sched_prefer_idle flag controls whether tasks can be woken to any
available idle cpu. It may be desirable to set sched_prefer_idle to 0
so that most tasks wake up to non-idle cpus under mostly_idle
threshold and have specialized tasks override this behavior through
other means. PF_WAKE_UP_IDLE flag per task provides exactly that. It
lets tasks with PF_WAKE_UP_IDLE flag set be woken up to any available
idle cpu independent of sched_prefer_idle flag setting. Currently
only kernel-space API exists to set PF_WAKE_UP_IDLE flag for a task.
This patch adds a user-space API (in /proc filesystem) to set
PF_WAKE_UP_IDLE flag for a given task. /proc/[pid]/sched_wake_up_idle
file can be written to set or clear PF_WAKE_UP_IDLE flag for a given
task.
Change-Id: I13a37e740195e503f457ebe291d54e83b230fbeb
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
[rameezmustafa@codeaurora.org: Port to msm-3.18]
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: fixed minor conflict in kernel/sched/fair.c]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Add code to calculate the run queue depth of a cpu and iowait
depth of the cpu.
The scheduler calls in to sched_update_nr_prod whenever there
is a runqueue change. This function maintains the runqueue average
and the iowait of that cpu in that time interval.
Whoever wants to know the runqueue average is expected to call
sched_get_nr_running_avg periodically to get the accumulated
runqueue and iowait averages for all the cpus.
Change-Id: Id8cb2ecf0ed479f090a83ccb72dd59c53fa73e0c
Signed-off-by: Jeff Ohlstein <johlstei@codeaurora.org>
(cherry picked from commit 0299fcaaad80e2c0ac9aa583c95107f6edc27750)
[rameezmustafa@codeaurora.org: Port to msm-3.18]
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
Remove the global sysctl_sched_prefer_idle flag and replace it with a
per-cpu prefer_idle flag. The per-cpu flag is expected to same for all
cpus in a cluster. It thus provides convenient means to disable
packing in one cluster while allowing packing in another cluster.
Change-Id: Ie4cc73bb1a55b4eac5697be38e558546161faca1
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Power values for cpus can drop quite considerably when it goes idle.
As a result, the best choice for running a single task in a cluster
can vary quite rapidly. As the task keeps hopping cpus, other cpus go
idle and start being seen as more favorable target for running a task,
leading to task migrating almost every scheduler tick!
Prevent this by keeping track of when a task started running on a cpu
and allowing task migration in tick path (migration_needed()) on
account of energy efficiency reasons only if the task has run
sufficiently long (as determined by sysctl_sched_min_runtime
variable).
Note that currently sysctl_sched_min_runtime setting is considered
only in scheduler_tick()->migration_needed() path and not in
idle_balance() path. In other words, a task could be migrated to
another cpu which did a idle_balance(). This limitation should not
affect high-frequency migrations seen typically (when a single
high-demand task runs on high-performance cpu).
CRs-Fixed: 756570
Change-Id: I96413b7a81b623193c3bbcec6f3fa9dfec367d99
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
[joonwoop@codeaurora.org: fixed conflict in set_task_cpu() and
__schedule().]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
The system initially uses a jiffy-based sched clock. When the platform
registers a new timer for sched_clock, sched_clock can jump backwards.
Once sched_clock_postinit() runs it should be safe to rely on it.
Also sched_clock_cpu() relies on completion of sched_clock_init()
and until that happens sched_clock_cpu() returns zero. This is used
in the irq accounting path which window-based stats relies upon.
So do not set window_start until sched_clock_cpu() is working.
Change-Id: Ided349de8f8554f80a027ace0f63ea52b1c38c68
Signed-off-by: Steve Muckle <smuckle@codeaurora.org>
Add another dimension for task packing based on frequency. This patch
adds a per-cpu tunable, rq->mostly_idle_freq, which when set will
result in tasks being packed on a single cpu in cluster as long as
cluster frequency is less than set threshold.
Change-Id: I318e9af6c8788ddf5dfcda407d621449ea5343c0
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
sched_mostly_idle_load and sched_mostly_idle_nr_run knobs help pack
tasks on cpus to some extent. In some cases, it may be desirable to
have different packing limits for different cpus. For example, pack to
a higher limit on high-performance cpus compared to power-efficient
cpus.
This patch removes the global mostly_idle tunables and makes them
per-cpu, thus letting task packing behavior to be controlled in a
fine-grained manner.
Change-Id: Ifc254cda34b928eae9d6c342ce4c0f64e531e6c2
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Add a per-task attribute, init_load_pct, that is used to initialize
newly created children's initial task load. This helps important
applications launch their child tasks on cpus with highest capacity.
Change-Id: Ie9665fd2aeb15203f95fd7f211c50bebbaa18727
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
[joonwoop@codeaurora.org: fixed conflict int init_new_task_load.
se.avg.runnable_avg_sum has deprecated.]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
rq->curr/prev_runnable_sum counters represent cpu demand from various
tasks that have run on a cpu. Any task that runs on a cpu will have a
representation in rq->curr_runnable_sum. Their partial_demand value
will be included in rq->curr_runnable_sum. Since partial_demand is
derived from historical load samples for a task, rq->curr_runnable_sum
could represent "inflated/un-realistic" cpu usage. As an example, lets
say that task with partial_demand of 10ms runs for only 1ms on a cpu.
What is included in rq->curr_runnable_sum is 10ms (and not the actual
execution time of 1ms). This leads to cpu busy time being reported on
the upside causing frequency to stay higher than necessary.
This patch fixes cpu busy accounting scheme to strictly represent
actual usage. It also provides for conditional fixup of busy time upon
migration and upon heavy-task wakeup.
CRs-Fixed: 691443
Change-Id: Ic4092627668053934049af4dfef65d9b6b901e6b
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: fixed conflict in init_task_load(),
se.avg.decay_count has deprecated.]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
sched_get_busy(), sched_set_io_is_busy() and sched_set_window() need
to be defined only when CONFIG_SCHED_FREQ_INPUT is defined, otherwise
we get compilation error related to dual definition of those routines
Change-Id: Ifd5c9b6675b78d04c2f7ef0e24efeae70f7ce19b
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
[joonwoop@codeaurora.org: fixed minor conflict in include/linux/sched.h]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Define dummy scheduler freq input functions when
CONFIG_SCHED_FREQ_INPUT is not selected.
Change-Id: Id041cbf157cf9aba86601bf95e1068be206775f0
Signed-off-by: Junjie Wu <junjiew@codeaurora.org>
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: fixed minor conflict in include/linux/sched.h]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Exiting tasks are removed from tasklist and hence at some point will
become invisible to do_each_thread/for_each_thread task iterators.
This breaks the functionality of reset_all_windows_stats() which *has*
to reset stats for *all* tasks.
This patch causes exiting tasks stats to be reset *before* they are
removed from tasklist. DONT_ACCOUNT bit in exiting task's ravg.flags
is also marked so that their remaining execution time is not accounted
in cpu busy time counters (rq->curr/prev_runnable_sum).
reset_all_windows_stats() is thus guaranteed to return with all task's
stats reset to 0.
Change-Id: I5f101156a4f958c1b3f31eb0db8cd06e621b75e9
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Make RAVG_HIST_SIZE available from /proc/sys/kernel/sched_ravg_hist_size
to allow tuning of the size of the history that is used in computation
of task demand.
CRs-fixed: 706138
Change-Id: Id54c1e4b6e974a62d787070a0af1b4e8ce3b4be6
Signed-off-by: Olav Haugan <ohaugan@codeaurora.org>
[joonwoop@codeaurora.org: fixed minor conflict in sysctl.h]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Account cycles spent by idle cpu handling interrupts (irq or softirq)
towards its busy time.
Change-Id: I84cc084ced67502e1cfa7037594f29ed2305b2b1
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
[joonwoop@codeaurora.org: fixed minor conflict in core.c]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Provide a knob to consider idle time as busy time, when cpu becomes
idle as a result of io_schedule() call. This will let governor
parameter 'io_is_busy' to be appropriately honored.
Change-Id: Id9fb4fe448e8e4909696aa8a3be5a165ad7529d3
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Extend window-based task load accounting mechanism to include
wait-time as part of task demand. A subsequent patch will make this
feature configurable at runtime.
Change-Id: I8e79337c30a19921d5c5527a79ac0133b385f8a9
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
It should be possible to bypass all HMP scheduler changes at runtime
by setting sysctl_sched_enable_hmp_task_placement and
sysctl_sched_enable_power_aware to 0. Fix various code paths to honor
this requirement.
Change-Id: I74254e68582b3f9f1b84661baf7dae14f981c025
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: fixed conflict in rt.c, p->nr_cpus_allowed ==
1 is now moved in core.c]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Certain low latency bursty workloads require immediate use of highest
capacity CPUs in HMP systems. Existing load tracking mechanisms may be
unable to respond to the sudden surge in the system load within the
latency requirements. Introduce the scheduler boost feature for such
workloads. While boost is in effect the scheduler bypasses regular load
based task placement and prefers highest capacity CPUs in the system
for all non-small fair sched class tasks. Provide both a kernel and
userspace API for software that may have apriori knowledge about the
system workload.
Change-Id: I783f585d1f8c97219e629d9c54f712318821922f
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: fixed minor conflict in
include/linux/sched/sysctl.h.]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Window-based load tracking is a pre-requisite for the scheduler to
feed cpu load information to the governor. When PELT is in use, return
failure when governor attempts to set window-size. This will let
governor fall back to other APIs for retrieving cpu load statistics.
Change-Id: I0e11188594c1a54b3b7ff55447d30bfed1a01115
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: fixed trivial merge conflict
in include/linux/sched.h.]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Add trace events for update_task_ravg(), update_history(), and
set_task_cpu(). These tracepoints are useful for monitoring the
per-task and per-runqueue demand statistics.
Change-Id: Ibec9f945074ff31d1fc1a76ae37c40c8fea8cda9
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Rebalancing at exec time will currently undo any beneficial placement
that has been done during fork time, since select_best_cpu() will not
discount the currently running task.
For now just skip re-evaluating task placement at exec.
Change-Id: I1e5e0fcc329b7b53c338c8c73795ebd5e85a118b
Signed-off-by: Steve Muckle <smuckle@codeaurora.org>
Historical load maintained per task can be used to influence cpu
frequency better. For example, when a heavy demand task wakes up after
prolonged sleep, we could use the historical load information to alert
cpufreq governor about the need to raise cpu frequency. This patch
changes CPU busy statistics to be aggregation of historical task
demand. Also task's historical load (as defined by
sysctl_sched_window_stats_policy) is add to cpu's busy statistics
(rq->curr_runnable_sum) whenever it executes on a cpu.
Change-Id: I2b66136f138b147ba19083b9b044c4feb20d9b57
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
[rameezmustafa@codeaurora.org]: Port to msm-3.18]
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org
When a task moves between CPUs in two different frequency domains
the cpufreq governor may wish to immediately modify the frequency
of both the source and destination CPUs of the migrating task.
A tunable is provided to establish what size task is considered
"significant" enough to warrant notifying cpufreq.
Also fix a bug that would cause load to not be accounted properly
during wakeup migrations.
Change-Id: Ie8f6b1cc4d43a602840dac18590b42a81327c95a
Signed-off-by: Steve Muckle <smuckle@codeaurora.org>
[rameezmustafa@codeaurora.org: Add double rq locking for set_task_cpu()]
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
sched_get_busy() returns the busy time of a cpu during the most
recent completed window.
sched_set_window() will set window size and aligns windows across
all CPUs.
Change-Id: Ic53e27f43fd4600109b7b6db979e1c52c7aca103
Signed-off-by: Steve Muckle <smuckle@codeaurora.org>
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: fixed minor conflict in include/linux/sched.h]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Currently windows where tasks had no execution time are ignored.
However accurate accounting of cpu busy time that factors in migration
would need to know actual utilization of a task in the window previous
to the latest one. This would help scheduler guide cpufreq governor on
busy time per-cpu that is not subject to migration induced errors.
Change-Id: I5841b1732c83e83d69002139de3bdb93333ce347
Signed-off-by: Steve Muckle <smuckle@codeaurora.org>
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Synchronizing windows across cpus for task load measurements
simplifies cpu busy time accounting during migrations. For task
migrations, its usage in current window can be carried over to its new
cpu. This lets cpufreq governor see a correct picture of cpu busy time
that is not affected by migrations.
This patch lines up windows across cpus. One of the cpu, sync_cpu,
serves as a reference for all others. During bootup sync_cpu would
initialize its window_start (from its sched_clock()). Other cpus will
synchronize their window_start in reference to sync_cpu. This patch
assumes synchronous sched_clock() across cpus and may need some change
to address architectures which do not provide such synchronized
sched_clock().
Change-Id: I13381389a72f5f9f85cc2446401d493a55c78ab7
Signed-off-by: Steve Muckle <smuckle@codeaurora.org>
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Add a compile-time flag to enable or disable scheduler features for
HMP (heterogenous multi-processor) systems. Main feature deals with
optimizing task placement for best power/performance tradeoff.
Also extend features currently dependent on CONFIG_SCHED_FREQ_INPUT to
be enabled for CONFIG_HMP as well.
Change-Id: I03b3942709a80cc19f7b934a8089e1d84c14d72d
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
[rameezmustafa@codeaurora.org]: Port to msm-3.18]
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: fixed minor ifdefry conflict.]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Scheduler guided frequency selection as well as task placement on
heterogeneous systems require scaled task load statistics. This patch
adds a 'runnable_avg_sum_scaled' metric per task that is a scaled
derivative of 'runnable_avg_sum'. Load is scaled in reference to
"best" cpu, i.e one with best possible max_freq
Change-Id: Ie8ae450d0b02753e9927fb769aee734c6d33190f
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
[rameezmustafa@codeaurora.org]: Port to msm-3.18]
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: incoporated with change 9d89c257df
(" sched/fair: Rewrite runnable load and utilization average
tracking"). Used container_of() to get sched_entity.]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Introduce a compile time flag to enable scheduler guidance of
frequency selection. This flag is also used to turn on or off
window-based load stats feature.
Having a compile time flag will let some platforms avoid any
overhead that may be present with this scheduler feature.
Change-Id: Id8dec9839f90dcac82f58ef7e2bd0ccd0b6bd16c
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
[rameezmustafa@codeaurora.org]: Port to msm-3.18]
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: fixed minor conflict around
sysctl_timer_migration.]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Some tasks can have a sporadic load pattern such that they can suddenly
start running for longer intervals of time after running for shorter
durations. To recognize such sharp increase in tasks' demands, max
between the average of 5 window load samples and the most recent sample
is chosen as the task demand.
Make the window size (sched_ravg_window) configurable at boot up
time. To prevent users from setting inappropriate values for window
size, min and max limits are defined. As 'ravg' struct tracks load for
both real-time and non real-time tasks it is moved out of sched_entity
struct.
In order to prevent changing function signatures for move_tasks() and
move_one_task() per-cpu variables are defined to track the total load
moved. In case multiple tasks are selected to migrate in one load
balance operation, loads > 100 could be sent through migration notifiers.
Prevent this scenario by setting mnd.load to 100 in such cases.
Define wrapper functions to compute cpu demands for tasks and to change
rq->cumulative_runnable_avg.
Change-Id: I9abfbf3b5fe23ae615a6acd3db9580cfdeb515b4
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Signed-off-by: Rohit Gupta <rohgup@codeaurora.org>
[rameezmustafa@codeaurora.org: Port to msm-3.18 and squash "dcf7256 sched:
window-stats: Fix overflow bug" into this patch.]
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: fixed conflict in __migrate_task().]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Previously, on getting a migration notification cpu-boost changed
the scaling min of the destination frequency to match that of the
source frequency or sync_threshold whichever was minimum.
If the scheduler migration notification is extended with task load
(cpu demand) information, the cpu boost driver can use this load to
compute a suitable frequency for the migrating task. The required
frequency for the task is calculated by taking the load percentage
of the max frequency and no sync is performed if the load is less
than a particular value (migration_load_threshold).This change is
beneficial for both perf and power as demand of a task is taken into
consideration while making cpufreq decisions and unnecessary syncs
for lightweight tasks are avoided.
The task load information provided by scheduler comes from a
window-based load collection mechanism which also normalizes the
load collected by the scheduler to the max possible frequency
across all CPUs.
Change-Id: Id2ba91cc4139c90602557f9b3801fb06b3c38992
Signed-off-by: Rohit Gupta <rohgup@codeaurora.org>
[rameezmustafa@codeaurora.org]: Port to msm-3.18]
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: fixed conflict in __migrate_task().]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Provide a metric per task that specifies how cpu bound a task is. Task
execution is monitored over several time windows and the fraction of
the window for which task was found to be executing or wanting to run
is recorded as task's demand. Windows over which task was sleeping are
ignored. We track last 5 recent windows for every task and the maximum
demand seen in any of the previous 5 windows (where task had some
activity) drives freq demand for every task.
A per-cpu metric (rq->cumulative_runnable_avg) is also provided which
is an aggregation of cpu demand of all tasks currently enqueued on it.
rq->cumulative_runnable_avg will be useful to know if cpu frequency
will need to be changed to match task demand.
Change-Id: Ib83207b9ba8683cd3304ee8a2290695c34f08fe2
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
[rameezmustafa@codeaurora.org]: Port to msm-3.18]
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: fixed conflict in ttwu_do_wakeup() to
incorporate with changed trace_sched_wakeup() location.]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
On systems where CPUs may run asynchronously, task migrations
between CPUs running at grossly different speeds can cause
problems.
This change provides a mechanism to notify a subsystem
in the kernel if a task in a particular cgroup migrates to a
different CPU. Other subsystems (such as cpufreq) may then
register for this notifier to take appropriate action when
such a task is migrated.
The cgroup attribute to set for this behavior is
"notify_on_migrate" .
Change-Id: Ie1868249e53ef901b89c837fdc33b0ad0c0a4590
Signed-off-by: Steve Muckle <smuckle@codeaurora.org>
[rameezmustafa@codeaurora.org: Use new cgroup APIs, fix 64-bit
compilation issues and resolve some merge
conflicts. Also squash "2bd8075 sched:
remove migration notification from RT class"
into this patch.]
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: Incorporated with new __migrate_task().]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Certain workloads may benefit from the SD_SHARE_PKG_RESOURCES behavior
of waking their tasks up on idle CPUs. The feature has too much of a
negative impact on other workloads however to apply globally. The
PF_WAKE_UP_IDLE flag tells the scheduler to wake up tasks that have this
flag set, or tasks woken by tasks with this flag set, on an idle CPU
if one is available.
Change-Id: I20b28faf35029f9395e9d9f5ddd57ce2de795039
Signed-off-by: Steve Muckle <smuckle@codeaurora.org>
[joonwoop@codeaurora.org: fixed conflict around set_wake_up_idle() in
include/linux/sched.h]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
C-state represents a power-state of a cpu. A cpu could have one or
more C-states associated with it. C-state transitions are based on
various factors (expected sleep time for example). "Deeper" C-states
implies longer wakeup latencies.
Scheduler needs to know wakeup latency associated with various C-states.
Having this information allows the scheduler to make better decisions
during task placement. For example:
- Prefer an idle cpu that is in the least shallow C-state
- Avoid waking up small tasks on a idle cpu unless it is in the least
shallow C-state
This patch introduces APIs in the scheduler that can be used by the
architecture specific power-management driver to inform the scheduler
about C-states for cpus.
Change-Id: I39c5ae6dbace4f8bd96e88f75cd2d72620436dd1
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
UBSAN uses compile-time instrumentation to catch undefined behavior
(UB). Compiler inserts code that perform certain kinds of checks before
operations that could cause UB. If check fails (i.e. UB detected)
__ubsan_handle_* function called to print error message.
So the most of the work is done by compiler. This patch just implements
ubsan handlers printing errors.
GCC has this capability since 4.9.x [1] (see -fsanitize=undefined
option and its suboptions).
However GCC 5.x has more checkers implemented [2].
Article [3] has a bit more details about UBSAN in the GCC.
[1] - https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/Debugging-Options.html
[2] - https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html
[3] - http://developerblog.redhat.com/2014/10/16/gcc-undefined-behavior-sanitizer-ubsan/
Issues which UBSAN has found thus far are:
Found bugs:
* out-of-bounds access - 97840cb67f ("netfilter: nfnetlink: fix
insufficient validation in nfnetlink_bind")
undefined shifts:
* d48458d4a7 ("jbd2: use a better hash function for the revoke
table")
* 10632008b9 ("clockevents: Prevent shift out of bounds")
* 'x << -1' shift in ext4 -
http://lkml.kernel.org/r/<5444EF21.8020501@samsung.com>
* undefined rol32(0) -
http://lkml.kernel.org/r/<1449198241-20654-1-git-send-email-sasha.levin@oracle.com>
* undefined dirty_ratelimit calculation -
http://lkml.kernel.org/r/<566594E2.3050306@odin.com>
* undefined roundown_pow_of_two(0) -
http://lkml.kernel.org/r/<1449156616-11474-1-git-send-email-sasha.levin@oracle.com>
* [WONTFIX] undefined shift in __bpf_prog_run -
http://lkml.kernel.org/r/<CACT4Y+ZxoR3UjLgcNdUm4fECLMx2VdtfrENMtRRCdgHB2n0bJA@mail.gmail.com>
WONTFIX here because it should be fixed in bpf program, not in kernel.
signed overflows:
* 32a8df4e0b ("sched: Fix odd values in effective_load()
calculations")
* mul overflow in ntp -
http://lkml.kernel.org/r/<1449175608-1146-1-git-send-email-sasha.levin@oracle.com>
* incorrect conversion into rtc_time in rtc_time64_to_tm() -
http://lkml.kernel.org/r/<1449187944-11730-1-git-send-email-sasha.levin@oracle.com>
* unvalidated timespec in io_getevents() -
http://lkml.kernel.org/r/<CACT4Y+bBxVYLQ6LtOKrKtnLthqLHcw-BMp3aqP3mjdAvr9FULQ@mail.gmail.com>
* [NOTABUG] signed overflow in ktime_add_safe() -
http://lkml.kernel.org/r/<CACT4Y+aJ4muRnWxsUe1CMnA6P8nooO33kwG-c8YZg=0Xc8rJqw@mail.gmail.com>
[akpm@linux-foundation.org: fix unused local warning]
[akpm@linux-foundation.org: fix __int128 build woes]
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yury Gribov <y.gribov@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Git-repo: https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/
Git-commit: c6d308534aef6c99904bf5862066360ae067abc4
[tsoni@codeaurora.org: trivial merge conflict resolution]
CRs-Fixed: 969533
Change-Id: I048b9936b1120e0d375b7932c59de78d8ef8f411
Signed-off-by: Trilok Soni <tsoni@codeaurora.org>
[satyap@codeaurora.org: trivial merge conflict resolution]
Signed-off-by: Satya Durga Srinivasu Prabhala <satyap@codeaurora.org>
Some of the sched bitfieds (notably sched_reset_on_fork) can be set
on other than current, this can cause the r-m-w to race with other
updates.
Since all the sched bits are serialized by scheduler locks, pull them
in a separate word.
Reported-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: hannes@cmpxchg.org
Cc: mhocko@kernel.org
Cc: vdavydov@parallels.com
Link: http://lkml.kernel.org/r/20151125150207.GM11639@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Our global init task can have sub-threads, so ->pid check is not reliable
enough for is_global_init(), we need to check tgid instead. This has been
spotted by Oleg and a fix was proposed by Richard a long time ago (see the
link below).
Oleg wrote:
: Because is_global_init() is only true for the main thread of /sbin/init.
:
: Just look at oom_unkillable_task(). It tries to not kill init. But, say,
: select_bad_process() can happily find a sub-thread of is_global_init()
: and still kill it.
I recently hit the problem in question; re-sending the patch (to the
best of my knowledge it has never been submitted) with updated function
comment. Credit goes to Oleg and Richard.
Suggested-by: Richard Guy Briggs <rgb@redhat.com>
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Eric W . Biederman <ebiederm@xmission.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Serge E . Hallyn <serge.hallyn@ubuntu.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://www.redhat.com/archives/linux-audit/2013-December/msg00086.html
Signed-off-by: Ingo Molnar <mingo@kernel.org>
1/ Add support for the ACPI 6.0 NFIT hot add mechanism to process
updates of the NFIT at runtime.
2/ Teach the coredump implementation how to filter out DAX mappings.
3/ Introduce NUMA hints for allocations made by the pmem driver, and as
a side effect all devm allocations now hint their NUMA node by
default.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWQX2sAAoJEB7SkWpmfYgCWsEQAK7w/xM9zClVY/DDlFJxFtYq
DZJ4faPj+E3FMTiJIEDzjtRgQvOFE+wmJtntYsCqKH/QZmpnyk9jeT/CbJzEEL2k
WsAk+qHGLcVUlSb36blwN1RFzYqC+IDYThewJqUvxDbOwL1AbiibbX7gplzZHLhW
+rj3ScVlSNOPRDgGGpkAeLNNsttuKvsGo7nB/JZopm0tV6g14rSK09wQbVhv6S6T
Lu7VGYqnJlkteL9YlzRiROf9hW2ZFCMGJz1YZydPTy3aX3hGTBX4w2qvmsPwBIKP
kW/gCNisVJGk1cZCk4joSJ8i/b3x3fE0zdZ5waivJ5jDvYbUUfyk0KtJkfw207Rl
14yWitUC6aeVuCeOqXHgsjRi+1QVN9Pg7i49xgGiUN1igQiUYRTgQPWZxDv6Zo/s
USrLFQBaRd+hJw+dl7A47lJ3mUF96tPCoQb4LCQ7DVsg5U4J2TvqXLH9Gek/CCZ4
QsMkZDTQlZw4+JEDlzBgg/L7xVty8DadplTADMdjaRhFU3y8zKNJ85Ileokt7KVt
IsBT4+S5HeZLvinZY95932DwAmFp1DtsyENd1BUXL06ddyvlQrFJ6NQaXji4fuDc
EVQmMoTAqDujZFupMAux9vkUBDFj/hmaVD5F7j3+MWP87OCritw/IZn+2LgTaKoX
EmttaYrDr2jJwIaGyw+H
=a2/L
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"Outside of the new ACPI-NFIT hot-add support this pull request is more
notable for what it does not contain, than what it does. There were a
handful of development topics this cycle, dax get_user_pages, dax
fsync, and raw block dax, that need more more iteration and will wait
for 4.5.
The patches to make devm and the pmem driver NUMA aware have been in
-next for several weeks. The hot-add support has not, but is
contained to the NFIT driver and is passing unit tests. The coredump
support is straightforward and was looked over by Jeff. All of it has
received a 0day build success notification across 107 configs.
Summary:
- Add support for the ACPI 6.0 NFIT hot add mechanism to process
updates of the NFIT at runtime.
- Teach the coredump implementation how to filter out DAX mappings.
- Introduce NUMA hints for allocations made by the pmem driver, and
as a side effect all devm allocations now hint their NUMA node by
default"
* tag 'libnvdimm-for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
coredump: add DAX filtering for FDPIC ELF coredumps
coredump: add DAX filtering for ELF coredumps
acpi: nfit: Add support for hot-add
nfit: in acpi_nfit_init, break on a 0-length table
pmem, memremap: convert to numa aware allocations
devm_memremap_pages: use numa_mem_id
devm: make allocations numa aware by default
devm_memremap: convert to return ERR_PTR
devm_memunmap: use devres_release()
pmem: kill memremap_pmem()
x86, mm: quiet arch_add_memory()
Add two new flags to the existing coredump mechanism for ELF files to
allow us to explicitly filter DAX mappings. This is desirable because
DAX mappings, like hugetlb mappings, have the potential to be very
large.
Update the coredump_filter documentation in
Documentation/filesystems/proc.txt so that it addresses the new DAX
coredump flags. Also update the documented default value of
coredump_filter to be consistent with the core(5) man page. The
documentation being updated talks about bit 4, Dump ELF headers, which
is enabled if CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS is turned on in the
kernel config. This kernel config option defaults to "y" if both ELF
binaries and coredump are enabled.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
jffs2_garbage_collect_thread() can race with SIGCONT and sleep in
TASK_STOPPED state after it was already sent. Add the new helper,
kernel_signal_stop(), which does this correctly.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Felipe Balbi <balbi@ti.com>
Cc: Markus Pargmann <mpa@pengutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1. Rename dequeue_signal_lock() to kernel_dequeue_signal(). This
matches another "for kthreads only" kernel_sigaction() helper.
2. Remove the "tsk" and "mask" arguments, they are always current
and current->blocked. And it is simply wrong if tsk != current.
3. We could also remove the 3rd "siginfo_t *info" arg but it looks
potentially useful. However we can simplify the callers if we
change kernel_dequeue_signal() to accept info => NULL.
4. Remove _irqsave, it is never called from atomic context.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Felipe Balbi <balbi@ti.com>
Cc: Markus Pargmann <mpa@pengutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is hardly possible to enumerate all problems with block_all_signals()
and unblock_all_signals(). Just for example,
1. block_all_signals(SIGSTOP/etc) simply can't help if the caller is
multithreaded. Another thread can dequeue the signal and force the
group stop.
2. Even is the caller is single-threaded, it will "stop" anyway. It
will not sleep, but it will spin in kernel space until SIGCONT or
SIGKILL.
And a lot more. In short, this interface doesn't work at all, at least
the last 10+ years.
Daniel said:
Yeah the only times I played around with the DRM_LOCK stuff was when
old drivers accidentally deadlocked - my impression is that the entire
DRM_LOCK thing was never really tested properly ;-) Hence I'm all for
purging where this leaks out of the drm subsystem.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Acked-by: Dave Airlie <airlied@redhat.com>
Cc: Richard Weinberger <richard@nod.at>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge patch-bomb from Andrew Morton:
- inotify tweaks
- some ocfs2 updates (many more are awaiting review)
- various misc bits
- kernel/watchdog.c updates
- Some of mm. I have a huge number of MM patches this time and quite a
lot of it is quite difficult and much will be held over to next time.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (162 commits)
selftests: vm: add tests for lock on fault
mm: mlock: add mlock flags to enable VM_LOCKONFAULT usage
mm: introduce VM_LOCKONFAULT
mm: mlock: add new mlock system call
mm: mlock: refactor mlock, munlock, and munlockall code
kasan: always taint kernel on report
mm, slub, kasan: enable user tracking by default with KASAN=y
kasan: use IS_ALIGNED in memory_is_poisoned_8()
kasan: Fix a type conversion error
lib: test_kasan: add some testcases
kasan: update reference to kasan prototype repo
kasan: move KASAN_SANITIZE in arch/x86/boot/Makefile
kasan: various fixes in documentation
kasan: update log messages
kasan: accurately determine the type of the bad access
kasan: update reported bug types for kernel memory accesses
kasan: update reported bug types for not user nor kernel memory accesses
mm/kasan: prevent deadlock in kasan reporting
mm/kasan: don't use kasan shadow pointer in generic functions
mm/kasan: MODULE_VADDR is not available on all archs
...
Currently, try_charge() tries to reclaim memory synchronously when the
high limit is breached; however, if the allocation doesn't have
__GFP_WAIT, synchronous reclaim is skipped. If a process performs only
speculative allocations, it can blow way past the high limit. This is
actually easily reproducible by simply doing "find /". slab/slub
allocator tries speculative allocations first, so as long as there's
memory which can be consumed without blocking, it can keep allocating
memory regardless of the high limit.
This patch makes try_charge() always punt the over-high reclaim to the
return-to-userland path. If try_charge() detects that high limit is
breached, it adds the overage to current->memcg_nr_pages_over_high and
schedules execution of mem_cgroup_handle_over_high() which performs
synchronous reclaim from the return-to-userland path.
As long as kernel doesn't have a run-away allocation spree, this should
provide enough protection while making kmemcg behave more consistently.
It also has the following benefits.
- All over-high reclaims can use GFP_KERNEL regardless of the specific
gfp mask in use, e.g. GFP_NOFS, when the limit was breached.
- It copes with prio inversion. Previously, a low-prio task with
small memory.high might perform over-high reclaim with a bunch of
locks held. If a higher prio task needed any of these locks, it
would have to wait until the low prio task finished reclaim and
released the locks. By handing over-high reclaim to the task exit
path this issue can be avoided.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
task_struct->memcg_oom is a sub-struct containing fields which are used
for async memcg oom handling. Most task_struct fields aren't packaged
this way and it can lead to unnecessary alignment paddings. This patch
flattens it.
* task.memcg_oom.memcg -> task.memcg_in_oom
* task.memcg_oom.gfp_mask -> task.memcg_oom_gfp_mask
* task.memcg_oom.order -> task.memcg_oom_order
* task.memcg_oom.may_oom -> task.memcg_may_oom
In addition, task.memcg_may_oom is relocated to where other bitfields are
which reduces the size of task_struct.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The only way to enable a hardlockup to panic the machine is to set
'nmi_watchdog=panic' on the kernel command line.
This makes it awkward for end users and folks who want to run automate
tests (like myself).
Mimic the softlockup_panic knob and create a /proc/sys/kernel/hardlockup_panic
knob.
Signed-off-by: Don Zickus <dzickus@redhat.com>
Cc: Ulrich Obergfell <uobergfe@redhat.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
"The cgroup core saw several significant updates this cycle:
- percpu_rwsem for threadgroup locking is reinstated. This was
temporarily dropped due to down_write latency issues. Oleg's
rework of percpu_rwsem which is scheduled to be merged in this
merge window resolves the issue.
- On the v2 hierarchy, when controllers are enabled and disabled, all
operations are atomic and can fail and revert cleanly. This allows
->can_attach() failure which is necessary for cpu RT slices.
- Tasks now stay associated with the original cgroups after exit
until released. This allows tracking resources held by zombies
(e.g. pids) and makes it easy to find out where zombies came from
on the v2 hierarchy. The pids controller was broken before these
changes as zombies escaped the limits; unfortunately, updating this
behavior required too many invasive changes and I don't think it's
a good idea to backport them, so the pids controller on 4.3, the
first version which included the pids controller, will stay broken
at least until I'm sure about the cgroup core changes.
- Optimization of a couple common tests using static_key"
* 'for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (38 commits)
cgroup: fix race condition around termination check in css_task_iter_next()
blkcg: don't create "io.stat" on the root cgroup
cgroup: drop cgroup__DEVEL__legacy_files_on_dfl
cgroup: replace error handling in cgroup_init() with WARN_ON()s
cgroup: add cgroup_subsys->free() method and use it to fix pids controller
cgroup: keep zombies associated with their original cgroups
cgroup: make css_set_rwsem a spinlock and rename it to css_set_lock
cgroup: don't hold css_set_rwsem across css task iteration
cgroup: reorganize css_task_iter functions
cgroup: factor out css_set_move_task()
cgroup: keep css_set and task lists in chronological order
cgroup: make cgroup_destroy_locked() test cgroup_is_populated()
cgroup: make css_sets pin the associated cgroups
cgroup: relocate cgroup_[try]get/put()
cgroup: move check_for_release() invocation
cgroup: replace cgroup_has_tasks() with cgroup_is_populated()
cgroup: make cgroup->nr_populated count the number of populated css_sets
cgroup: remove an unused parameter from cgroup_task_migrate()
cgroup: fix too early usage of static_branch_disable()
cgroup: make cgroup_update_dfl_csses() migrate all target processes atomically
...
Pull networking updates from David Miller:
Changes of note:
1) Allow to schedule ICMP packets in IPVS, from Alex Gartrell.
2) Provide FIB table ID in ipv4 route dumps just as ipv6 does, from
David Ahern.
3) Allow the user to ask for the statistics to be filtered out of
ipv4/ipv6 address netlink dumps. From Sowmini Varadhan.
4) More work to pass the network namespace context around deep into
various packet path APIs, starting with the netfilter hooks. From
Eric W Biederman.
5) Add layer 2 TX/RX checksum offloading to qeth driver, from Thomas
Richter.
6) Use usec resolution for SYN/ACK RTTs in TCP, from Yuchung Cheng.
7) Support Very High Throughput in wireless MESH code, from Bob
Copeland.
8) Allow setting the ageing_time in switchdev/rocker. From Scott
Feldman.
9) Properly autoload L2TP type modules, from Stephen Hemminger.
10) Fix and enable offload features by default in 8139cp driver, from
David Woodhouse.
11) Support both ipv4 and ipv6 sockets in a single vxlan device, from
Jiri Benc.
12) Fix CWND limiting of thin streams in TCP, from Bendik Rønning
Opstad.
13) Fix IPSEC flowcache overflows on large systems, from Steffen
Klassert.
14) Convert bridging to track VLANs using rhashtable entries rather than
a bitmap. From Nikolay Aleksandrov.
15) Make TCP listener handling completely lockless, this is a major
accomplishment. Incoming request sockets now live in the
established hash table just like any other socket too.
From Eric Dumazet.
15) Provide more bridging attributes to netlink, from Nikolay
Aleksandrov.
16) Use hash based algorithm for ipv4 multipath routing, this was very
long overdue. From Peter Nørlund.
17) Several y2038 cures, mostly avoiding timespec. From Arnd Bergmann.
18) Allow non-root execution of EBPF programs, from Alexei Starovoitov.
19) Support SO_INCOMING_CPU as setsockopt, from Eric Dumazet. This
influences the port binding selection logic used by SO_REUSEPORT.
20) Add ipv6 support to VRF, from David Ahern.
21) Add support for Mellanox Spectrum switch ASIC, from Jiri Pirko.
22) Add rtl8xxxu Realtek wireless driver, from Jes Sorensen.
23) Implement RACK loss recovery in TCP, from Yuchung Cheng.
24) Support multipath routes in MPLS, from Roopa Prabhu.
25) Fix POLLOUT notification for listening sockets in AF_UNIX, from Eric
Dumazet.
26) Add new QED Qlogic river, from Yuval Mintz, Manish Chopra, and
Sudarsana Kalluru.
27) Don't fetch timestamps on AF_UNIX sockets, from Hannes Frederic
Sowa.
28) Support ipv6 geneve tunnels, from John W Linville.
29) Add flood control support to switchdev layer, from Ido Schimmel.
30) Fix CHECKSUM_PARTIAL handling of potentially fragmented frames, from
Hannes Frederic Sowa.
31) Support persistent maps and progs in bpf, from Daniel Borkmann.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1790 commits)
sh_eth: use DMA barriers
switchdev: respect SKIP_EOPNOTSUPP flag in case there is no recursion
net: sched: kill dead code in sch_choke.c
irda: Delete an unnecessary check before the function call "irlmp_unregister_service"
net: dsa: mv88e6xxx: include DSA ports in VLANs
net: dsa: mv88e6xxx: disable SA learning for DSA and CPU ports
net/core: fix for_each_netdev_feature
vlan: Invoke driver vlan hooks only if device is present
arcnet/com20020: add LEDS_CLASS dependency
bpf, verifier: annotate verbose printer with __printf
dp83640: Only wait for timestamps for packets with timestamping enabled.
ptp: Change ptp_class to a proper bitmask
dp83640: Prune rx timestamp list before reading from it
dp83640: Delay scheduled work.
dp83640: Include hash in timestamp/packet matching
ipv6: fix tunnel error handling
net/mlx5e: Fix LSO vlan insertion
net/mlx5e: Re-eanble client vlan TX acceleration
net/mlx5e: Return error in case mlx5e_set_features() fails
net/mlx5e: Don't allow more than max supported channels
...