
    postcore_initcall to clear PSTATE.D and then context switch back
    to the idle thread before returning from the IRQ. The exception
    return path will then restore PSTATE.D from the stack, and set it
    again.

This patch fixes the problem by moving the clearing of PSTATE.D earlier
to proc.S. This has the desirable effect of clearing it in one place for
all CPUs, long before we have to worry about the scheduler or any
exception handling. We ensure that the previous reset of MDSCR_EL1 has
completed before unmasking the exception, so that any spurious
exceptions resulting from UNKNOWN debug registers are not generated.

Without this patch applied, the kprobes selftests have been seen to fail
under KVM, where we end up attempting to step the OOL instruction buffer
with PSTATE.D set and therefore fail to complete the step.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-08-20 18:09:16 +02:00
James Morse
a5a095803c arm64: kernel: Save and restore UAO and addr_limit on exception entry
commit e19a6ee2460bdd0d0055a6029383422773f9999a upstream.

If we take an exception while at EL1, the exception handler inherits
the original context's addr_limit and PSTATE.UAO values. To be consistent
always reset addr_limit and PSTATE.UAO on (re-)entry to EL1. This
prevents accidental re-use of the original context's addr_limit.

Based on a similar patch for arm from Russell King.

Cc: <stable@vger.kernel.org> # 4.6-
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
[ backport to stop perf misusing inherited addr_limit.
  Removed code interacting with UAO and the irqstack ]
Link: https://bugs.chromium.org/p/project-zero/issues/detail?id=822
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-08-20 18:09:16 +02:00
Mark Rutland
cff5b236fa arm64: Rework valid_user_regs
commit dbd4d7ca563fd0a8949718d35ce197e5642d5d9d upstream.

We validate pstate using PSR_MODE32_BIT, which is part of the
user-provided pstate (and cannot be trusted). Also, we conflate
validation of AArch32 and AArch64 pstate values, making the code
difficult to reason about.

Instead, validate the pstate value based on the associated task. The
task may or may not be current (e.g. when using ptrace), so this must be
passed explicitly by callers. To avoid circular header dependencies via
sched.h, is_compat_task is pulled out of asm/ptrace.h.

To make the code possible to reason about, the AArch64 and AArch32
validation is split into separate functions. Software must respect the
RES0 policy for SPSR bits, and thus the kernel mirrors the hardware
policy (RAZ/WI) for bits as-yet unallocated. When these acquire an
architected meaning writes may be permitted (potentially with additional
validation).

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Dave Martin <dave.martin@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
[ rebased for v4.1+
  This avoids a user-triggerable Oops() if a task is switched to a mode
  not supported by the kernel (e.g. switching a 64-bit task to AArch32).
]
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com> [backport]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-07-27 09:47:33 -07:00
Will Deacon
5e8b53a4db arm64: mm: always take dirty state from new pte in ptep_set_access_flags
commit 0106d456c4cb1770253fefc0ab23c9ca760b43f7 upstream.

Commit 66dbd6e61a52 ("arm64: Implement ptep_set_access_flags() for
hardware AF/DBM") ensured that pte flags are updated atomically in the
face of potential concurrent, hardware-assisted updates. However, Alex
reports that:

 | This patch breaks swapping for me.
 | In the broken case, you'll see either systemd cpu time spike (because
 | it's stuck in a page fault loop) or the system hang (because the
 | application owning the screen is stuck in a page fault loop).

It turns out that this is because the 'dirty' argument to
ptep_set_access_flags is always 0 for read faults, and so we can't use
it to set PTE_RDONLY. The failing sequence is:

  1. We put down a PTE_WRITE | PTE_DIRTY | PTE_AF pte
  2. Memory pressure -> pte_mkold(pte) -> clear PTE_AF
  3. A read faults due to the missing access flag
  4. ptep_set_access_flags is called with dirty = 0, due to the read fault
  5. pte is then made PTE_WRITE | PTE_DIRTY | PTE_AF | PTE_RDONLY (!)
  6. A write faults, but pte_write is true so we get stuck

The solution is to check the new page table entry (as would be done by
the generic, non-atomic definition of ptep_set_access_flags that just
calls set_pte_at) to establish the dirty state.

Fixes: 66dbd6e61a52 ("arm64: Implement ptep_set_access_flags() for hardware AF/DBM")
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Alexander Graf <agraf@suse.de>
Tested-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-24 10:18:19 -07:00
Catalin Marinas
d0bc1f47b8 arm64: Provide "model name" in /proc/cpuinfo for PER_LINUX32 tasks
commit e47b020a323d1b2a7b1e9aac86e99eae19463630 upstream.

This patch brings the PER_LINUX32 /proc/cpuinfo format more in line with
the 32-bit ARM one by providing an additional line:

model name      : ARMv8 Processor rev X (v8l)

Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-24 10:18:19 -07:00
Matt Evans
6ff3df2010 kvm: arm64: Fix EC field in inject_abt64
commit e4fe9e7dc3828bf6a5714eb3c55aef6260d823a2 upstream.

The EC field of the constructed ESR is conditionally modified by ORing in
ESR_ELx_EC_DABT_LOW for a data abort.  However, ESR_ELx_EC_SHIFT is missing
from this condition.

Signed-off-by: Matt Evans <matt.evans@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-01 12:15:48 -07:00
Julien Grall
44f47d94e8 arm64: cpuinfo: Missing NULL terminator in compat_hwcap_str
commit f228b494e56d949be8d8ea09d4f973d1979201bf upstream.

The loop that browses the array compat_hwcap_str will stop when a NULL
is encountered, however NULL is missing at the end of array. This will
lead to overrun until a NULL is found somewhere in the following memory.
In reality, this works out because the compat_hwcap2_str array tends to
follow immediately in memory, and that *is* terminated correctly.
Furthermore, the unsigned int compat_elf_hwcap is checked before
printing each capability, so we end up doing the right thing because
the size of the two arrays is less than 32. Still, this is an obvious
mistake and should be fixed.

Note for backporting: commit 12d11817ea ("arm64: Move
/proc/cpuinfo handling code") moved this code in v4.4. Prior to that
commit, the same change should be made in arch/arm64/kernel/setup.c.

Fixes: 44b82b7700 "arm64: Fix up /proc/cpuinfo"
Signed-off-by: Julien Grall <julien.grall@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-01 12:15:48 -07:00
Catalin Marinas
7e1c1db08e arm64: Implement pmdp_set_access_flags() for hardware AF/DBM
commit 282aa7051b0169991b34716f0f22d9c2f59c46c4 upstream.

The update to the accessed or dirty states for block mappings must be
done atomically on hardware with support for automatic AF/DBM. The
ptep_set_access_flags() function has been fixed as part of commit
66dbd6e61a52 ("arm64: Implement ptep_set_access_flags() for hardware
AF/DBM"). This patch brings pmdp_set_access_flags() in line with the pte
counterpart.

Fixes: 2f4b829c62 ("arm64: Add support for hardware updates of the access and dirty pte bits")
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-01 12:15:48 -07:00
Catalin Marinas
098942bcf4 arm64: Implement ptep_set_access_flags() for hardware AF/DBM
commit 66dbd6e61a526ae7d11a208238ae2c17e5cacb6b upstream.

When hardware updates of the access and dirty states are enabled, the
default ptep_set_access_flags() implementation based on calling
set_pte_at() directly is potentially racy. This triggers the "racy dirty
state clearing" warning in set_pte_at() because an existing writable PTE
is overridden with a clean entry.

There are two main scenarios for this situation:

1. The CPU getting an access fault does not support hardware updates of
   the access/dirty flags. However, a different agent in the system
   (e.g. SMMU) can do this, therefore overriding a writable entry with a
   clean one could potentially lose the automatically updated dirty
   status

2. A more complex situation is possible when all CPUs support hardware
   AF/DBM:

   a) Initial state: shareable + writable vma and pte_none(pte)
   b) Read fault taken by two threads of the same process on different
      CPUs
   c) CPU0 takes the mmap_sem and proceeds to handling the fault. It
      eventually reaches do_set_pte() which sets a writable + clean pte.
      CPU0 releases the mmap_sem
   d) CPU1 acquires the mmap_sem and proceeds to handle_pte_fault(). The
      pte entry it reads is present, writable and clean and it continues
      to pte_mkyoung()
   e) CPU1 calls ptep_set_access_flags()

   If between (d) and (e) the hardware (another CPU) updates the dirty
   state (clears PTE_RDONLY), CPU1 will override the PTR_RDONLY bit
   marking the entry clean again.

This patch implements an arm64-specific ptep_set_access_flags() function
to perform an atomic update of the PTE flags.

Fixes: 2f4b829c62 ("arm64: Add support for hardware updates of the access and dirty pte bits")
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Ming Lei <tom.leiming@gmail.com>
Tested-by: Julien Grall <julien.grall@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[will: reworded comment]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-01 12:15:48 -07:00
Catalin Marinas
737b0679fd arm64: Ensure pmd_present() returns false after pmd_mknotpresent()
commit 5bb1cc0ff9a6b68871970737e6c4c16919928d8b upstream.

Currently, pmd_present() only checks for a non-zero value, returning
true even after pmd_mknotpresent() (which only clears the type bits).
This patch converts pmd_present() to using pte_present(), similar to the
other pmd_*() checks. As a side effect, it will return true for
PROT_NONE mappings, though they are not yet used by the kernel with
transparent huge pages.

For consistency, also change pmd_mknotpresent() to only clear the
PMD_SECT_VALID bit, even though the PMD_TABLE_BIT is already 0 for block
mappings (no functional change). The unused PMD_SECT_PROT_NONE
definition is removed as transparent huge pages use the pte page prot
values.

Fixes: 9c7e535fcc ("arm64: mm: Route pmd thp functions through pte equivalents")
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-01 12:15:48 -07:00
Catalin Marinas
f07f749170 arm64: Fix typo in the pmdp_huge_get_and_clear() definition
commit 911f56eeb87ee378f5e215469268a7a2f68a5a8a upstream.

With hardware AF/DBM support, pmd modifications (transparent huge pages)
should be performed atomically using load/store exclusive. The initial
patches defined the get-and-clear function and __HAVE_ARCH_* macro
without the "huge" word, leaving the pmdp_huge_get_and_clear() to the
default, non-atomic implementation.

Fixes: 2f4b829c62 ("arm64: Add support for hardware updates of the access and dirty pte bits")
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-01 12:15:48 -07:00
Catalin Marinas
70d65587f0 arm64: Update PTE_RDONLY in set_pte_at() for PROT_NONE permission
commit fdc69e7df3cb24f18a93192641786e5b7ecd1dfe upstream.

The set_pte_at() function must update the hardware PTE_RDONLY bit
depending on the state of the PTE_WRITE and PTE_DIRTY bits of the given
entry value. However, it currently only performs this for pte_valid()
entries, ignoring PTE_PROT_NONE. The side-effect is that PROT_NONE
mappings would not have the PTE_RDONLY bit set. Without
CONFIG_ARM64_HW_AFDBM, this is not an issue since such PROT_NONE pages
are not accessible anyway.

With commit 2f4b829c62 ("arm64: Add support for hardware updates of
the access and dirty pte bits"), the ptep_set_wrprotect() function was
re-written to cope with automatic hardware updates of the dirty state.
As an optimisation, only PTE_RDONLY is checked to assess the "dirty"
status. Since set_pte_at() does not set this bit for PROT_NONE mappings,
such pages may be considered "dirty" as a result of
ptep_set_wrprotect().

This patch updates the pte_valid() check to pte_present() in
set_pte_at(). It also adds PTE_PROT_NONE to the swap entry bits comment.

Fixes: 2f4b829c62 ("arm64: Add support for hardware updates of the access and dirty pte bits")
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Ganapatrao Kulkarni <gkulkarni@caviumnetworks.com>
Tested-by: Ganapatrao Kulkarni <gkulkarni@cavium.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-04 14:48:42 -07:00
Catalin Marinas
bdb0618ad1 arm64: Honour !PTE_WRITE in set_pte_at() for kernel mappings
commit ac15bd63bbb24238f763ec5b24ee175ec301e8cd upstream.

Currently, set_pte_at() only checks the software PTE_WRITE bit for user
mappings when it sets or clears the hardware PTE_RDONLY accordingly. The
kernel ptes are written directly without any modification, relying
solely on the protection bits in macros like PAGE_KERNEL. However,
modifying kernel pte attributes via pte_wrprotect() would be ignored by
set_pte_at(). Since pte_wrprotect() does not set PTE_RDONLY (it only
clears PTE_WRITE), the new permission is not taken into account.

This patch changes set_pte_at() to adjust the read-only permission for
kernel ptes as well. As a side effect, existing PROT_* definitions used
for kernel ioremap*() need to include PTE_DIRTY | PTE_WRITE.

(additionally, white space fix for PTE_KERNEL_ROX)

Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-04 14:48:42 -07:00