This reverts commit 9d6fd2c3e9 ("Merge remote-tracking branch
'msm-4.4/tmp-510d0a3f' into msm-4.4"), because it breaks the
dump parsing tools due to kernel can be loaded anywhere in the memory
now and not fixed at linear mapping.
Change-Id: Id416f0a249d803442847d09ac47781147b0d0ee6
Signed-off-by: Trilok Soni <tsoni@codeaurora.org>
* msm-4.4/tmp-510d0a3f:
Linux 4.4.11
nf_conntrack: avoid kernel pointer value leak in slab name
drm/radeon: fix DP link training issue with second 4K monitor
drm/i915/bdw: Add missing delay during L3 SQC credit programming
drm/i915: Bail out of pipe config compute loop on LPT
drm/radeon: fix PLL sharing on DCE6.1 (v2)
Revert "[media] videobuf2-v4l2: Verify planes array in buffer dequeueing"
Input: max8997-haptic - fix NULL pointer dereference
get_rock_ridge_filename(): handle malformed NM entries
tools lib traceevent: Do not reassign parg after collapse_tree()
qla1280: Don't allocate 512kb of host tags
atomic_open(): fix the handling of create_error
regulator: axp20x: Fix axp22x ldo_io voltage ranges
regulator: s2mps11: Fix invalid selector mask and voltages for buck9
workqueue: fix rebind bound workers warning
ARM: dts: at91: sam9x5: Fix the memory range assigned to the PMC
vfs: rename: check backing inode being equal
vfs: add vfs_select_inode() helper
perf/core: Disable the event on a truncated AUX record
regmap: spmi: Fix regmap_spmi_ext_read in multi-byte case
pinctrl: at91-pio4: fix pull-up/down logic
spi: spi-ti-qspi: Handle truncated frames properly
spi: spi-ti-qspi: Fix FLEN and WLEN settings if bits_per_word is overridden
spi: pxa2xx: Do not detect number of enabled chip selects on Intel SPT
ALSA: hda - Fix broken reconfig
ALSA: hda - Fix white noise on Asus UX501VW headset
ALSA: hda - Fix subwoofer pin on ASUS N751 and N551
ALSA: usb-audio: Yet another Phoneix Audio device quirk
ALSA: usb-audio: Quirk for yet another Phoenix Audio devices (v2)
crypto: testmgr - Use kmalloc memory for RSA input
crypto: hash - Fix page length clamping in hash walk
crypto: qat - fix invalid pf2vf_resp_wq logic
s390/mm: fix asce_bits handling with dynamic pagetable levels
zsmalloc: fix zs_can_compact() integer overflow
ocfs2: fix posix_acl_create deadlock
ocfs2: revert using ocfs2_acl_chmod to avoid inode cluster lock hang
net/route: enforce hoplimit max value
tcp: refresh skb timestamp at retransmit time
net: thunderx: avoid exposing kernel stack
net: fix a kernel infoleak in x25 module
uapi glibc compat: fix compile errors when glibc net/if.h included before linux/if.h MIME-Version: 1.0
bridge: fix igmp / mld query parsing
net: bridge: fix old ioctl unlocked net device walk
VSOCK: do not disconnect socket when peer has shutdown SEND only
net/mlx4_en: Fix endianness bug in IPV6 csum calculation
net: fix infoleak in rtnetlink
net: fix infoleak in llc
net: fec: only clear a queue's work bit if the queue was emptied
netem: Segment GSO packets on enqueue
sch_dsmark: update backlog as well
sch_htb: update backlog as well
net_sched: update hierarchical backlog too
net_sched: introduce qdisc_replace() helper
gre: do not pull header in ICMP error processing
net: Implement net_dbg_ratelimited() for CONFIG_DYNAMIC_DEBUG case
samples/bpf: fix trace_output example
bpf: fix check_map_func_compatibility logic
bpf: fix refcnt overflow
bpf: fix double-fdput in replace_map_fd_with_map_ptr()
net/mlx4_en: fix spurious timestamping callbacks
ipv4/fib: don't warn when primary address is missing if in_dev is dead
net/mlx5e: Fix minimum MTU
net/mlx5e: Device's mtu field is u16 and not int
openvswitch: use flow protocol when recalculating ipv6 checksums
atl2: Disable unimplemented scatter/gather feature
vlan: pull on __vlan_insert_tag error path and fix csum correction
net: use skb_postpush_rcsum instead of own implementations
cdc_mbim: apply "NDP to end" quirk to all Huawei devices
bpf/verifier: reject invalid LD_ABS | BPF_DW instruction
net: sched: do not requeue a NULL skb
packet: fix heap info leak in PACKET_DIAG_MCLIST sock_diag interface
route: do not cache fib route info on local routes with oif
decnet: Do not build routes to devices without decnet private data.
parisc: Use generic extable search and sort routines
arm64: kasan: Use actual memory node when populating the kernel image shadow
arm64: mm: treat memstart_addr as a signed quantity
arm64: lse: deal with clobbered IP registers after branch via PLT
arm64: mm: check at build time that PAGE_OFFSET divides the VA space evenly
arm64: kasan: Fix zero shadow mapping overriding kernel image shadow
arm64: consistently use p?d_set_huge
arm64: fix KASLR boot-time I-cache maintenance
arm64: hugetlb: partial revert of 66b3923a1a0f
arm64: make irq_stack_ptr more robust
arm64: efi: invoke EFI_RNG_PROTOCOL to supply KASLR randomness
efi: stub: use high allocation for converted command line
efi: stub: add implementation of efi_random_alloc()
efi: stub: implement efi_get_random_bytes() based on EFI_RNG_PROTOCOL
arm64: kaslr: randomize the linear region
arm64: add support for kernel ASLR
arm64: add support for building vmlinux as a relocatable PIE binary
arm64: switch to relative exception tables
extable: add support for relative extables to search and sort routines
scripts/sortextable: add support for ET_DYN binaries
arm64: futex.h: Add missing PAN toggling
arm64: make asm/elf.h available to asm files
arm64: avoid dynamic relocations in early boot code
arm64: avoid R_AARCH64_ABS64 relocations for Image header fields
arm64: add support for module PLTs
arm64: move brk immediate argument definitions to separate header
arm64: mm: use bit ops rather than arithmetic in pa/va translations
arm64: mm: only perform memstart_addr sanity check if DEBUG_VM
arm64: User die() instead of panic() in do_page_fault()
arm64: allow kernel Image to be loaded anywhere in physical memory
arm64: defer __va translation of initrd_start and initrd_end
arm64: move kernel image to base of vmalloc area
arm64: kvm: deal with kernel symbols outside of linear mapping
arm64: decouple early fixmap init from linear mapping
arm64: pgtable: implement static [pte|pmd|pud]_offset variants
arm64: introduce KIMAGE_VADDR as the virtual base of the kernel region
arm64: add support for ioremap() block mappings
arm64: prevent potential circular header dependencies in asm/bug.h
of/fdt: factor out assignment of initrd_start/initrd_end
of/fdt: make memblock minimum physical address arch configurable
arm64: Remove the get_thread_info() function
arm64: kernel: Don't toggle PAN on systems with UAO
arm64: cpufeature: Test 'matches' pointer to find the end of the list
arm64: kernel: Add support for User Access Override
arm64: add ARMv8.2 id_aa64mmfr2 boiler plate
arm64: cpufeature: Change read_cpuid() to use sysreg's mrs_s macro
arm64: use local label prefixes for __reg_num symbols
arm64: vdso: Mark vDSO code as read-only
arm64: ubsan: select ARCH_HAS_UBSAN_SANITIZE_ALL
arm64: ptdump: Indicate whether memory should be faulting
arm64: Add support for ARCH_SUPPORTS_DEBUG_PAGEALLOC
arm64: Drop alloc function from create_mapping
arm64: prefetch: add missing #include for spin_lock_prefetch
arm64: lib: patch in prfm for copy_page if requested
arm64: lib: improve copy_page to deal with 128 bytes at a time
arm64: prefetch: add alternative pattern for CPUs without a prefetcher
arm64: prefetch: don't provide spin_lock_prefetch with LSE
arm64: allow vmalloc regions to be set with set_memory_*
arm64: kernel: implement ACPI parking protocol
arm64: mm: create new fine-grained mappings at boot
arm64: ensure _stext and _etext are page-aligned
arm64: mm: allow passing a pgdir to alloc_init_*
arm64: mm: allocate pagetables anywhere
arm64: mm: use fixmap when creating page tables
arm64: mm: add functions to walk tables in fixmap
arm64: mm: add __{pud,pgd}_populate
arm64: mm: avoid redundant __pa(__va(x))
arm64: mm: add functions to walk page tables by PA
arm64: mm: move pte_* macros
arm64: kasan: avoid TLB conflicts
arm64: mm: add code to safely replace TTBR1_EL1
arm64: add function to install the idmap
arm64: unmap idmap earlier
arm64: unify idmap removal
arm64: mm: place empty_zero_page in bss
arm64: mm: specialise pagetable allocators
asm-generic: Fix local variable shadow in __set_fixmap_offset
Eliminate the .eh_frame sections from the aarch64 vmlinux and kernel modules
arm64: Fix an enum typo in mm/dump.c
arm64: kasan: ensure that the KASAN zero page is mapped read-only
arch/arm64/include/asm/pgtable.h: add pmd_mkclean for THP
arm64: hide __efistub_ aliases from kallsyms
Linux 4.4.10
drm/i915/skl: Fix DMC load on Skylake J0 and K0
lib/test-string_helpers.c: fix and improve string_get_size() tests
ACPI / processor: Request native thermal interrupt handling via _OSC
drm/i915: Fake HDMI live status
drm/i915: Make RPS EI/thresholds multiple of 25 on SNB-BDW
drm/i915: Fix eDP low vswing for Broadwell
drm/i915/ddi: Fix eDP VDD handling during booting and suspend/resume
drm/radeon: make sure vertical front porch is at least 1
iio: ak8975: fix maybe-uninitialized warning
iio: ak8975: Fix NULL pointer exception on early interrupt
drm/amdgpu: set metadata pointer to NULL after freeing.
drm/amdgpu: make sure vertical front porch is at least 1
gpu: ipu-v3: Fix imx-ipuv3-crtc module autoloading
nvmem: mxs-ocotp: fix buffer overflow in read
USB: serial: cp210x: add Straizona Focusers device ids
USB: serial: cp210x: add ID for Link ECU
ata: ahci-platform: Add ports-implemented DT bindings.
libahci: save port map for forced port map
powerpc: Fix bad inline asm constraint in create_zero_mask()
ACPICA: Dispatcher: Update thread ID for recursive method calls
x86/sysfb_efi: Fix valid BAR address range check
ARC: Add missing io barriers to io{read,write}{16,32}be()
ARM: cpuidle: Pass on arm_cpuidle_suspend()'s return value
propogate_mnt: Handle the first propogated copy being a slave
fs/pnode.c: treat zero mnt_group_id-s as unequal
x86/tsc: Read all ratio bits from MSR_PLATFORM_INFO
MAINTAINERS: Remove asterisk from EFI directory names
writeback: Fix performance regression in wb_over_bg_thresh()
batman-adv: Reduce refcnt of removed router when updating route
batman-adv: Fix broadcast/ogm queue limit on a removed interface
batman-adv: Check skb size before using encapsulated ETH+VLAN header
batman-adv: fix DAT candidate selection (must use vid)
mm: update min_free_kbytes from khugepaged after core initialization
proc: prevent accessing /proc/<PID>/environ until it's ready
Input: zforce_ts - fix dual touch recognition
HID: Fix boot delay for Creative SB Omni Surround 5.1 with quirk
HID: wacom: Add support for DTK-1651
xen/evtchn: fix ring resize when binding new events
xen/balloon: Fix crash when ballooning on x86 32 bit PAE
xen: Fix page <-> pfn conversion on 32 bit systems
ARM: SoCFPGA: Fix secondary CPU startup in thumb2 kernel
ARM: EXYNOS: Properly skip unitialized parent clock in power domain on
mm/zswap: provide unique zpool name
mm, cma: prevent nr_isolated_* counters from going negative
Minimal fix-up of bad hashing behavior of hash_64()
MD: make bio mergeable
tracing: Don't display trigger file for events that can't be enabled
mac80211: fix statistics leak if dev_alloc_name() fails
ath9k: ar5008_hw_cmn_spur_mitigate: add missing mask_m & mask_p initialisation
lpfc: fix misleading indentation
clk: qcom: msm8960: Fix ce3_src register offset
clk: versatile: sp810: support reentrance
clk: qcom: msm8960: fix ce3_core clk enable register
clk: meson: Fix meson_clk_register_clks() signature type mismatch
clk: rockchip: free memory in error cases when registering clock branches
soc: rockchip: power-domain: fix err handle while probing
clk-divider: make sure read-only dividers do not write to their register
CNS3xxx: Fix PCI cns3xxx_write_config()
mwifiex: fix corner case association failure
ata: ahci_xgene: dereferencing uninitialized pointer in probe
nbd: ratelimit error msgs after socket close
mfd: intel-lpss: Remove clock tree on error path
ipvs: drop first packet to redirect conntrack
ipvs: correct initial offset of Call-ID header search in SIP persistence engine
ipvs: handle ip_vs_fill_iph_skb_off failure
RDMA/iw_cxgb4: Fix bar2 virt addr calculation for T4 chips
Revert: "powerpc/tm: Check for already reclaimed tasks"
arm64: head.S: use memset to clear BSS
efi: stub: define DISABLE_BRANCH_PROFILING for all architectures
arm64: entry: remove pointless SPSR mode check
arm64: mm: move pgd_cache initialisation to pgtable_cache_init
arm64: module: avoid undefined shift behavior in reloc_data()
arm64: module: fix relocation of movz instruction with negative immediate
arm64: traps: address fallout from printk -> pr_* conversion
arm64: ftrace: fix a stack tracer's output under function graph tracer
arm64: pass a task parameter to unwind_frame()
arm64: ftrace: modify a stack frame in a safe way
arm64: remove irq_count and do_softirq_own_stack()
arm64: hugetlb: add support for PTE contiguous bit
arm64: Use PoU cache instr for I/D coherency
arm64: Defer dcache flush in __cpu_copy_user_page
arm64: reduce stack use in irq_handler
arm64: Documentation: add list of software workarounds for errata
arm64: mm: place __cpu_setup in .text
arm64: cmpxchg: Don't incldue linux/mmdebug.h
arm64: mm: fold alternatives into .init
arm64: Remove redundant padding from linker script
arm64: mm: remove pointless PAGE_MASKing
arm64: don't call C code with el0's fp register
arm64: when walking onto the task stack, check sp & fp are in current->stack
arm64: Add this_cpu_ptr() assembler macro for use in entry.S
arm64: irq: fix walking from irq stack to task stack
arm64: Add do_softirq_own_stack() and enable irq_stacks
arm64: Modify stack trace and dump for use with irq_stack
arm64: Store struct thread_info in sp_el0
arm64: Add trace_hardirqs_off annotation in ret_to_user
arm64: ftrace: fix the comments for ftrace_modify_code
arm64: ftrace: stop using kstop_machine to enable/disable tracing
arm64: spinlock: serialise spin_unlock_wait against concurrent lockers
arm64: enable HAVE_IRQ_TIME_ACCOUNTING
arm64: fix COMPAT_SHMLBA definition for large pages
arm64: add __init/__initdata section marker to some functions/variables
arm64: pgtable: implement pte_accessible()
arm64: mm: allow sections for unaligned bases
arm64: mm: detect bad __create_mapping uses
Linux 4.4.9
extcon: max77843: Use correct size for reading the interrupt register
stm class: Select CONFIG_SRCU
megaraid_sas: add missing curly braces in ioctl handler
sunrpc/cache: drop reference when sunrpc_cache_pipe_upcall() detects a race
thermal: rockchip: fix a impossible condition caused by the warning
unbreak allmodconfig KCONFIG_ALLCONFIG=...
jme: Fix device PM wakeup API usage
jme: Do not enable NIC WoL functions on S0
bus: imx-weim: Take the 'status' property value into account
ARM: dts: pxa: fix dma engine node to pxa3xx-nand
ARM: dts: armada-375: use armada-370-sata for SATA
ARM: EXYNOS: select THERMAL_OF
ARM: prima2: always enable reset controller
ARM: OMAP3: Add cpuidle parameters table for omap3430
ext4: fix races of writeback with punch hole and zero range
ext4: fix races between buffered IO and collapse / insert range
ext4: move unlocked dio protection from ext4_alloc_file_blocks()
ext4: fix races between page faults and hole punching
perf stat: Document --detailed option
perf tools: handle spaces in file names obtained from /proc/pid/maps
perf hists browser: Only offer symbol scripting when a symbol is under the cursor
mtd: nand: Drop mtd.owner requirement in nand_scan
mtd: brcmnand: Fix v7.1 register offsets
mtd: spi-nor: remove micron_quad_enable()
serial: sh-sci: Remove cpufreq notifier to fix crash/deadlock
ext4: fix NULL pointer dereference in ext4_mark_inode_dirty()
x86/mm/kmmio: Fix mmiotrace for hugepages
perf evlist: Reference count the cpu and thread maps at set_maps()
drivers/misc/ad525x_dpot: AD5274 fix RDAC read back errors
rtc: max77686: Properly handle regmap_irq_get_virq() error code
rtc: rx8025: remove rv8803 id
rtc: ds1685: passing bogus values to irq_restore
rtc: vr41xx: Wire up alarm_irq_enable
rtc: hym8563: fix invalid year calculation
PM / Domains: Fix removal of a subdomain
PM / OPP: Initialize u_volt_min/max to a valid value
misc: mic/scif: fix wrap around tests
misc/bmp085: Enable building as a module
lib/mpi: Endianness fix
fbdev: da8xx-fb: fix videomodes of lcd panels
scsi_dh: force modular build if SCSI is a module
paride: make 'verbose' parameter an 'int' again
regulator: s5m8767: fix get_register() error handling
irqchip/mxs: Fix error check of of_io_request_and_map()
irqchip/sunxi-nmi: Fix error check of of_io_request_and_map()
spi/rockchip: Make sure spi clk is on in rockchip_spi_set_cs
locking/mcs: Fix mcs_spin_lock() ordering
regulator: core: Fix nested locking of supplies
regulator: core: Ensure we lock all regulators
regulator: core: fix regulator_lock_supply regression
Revert "regulator: core: Fix nested locking of supplies"
videobuf2-v4l2: Verify planes array in buffer dequeueing
videobuf2-core: Check user space planes array in dqbuf
USB: usbip: fix potential out-of-bounds write
cgroup: make sure a parent css isn't freed before its children
mm/hwpoison: fix wrong num_poisoned_pages accounting
mm: vmscan: reclaim highmem zone if buffer_heads is over limit
numa: fix /proc/<pid>/numa_maps for THP
mm/huge_memory: replace VM_NO_THP VM_BUG_ON with actual VMA check
memcg: relocate charge moving from ->attach to ->post_attach
cgroup, cpuset: replace cpuset_post_attach_flush() with cgroup_subsys->post_attach callback
slub: clean up code for kmem cgroup support to kmem_cache_free_bulk
workqueue: fix ghost PENDING flag while doing MQ IO
x86/apic: Handle zero vector gracefully in clear_vector_irq()
efi: Expose non-blocking set_variable() wrapper to efivars
efi: Fix out-of-bounds read in variable_matches()
IB/security: Restrict use of the write() interface
IB/mlx5: Expose correct max_sge_rd limit
cxl: Keep IRQ mappings on context teardown
v4l2-dv-timings.h: fix polarity for 4k formats
vb2-memops: Fix over allocation of frame vectors
ASoC: rt5640: Correct the digital interface data select
ASoC: dapm: Make sure we have a card when displaying component widgets
ASoC: ssm4567: Reset device before regcache_sync()
ASoC: s3c24xx: use const snd_soc_component_driver pointer
EDAC: i7core, sb_edac: Don't return NOTIFY_BAD from mce_decoder callback
toshiba_acpi: Fix regression caused by hotkey enabling value
i2c: exynos5: Fix possible ABBA deadlock by keeping I2C clock prepared
i2c: cpm: Fix build break due to incompatible pointer types
perf intel-pt: Fix segfault tracing transactions
drm/i915: Use fw_domains_put_with_fifo() on HSW
drm/i915: Fixup the free space logic in ring_prepare
drm/amdkfd: uninitialized variable in dbgdev_wave_control_set_registers()
drm/i915: skl_update_scaler() wants a rotation bitmask instead of bit number
drm/i915: Cleanup phys status page too
pwm: brcmstb: Fix check of devm_ioremap_resource() return code
drm/dp/mst: Get validated port ref in drm_dp_update_payload_part1()
drm/dp/mst: Restore primary hub guid on resume
drm/dp/mst: Validate port in drm_dp_payload_send_msg()
drm/nouveau/gr/gf100: select a stream master to fixup tfb offset queries
drm: Loongson-3 doesn't fully support wc memory
drm/radeon: fix vertical bars appear on monitor (v2)
drm/radeon: forbid mapping of userptr bo through radeon device file
drm/radeon: fix initial connector audio value
drm/radeon: add a quirk for a XFX R9 270X
drm/amdgpu: fix regression on CIK (v2)
amdgpu/uvd: add uvd fw version for amdgpu
drm/amdgpu: bump the afmt limit for CZ, ST, Polaris
drm/amdgpu: use defines for CRTCs and AMFT blocks
drm/amdgpu: when suspending, if uvd/vce was running. need to cancel delay work.
iommu/dma: Restore scatterlist offsets correctly
iommu/amd: Fix checking of pci dma aliases
pinctrl: single: Fix pcs_parse_bits_in_pinctrl_entry to use __ffs than ffs
pinctrl: mediatek: correct debounce time unit in mtk_gpio_set_debounce
xen kconfig: don't "select INPUT_XEN_KBDDEV_FRONTEND"
Input: pmic8xxx-pwrkey - fix algorithm for converting trigger delay
Input: gtco - fix crash on detecting device without endpoints
netlink: don't send NETLINK_URELEASE for unbound sockets
nl80211: check netlink protocol in socket release notification
powerpc: Update TM user feature bits in scan_features()
powerpc: Update cpu_user_features2 in scan_features()
powerpc: scan_features() updates incorrect bits for REAL_LE
crypto: talitos - fix AEAD tcrypt tests
crypto: talitos - fix crash in talitos_cra_init()
crypto: sha1-mb - use corrcet pointer while completing jobs
crypto: ccp - Prevent information leakage on export
iwlwifi: mvm: fix memory leak in paging
iwlwifi: pcie: lower the debug level for RSA semaphore access
s390/pci: add extra padding to function measurement block
cpufreq: intel_pstate: Fix processing for turbo activation ratio
Revert "drm/amdgpu: disable runtime pm on PX laptops without dGPU power control"
Revert "drm/radeon: disable runtime pm on PX laptops without dGPU power control"
drm/i915: Fix race condition in intel_dp_destroy_mst_connector()
drm/qxl: fix cursor position with non-zero hotspot
drm/nouveau/core: use vzalloc for allocating ramht
futex: Acknowledge a new waiter in counter before plist
futex: Handle unlock_pi race gracefully
asm-generic/futex: Re-enable preemption in futex_atomic_cmpxchg_inatomic()
ALSA: hda - Add dock support for ThinkPad X260
ALSA: pcxhr: Fix missing mutex unlock
ALSA: hda - add PCI ID for Intel Broxton-T
ALSA: hda - Keep powering up ADCs on Cirrus codecs
ALSA: hda/realtek - Add ALC3234 headset mode for Optiplex 9020m
ALSA: hda - Don't trust the reported actual power state
x86 EDAC, sb_edac.c: Repair damage introduced when "fixing" channel address
x86/mm/xen: Suppress hugetlbfs in PV guests
arm64: Update PTE_RDONLY in set_pte_at() for PROT_NONE permission
arm64: Honour !PTE_WRITE in set_pte_at() for kernel mappings
sched/cgroup: Fix/cleanup cgroup teardown/init
dmaengine: pxa_dma: fix the maximum requestor line
dmaengine: hsu: correct use of channel status register
dmaengine: dw: fix master selection
debugfs: Make automount point inodes permanently empty
lib: lz4: fixed zram with lz4 on big endian machines
dm cache metadata: fix cmd_read_lock() acquiring write lock
dm cache metadata: fix READ_LOCK macros and cleanup WRITE_LOCK macros
usb: gadget: f_fs: Fix use-after-free
usb: hcd: out of bounds access in for_each_companion
xhci: fix 10 second timeout on removal of PCI hotpluggable xhci controllers
usb: xhci: fix wild pointers in xhci_mem_cleanup
xhci: resume USB 3 roothub first
usb: xhci: applying XHCI_PME_STUCK_QUIRK to Intel BXT B0 host
assoc_array: don't call compare_object() on a node
ARM: OMAP2+: hwmod: Fix updating of sysconfig register
ARM: OMAP2: Fix up interconnect barrier initialization for DRA7
ARM: mvebu: Correct unit address for linksys
ARM: dts: AM43x-epos: Fix clk parent for synctimer
KVM: arm/arm64: Handle forward time correction gracefully
kvm: x86: do not leak guest xcr0 into host interrupt handlers
x86/mce: Avoid using object after free in genpool
block: loop: fix filesystem corruption in case of aio/dio
block: partition: initialize percpuref before sending out KOBJ_ADD
Conflicts:
arch/arm64/Kconfig
arch/arm64/include/asm/cputype.h
arch/arm64/include/asm/hardirq.h
arch/arm64/include/asm/irq.h
arch/arm64/kernel/cpu_errata.c
arch/arm64/kernel/cpuinfo.c
arch/arm64/kernel/setup.c
arch/arm64/kernel/smp.c
arch/arm64/kernel/stacktrace.c
arch/arm64/mm/init.c
arch/arm64/mm/mmu.c
arch/arm64/mm/pageattr.c
mm/memcontrol.c
CRs-Fixed: 1054234
Signed-off-by: Trilok Soni <tsoni@codeaurora.org>
Change-Id: I2a7a34631ffee36ce18b9171f16d023be777392f
commit 14af4a5e9b26ad251f81c174e8a43f3e179434a5 upstream.
/proc/sys/vm/stat_refresh warns nr_isolated_anon and nr_isolated_file go
increasingly negative under compaction: which would add delay when
should be none, or no delay when should delay. The bug in compaction
was due to a recent mmotm patch, but much older instance of the bug was
also noticed in isolate_migratepages_range() which is used for CMA and
gigantic hugepage allocations.
The bug is caused by putback_movable_pages() in an error path
decrementing the isolated counters without them being previously
incremented by acct_isolated(). Fix isolate_migratepages_range() by
removing the error-path putback, thus reaching acct_isolated() with
migratepages still isolated, and leaving putback to caller like most
other places do.
Fixes: edc2ca6124 ("mm, compaction: move pageblock checks up from isolate_migratepages_range()")
[vbabka@suse.cz: expanded the changelog]
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit "mm: vmscan: fix the page state calculation in too_many_isolated"
fixed an issue where a number of tasks were blocked in reclaim path
for seconds, because of vmstat_diff not being synced in time.
A similar problem can happen in isolate_migratepages_block, where
similar calculation is performed. This patch fixes that.
Change-Id: Ie74f108ef770da688017b515fe37faea6f384589
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
When CONFIG_PAGE_POISONING is enabled, the pages are poisoned
after setting free page in KASan Shadow memory and KASan reports
the read after free warning. The same thing happens in the allocation
path. So change the order of calling KASan_alloc/free API so that
pages poisoning happens when the pages are in alloc status in KASan
shadow memory.
following is the KASan report for reference.
==================================================================
BUG: KASan: use after free in memset+0x24/0x44 at addr ffffffc000000000
Write of size 4096 by task swapper/0
page:ffffffbac5000000 count:0 mapcount:0 mapping: (null) index:0x0
flags: 0x0()
page dumped because: kasan: bad access detected
CPU: 0 PID: 0 Comm: swapper Not tainted 3.18.0-g5a4a5d5-07242-g6938a8b-dirty #1
Hardware name: Qualcomm Technologies, Inc. MSM 8996 v2 + PMI8994 MTP (DT)
Call trace:
[<ffffffc000089ea4>] dump_backtrace+0x0/0x1c4
[<ffffffc00008a078>] show_stack+0x10/0x1c
[<ffffffc0010ecfd8>] dump_stack+0x74/0xc8
[<ffffffc00020faec>] kasan_report_error+0x2b0/0x408
[<ffffffc00020fd20>] kasan_report+0x34/0x40
[<ffffffc00020f138>] __asan_storeN+0x15c/0x168
[<ffffffc00020f374>] memset+0x20/0x44
[<ffffffc0002086e0>] kernel_map_pages+0x238/0x2a8
[<ffffffc0001ba738>] free_pages_prepare+0x21c/0x25c
[<ffffffc0001bc7e4>] __free_pages_ok+0x20/0xf0
[<ffffffc0001bd3bc>] __free_pages+0x34/0x44
[<ffffffc0001bd5d8>] __free_pages_bootmem+0xf4/0x110
[<ffffffc001ca9050>] free_all_bootmem+0x160/0x1f4
[<ffffffc001c97b30>] mem_init+0x70/0x1ec
[<ffffffc001c909f8>] start_kernel+0x2b8/0x4e4
[<ffffffc001c987dc>] kasan_early_init+0x154/0x160
Change-Id: Idbd3dc629be57ed55a383b069a735ae3ee7b9f05
Signed-off-by: Se Wang (Patrick) Oh <sewango@codeaurora.org>
Compaction returns prematurely with COMPACT_PARTIAL when contended or has
fatal signal pending. This is ok for the callers, but might be misleading
in the traces, as the usual reason to return COMPACT_PARTIAL is that we
think the allocation should succeed. After this patch we distinguish the
premature ending condition in the mm_compaction_finished and
mm_compaction_end tracepoints.
The contended status covers the following reasons:
- lock contention or need_resched() detected in async compaction
- fatal signal pending
- too many pages isolated in the zone (only for async compaction)
Further distinguishing the exact reason seems unnecessary for now.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some compaction tracepoints convert the integer return values to strings
using the compaction_status_string array. This works for in-kernel
printing, but not userspace trace printing of raw captured trace such as
via trace-cmd report.
This patch converts the private array to appropriate tracepoint macros
that result in proper userspace support.
trace-cmd output before:
transhuge-stres-4235 [000] 453.149280: mm_compaction_finished: node=0
zone=ffffffff81815d7a order=9 ret=
after:
transhuge-stres-4235 [000] 453.149280: mm_compaction_finished: node=0
zone=ffffffff81815d7a order=9 ret=partial
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce is_via_compact_memory() helper indicating compacting via
/proc/sys/vm/compact_memory to improve readability.
To catch this situation in __compaction_suitable, use order as parameter
directly instead of using struct compact_control.
This patch has no functional changes.
Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We cache isolate_start_pfn before entering isolate_migratepages(). If
pageblock is skipped in isolate_migratepages() due to whatever reason,
cc->migrate_pfn can be far from isolate_start_pfn hence we flush pages
that were freed. For example, the following scenario can be possible:
- assume order-9 compaction, pageblock order is 9
- start_isolate_pfn is 0x200
- isolate_migratepages()
- skip a number of pageblocks
- start to isolate from pfn 0x600
- cc->migrate_pfn = 0x620
- return
- last_migrated_pfn is set to 0x200
- check flushing condition
- current_block_start is set to 0x600
- last_migrated_pfn < current_block_start then do useless flush
This wrong flush would not help the performance and success rate so this
patch tries to fix it. One simple way to know the exact position where
we start to isolate migratable pages is that we cache it in
isolate_migratepages() before entering actual isolation. This patch
implements that and fixes the problem.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The compaction free scanner is looking for PageBuddy() pages and
skipping all others. For large compound pages such as THP or hugetlbfs,
we can save a lot of iterations if we skip them at once using their
compound_order(). This is generally unsafe and we can read a bogus
value of order due to a race, but if we are careful, the only danger is
skipping too much.
When tested with stress-highalloc from mmtests on 4GB system with 1GB
hugetlbfs pages, the vmstat compact_free_scanned count decreased by at
least 15%.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The compaction migrate scanner tries to skip THP pages by their order,
to reduce number of iterations for pages it cannot isolate. The check
is only done if PageLRU() is true, which means it applies to THP pages,
but not e.g. hugetlbfs pages or any other non-LRU compound pages, which
we have to iterate by base pages.
This limitation comes from the assumption that it's only safe to read
compound_order() when we have the zone's lru_lock and THP cannot be
split under us. But the only danger (after filtering out order values
that are not below MAX_ORDER, to prevent overflows) is that we skip too
much or too little after reading a bogus compound_order() due to a rare
race. This is the same reasoning as patch 99c0fd5e51 ("mm,
compaction: skip buddy pages by their order in the migrate scanner")
introduced for unsafely reading PageBuddy() order.
After this patch, all pages are tested for PageCompound() and we skip
them by compound_order(). The test is done after the test for
balloon_page_movable() as we don't want to assume if balloon pages (or
other pages with own isolation and migration implementation if a generic
API gets implemented) are compound or not.
When tested with stress-highalloc from mmtests on 4GB system with 1GB
hugetlbfs pages, the vmstat compact_migrate_scanned count decreased by
15%.
[kirill.shutemov@linux.intel.com: change PageTransHuge checks to PageCompound for different series was squashed here]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reseting the cached compaction scanner positions is now open-coded in
__reset_isolation_suitable() and compact_finished(). Encapsulate the
functionality in a new function reset_cached_positions().
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Handling the position where compaction free scanner should restart
(stored in cc->free_pfn) got more complex with commit e14c720efd ("mm,
compaction: remember position within pageblock in free pages scanner").
Currently the position is updated in each loop iteration of
isolate_freepages(), although it should be enough to update it only when
breaking from the loop. There's also an extra check outside the loop
updates the position in case we have met the migration scanner.
This can be simplified if we move the test for having isolated enough
from the for-loop header next to the test for contention, and
determining the restart position only in these cases. We can reuse the
isolate_start_pfn variable for this instead of setting cc->free_pfn
directly. Outside the loop, we can simply set cc->free_pfn to current
value of isolate_start_pfn without any extra check.
Also add a VM_BUG_ON to catch possible mistake in the future, in case we
later add a new condition that terminates isolate_freepages_block()
prematurely without also considering the condition in
isolate_freepages().
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Assorted compaction cleanups and optimizations. The interesting patches
are 4 and 5. In 4, skipping of compound pages in single iteration is
improved for migration scanner, so it works also for !PageLRU compound
pages such as hugetlbfs, slab etc. Patch 5 introduces this kind of
skipping in the free scanner. The trick is that we can read
compound_order() without any protection, if we are careful to filter out
values larger than MAX_ORDER. The only danger is that we skip too much.
The same trick was already used for reading the freepage order in the
migrate scanner.
To demonstrate improvements of Patches 4 and 5 I've run stress-highalloc
from mmtests, set to simulate THP allocations (including __GFP_COMP) on
a 4GB system where 1GB was occupied by hugetlbfs pages. I'll include
just the relevant stats:
Patch 3 Patch 4 Patch 5
Compaction stalls 7523 7529 7515
Compaction success 323 304 322
Compaction failures 7200 7224 7192
Page migrate success 247778 264395 240737
Page migrate failure 15358 33184 21621
Compaction pages isolated 906928 980192 909983
Compaction migrate scanned 2005277 1692805 1498800
Compaction free scanned 13255284 11539986 9011276
Compaction cost 288 305 277
With 5 iterations per patch, the results are still noisy, but we can see
that Patch 4 does reduce migrate_scanned by 15% thanks to skipping the
hugetlbfs pages at once. Interestingly, free_scanned is also reduced
and I have no idea why. Patch 5 further reduces free_scanned as
expected, by 15%. Other stats are unaffected modulo noise.
[1] https://lkml.org/lkml/2015/1/19/158
This patch (of 5):
Compaction should finish when the migration and free scanner meet, i.e.
they reach the same pageblock. Currently however, the test in
compact_finished() simply just compares the exact pfns, which may yield
a false negative when the free scanner position is in the middle of a
pageblock and the migration scanner reaches the begining of the same
pageblock.
This hasn't been a problem until commit e14c720efd ("mm, compaction:
remember position within pageblock in free pages scanner") allowed the
free scanner position to be in the middle of a pageblock between
invocations. The hot-fix 1d5bfe1ffb ("mm, compaction: prevent
infinite loop in compact_zone") prevented the issue by adding a special
check in the migration scanner to satisfy the current detection of
scanners meeting.
However, the proper fix is to make the detection more robust. This
patch introduces the compact_scanners_met() function that returns true
when the free scanner position is in the same or lower pageblock than
the migration scanner. The special case in isolate_migratepages()
introduced by 1d5bfe1ffb is removed.
Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm/compaction.c:250:13: warning: 'suitable_migration_target' defined but not used [-Wunused-function]
Reported-by: Fengguang Wu <fengguang.wu@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the compaction is activated via /proc/sys/vm/compact_memory it would
better scan the whole zone. And some platforms, for instance ARM, have
the start_pfn of a zone at zero. Therefore the first try to compact via
/proc doesn't work. It needs to reset the compaction scanner position
first.
Signed-off-by: Gioh Kim <gioh.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, pages which are marked as unevictable are protected from
compaction, but not from other types of migration. The POSIX real time
extension explicitly states that mlock() will prevent a major page
fault, but the spirit of this is that mlock() should give a process the
ability to control sources of latency, including minor page faults.
However, the mlock manpage only explicitly says that a locked page will
not be written to swap and this can cause some confusion. The
compaction code today does not give a developer who wants to avoid swap
but wants to have large contiguous areas available any method to achieve
this state. This patch introduces a sysctl for controlling compaction
behavior with respect to the unevictable lru. Users who demand no page
faults after a page is present can set compact_unevictable_allowed to 0
and users who need the large contiguous areas can enable compaction on
locked memory by leaving the default value of 1.
To illustrate this problem I wrote a quick test program that mmaps a
large number of 1MB files filled with random data. These maps are
created locked and read only. Then every other mmap is unmapped and I
attempt to allocate huge pages to the static huge page pool. When the
compact_unevictable_allowed sysctl is 0, I cannot allocate hugepages
after fragmenting memory. When the value is set to 1, allocations
succeed.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction has anti fragmentation algorithm. It is that freepage should
be more than pageblock order to finish the compaction if we don't find any
freepage in requested migratetype buddy list. This is for mitigating
fragmentation, but, there is a lack of migratetype consideration and it is
too excessive compared to page allocator's anti fragmentation algorithm.
Not considering migratetype would cause premature finish of compaction.
For example, if allocation request is for unmovable migratetype, freepage
with CMA migratetype doesn't help that allocation and compaction should
not be stopped. But, current logic regards this situation as compaction
is no longer needed, so finish the compaction.
Secondly, condition is too excessive compared to page allocator's logic.
We can steal freepage from other migratetype and change pageblock
migratetype on more relaxed conditions in page allocator. This is
designed to prevent fragmentation and we can use it here. Imposing hard
constraint only to the compaction doesn't help much in this case since
page allocator would cause fragmentation again.
To solve these problems, this patch borrows anti fragmentation logic from
page allocator. It will reduce premature compaction finish in some cases
and reduce excessive compaction work.
stress-highalloc test in mmtests with non movable order 7 allocation shows
considerable increase of compaction success rate.
Compaction success rate (Compaction success * 100 / Compaction stalls, %)
31.82 : 42.20
I tested it on non-reboot 5 runs stress-highalloc benchmark and found that
there is no more degradation on allocation success rate than before. That
roughly means that this patch doesn't result in more fragmentations.
Vlastimil suggests additional idea that we only test for fallbacks when
migration scanner has scanned a whole pageblock. It looked good for
fragmentation because chance of stealing increase due to making more free
pages in certain pageblock. So, I tested it, but, it results in decreased
compaction success rate, roughly 38.00. I guess the reason that if system
is low memory condition, watermark check could be failed due to not enough
order 0 free page and so, sometimes, we can't reach a fallback check
although migrate_pfn is aligned to pageblock_nr_pages. I can insert code
to cope with this situation but it makes code more complicated so I don't
include his idea at this patch.
[akpm@linux-foundation.org: fix CONFIG_CMA=n build]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The vmstat interfaces are good at hiding negative counts (at least when
CONFIG_SMP); but if you peer behind the curtain, you find that
nr_isolated_anon and nr_isolated_file soon go negative, and grow ever
more negative: so they can absorb larger and larger numbers of isolated
pages, yet still appear to be zero.
I'm happy to avoid a congestion_wait() when too_many_isolated() myself;
but I guess it's there for a good reason, in which case we ought to get
too_many_isolated() working again.
The imbalance comes from isolate_migratepages()'s ISOLATE_ABORT case:
putback_movable_pages() decrements the NR_ISOLATED counts, but we forgot
to call acct_isolated() to increment them.
It is possible that the bug whcih this patch fixes could cause OOM kills
when the system still has a lot of reclaimable page cache.
Fixes: edc2ca6124 ("mm, compaction: move pageblock checks up from isolate_migratepages_range()")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org> [3.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, freepage isolation in one pageblock doesn't consider how many
freepages we isolate. When I traced flow of compaction, compaction
sometimes isolates more than 256 freepages to migrate just 32 pages.
In this patch, freepage isolation is stopped at the point that we
have more isolated freepage than isolated page for migration. This
results in slowing down free page scanner and make compaction success
rate higher.
stress-highalloc test in mmtests with non movable order 7 allocation shows
increase of compaction success rate.
Compaction success rate (Compaction success * 100 / Compaction stalls, %)
27.13 : 31.82
pfn where both scanners meets on compaction complete
(separate test due to enormous tracepoint buffer)
(zone_start=4096, zone_end=1048576)
586034 : 654378
In fact, I didn't fully understand why this patch results in such good
result. There was a guess that not used freepages are released to pcp list
and on next compaction trial we won't isolate them again so compaction
success rate would decrease. To prevent this effect, I tested with adding
pcp drain code on release_freepages(), but, it has no good effect.
Anyway, this patch reduces waste time to isolate unneeded freepages so
seems reasonable.
Vlastimil said:
: I briefly tried it on top of the pivot-changing series and with order-9
: allocations it reduced free page scanned counter by almost 10%. No effect
: on success rates (maybe because pivot changing already took care of the
: scanners meeting problem) but the scanning reduction is good on its own.
:
: It also explains why e14c720efd ("mm, compaction: remember position
: within pageblock in free pages scanner") had less than expected
: improvements. It would only actually stop within pageblock in case of
: async compaction detecting contention. I guess that's also why the
: infinite loop problem fixed by 1d5bfe1ffb affected so relatively few
: people.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
What we want to check here is whether there is highorder freepage in buddy
list of other migratetype in order to steal it without fragmentation.
But, current code just checks cc->order which means allocation request
order. So, this is wrong.
Without this fix, non-movable synchronous compaction below pageblock order
would not stopped until compaction is complete, because migratetype of
most pageblocks are movable and high order freepage made by compaction is
usually on movable type buddy list.
There is some report related to this bug. See below link.
http://www.spinics.net/lists/linux-mm/msg81666.html
Although the issued system still has load spike comes from compaction,
this makes that system completely stable and responsive according to his
report.
stress-highalloc test in mmtests with non movable order 7 allocation
doesn't show any notable difference in allocation success rate, but, it
shows more compaction success rate.
Compaction success rate (Compaction success * 100 / Compaction stalls, %)
18.47 : 28.94
Fixes: 1fb3f8ca0e ("mm: compaction: capture a suitable high-order page immediately when it is made available")
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [3.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction deferring logic is heavy hammer that block the way to the
compaction. It doesn't consider overall system state, so it could prevent
user from doing compaction falsely. In other words, even if system has
enough range of memory to compact, compaction would be skipped due to
compaction deferring logic. This patch add new tracepoint to understand
work of deferring logic. This will also help to check compaction success
and fail.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is not well analyzed that when/why compaction start/finish or not.
With these new tracepoints, we can know much more about start/finish
reason of compaction. I can find following bug with these tracepoint.
http://www.spinics.net/lists/linux-mm/msg81582.html
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It'd be useful to know current range where compaction work for detailed
analysis. With it, we can know pageblock where we actually scan and
isolate, and, how much pages we try in that pageblock and can guess why it
doesn't become freepage with pageblock order roughly.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We now have tracepoint for begin event of compaction and it prints start
position of both scanners, but, tracepoint for end event of compaction
doesn't print finish position of both scanners. It'd be also useful to
know finish position of both scanners so this patch add it. It will help
to find odd behavior or problem on compaction internal logic.
And mode is added to both begin/end tracepoint output, since according to
mode, compaction behavior is quite different.
And lastly, status format is changed to string rather than status number
for readability.
[akpm@linux-foundation.org: fix sparse warning]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Expand the usage of the struct alloc_context introduced in the previous
patch also for calling try_to_compact_pages(), to reduce the number of its
parameters. Since the function is in different compilation unit, we need
to move alloc_context definition in the shared mm/internal.h header.
With this change we get simpler code and small savings of code size and stack
usage:
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-27 (-27)
function old new delta
__alloc_pages_direct_compact 283 256 -27
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-13 (-13)
function old new delta
try_to_compact_pages 582 569 -13
Stack usage of __alloc_pages_direct_compact goes from 24 to none (per
scripts/checkstack.pl).
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The goal of memory compaction is to create high-order freepages through
page migration. Page migration however puts pages on the per-cpu lru_add
cache, which is later flushed to per-cpu pcplists, and only after pcplists
are drained the pages can actually merge. This can happen due to the
per-cpu caches becoming full through further freeing, or explicitly.
During direct compaction, it is useful to do the draining explicitly so
that pages merge as soon as possible and compaction can detect success
immediately and keep the latency impact at minimum. However the current
implementation is far from ideal. Draining is done only in
__alloc_pages_direct_compact(), after all zones were already compacted,
and the decisions to continue or stop compaction in individual zones was
done without the last batch of migrations being merged. It is also
missing the draining of lru_add cache before the pcplists.
This patch moves the draining for direct compaction into compact_zone().
It adds the missing lru_cache draining and uses the newly introduced
single zone pcplists draining to reduce overhead and avoid impact on
unrelated zones. Draining is only performed when it can actually lead to
merging of a page of desired order (passed by cc->order). This means it
is only done when migration occurred in the previously scanned cc->order
aligned block(s) and the migration scanner is now pointing to the next
cc->order aligned block.
The patch has been tested with stress-highalloc benchmark from mmtests.
Although overal allocation success rates of the benchmark were not
affected, the number of detected compaction successes has doubled. This
suggests that allocations were previously successful due to implicit
merging caused by background activity, making a later allocation attempt
succeed immediately, but not attributing the success to compaction. Since
stress-highalloc always tries to allocate almost the whole memory, it
cannot show the improvement in its reported success rate metric. However
after this patch, compaction should detect success and terminate earlier,
reducing the direct compaction latencies in a real scenario.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction caches the migration and free scanner positions between
compaction invocations, so that the whole zone gets eventually scanned and
there is no bias towards the initial scanner positions at the
beginning/end of the zone.
The cached positions are continuously updated as scanners progress and the
updating stops as soon as a page is successfully isolated. The reasoning
behind this is that a pageblock where isolation succeeded is likely to
succeed again in near future and it should be worth revisiting it.
However, the downside is that potentially many pages are rescanned without
successful isolation. At worst, there might be a page where isolation
from LRU succeeds but migration fails (potentially always). So upon
encountering this page, cached position would always stop being updated
for no good reason. It might have been useful to let such page be
rescanned with sync compaction after async one failed, but this is now
handled by caching scanner position for async and sync mode separately
since commit 35979ef339 ("mm, compaction: add per-zone migration pfn
cache for async compaction").
After this patch, cached positions are updated unconditionally. In
stress-highalloc benchmark, this has decreased the numbers of scanned
pages by few percent, without affecting allocation success rates.
To prevent free scanner from leaving free pages behind after they are
returned due to page migration failure, the cached scanner pfn is changed
to point to the pageblock of the returned free page with the highest pfn,
before leaving compact_zone().
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Deferred compaction is employed to avoid compacting zone where sync direct
compaction has recently failed. As such, it makes sense to only defer
when a full zone was scanned, which is when compact_zone returns with
COMPACT_COMPLETE. It's less useful to defer when compact_zone returns
with apparent success (COMPACT_PARTIAL), followed by a watermark check
failure, which can happen due to parallel allocation activity. It also
does not make much sense to defer compaction which was completely skipped
(COMPACT_SKIP) for being unsuitable in the first place.
This patch therefore makes deferred compaction trigger only when
COMPACT_COMPLETE is returned from compact_zone(). Results of
stress-highalloc becnmark show the difference is within measurement error,
so the issue is rather cosmetic.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 53853e2d2b ("mm, compaction: defer each zone individually
instead of preferred zone"), compaction is deferred for each zone where
sync direct compaction fails, and reset where it succeeds. However, it
was observed that for DMA zone compaction often appeared to succeed
while subsequent allocation attempt would not, due to different outcome
of watermark check.
In order to properly defer compaction in this zone, the candidate zone
has to be passed back to __alloc_pages_direct_compact() and compaction
deferred in the zone after the allocation attempt fails.
The large source of mismatch between watermark check in compaction and
allocation was the lack of alloc_flags and classzone_idx values in
compaction, which has been fixed in the previous patch. So with this
problem fixed, we can simplify the code by removing the candidate_zone
parameter and deferring in __alloc_pages_direct_compact().
After this patch, the compaction activity during stress-highalloc
benchmark is still somewhat increased, but it's negligible compared to the
increase that occurred without the better watermark checking. This
suggests that it is still possible to apparently succeed in compaction but
fail to allocate, possibly due to parallel allocation activity.
[akpm@linux-foundation.org: fix build]
Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction relies on zone watermark checks for decisions such as if it's
worth to start compacting in compaction_suitable() or whether compaction
should stop in compact_finished(). The watermark checks take
classzone_idx and alloc_flags parameters, which are related to the memory
allocation request. But from the context of compaction they are currently
passed as 0, including the direct compaction which is invoked to satisfy
the allocation request, and could therefore know the proper values.
The lack of proper values can lead to mismatch between decisions taken
during compaction and decisions related to the allocation request. Lack
of proper classzone_idx value means that lowmem_reserve is not taken into
account. This has manifested (during recent changes to deferred
compaction) when DMA zone was used as fallback for preferred Normal zone.
compaction_suitable() without proper classzone_idx would think that the
watermarks are already satisfied, but watermark check in
get_page_from_freelist() would fail. Because of this problem, deferring
compaction has extra complexity that can be removed in the following
patch.
The issue (not confirmed in practice) with missing alloc_flags is opposite
in nature. For allocations that include ALLOC_HIGH, ALLOC_HIGHER or
ALLOC_CMA in alloc_flags (the last includes all MOVABLE allocations on
CMA-enabled systems) the watermark checking in compaction with 0 passed
will be stricter than in get_page_from_freelist(). In these cases
compaction might be running for a longer time than is really needed.
Another issue compaction_suitable() is that the check for "does the zone
need compaction at all?" comes only after the check "does the zone have
enough free free pages to succeed compaction". The latter considers extra
pages for migration and can therefore in some situations fail and return
COMPACT_SKIPPED, although the high-order allocation would succeed and we
should return COMPACT_PARTIAL.
This patch fixes these problems by adding alloc_flags and classzone_idx to
struct compact_control and related functions involved in direct compaction
and watermark checking. Where possible, all other callers of
compaction_suitable() pass proper values where those are known. This is
currently limited to classzone_idx, which is sometimes known in kswapd
context. However, the direct reclaim callers should_continue_reclaim()
and compaction_ready() do not currently know the proper values, so the
coordination between reclaim and compaction may still not be as accurate
as it could. This can be fixed later, if it's shown to be an issue.
Additionaly the checks in compact_suitable() are reordered to address the
second issue described above.
The effect of this patch should be slightly better high-order allocation
success rates and/or less compaction overhead, depending on the type of
allocations and presence of CMA. It allows simplifying deferred
compaction code in a followup patch.
When testing with stress-highalloc, there was some slight improvement
(which might be just due to variance) in success rates of non-THP-like
allocations.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Several people have reported occasionally seeing processes stuck in
compact_zone(), even triggering soft lockups, in 3.18-rc2+.
Testing a revert of commit e14c720efd ("mm, compaction: remember
position within pageblock in free pages scanner") fixed the issue,
although the stuck processes do not appear to involve the free scanner.
Finally, by code inspection, the bug was found in isolate_migratepages()
which uses a slightly different condition to detect if the migration and
free scanners have met, than compact_finished(). That has not been a
problem until commit e14c720efd allowed the free scanner position
between individual invocations to be in the middle of a pageblock.
In a relatively rare case, the migration scanner position can end up at
the beginning of a pageblock, with the free scanner position in the
middle of the same pageblock. If it's the migration scanner's turn,
isolate_migratepages() exits immediately (without updating the
position), while compact_finished() decides to continue compaction,
resulting in a potentially infinite loop. The system can recover only
if another process creates enough high-order pages to make the watermark
checks in compact_finished() pass.
This patch fixes the immediate problem by bumping the migration
scanner's position to meet the free scanner in isolate_migratepages(),
when both are within the same pageblock. This causes compact_finished()
to terminate properly. A more robust check in compact_finished() is
planned as a cleanup for better future maintainability.
Fixes: e14c720efd ("mm, compaction: remember position within pageblock in free pages scanner)
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: P. Christeas <xrg@linux.gr>
Tested-by: P. Christeas <xrg@linux.gr>
Link: http://marc.info/?l=linux-mm&m=141508604232522&w=2
Reported-by: Norbert Preining <preining@logic.at>
Tested-by: Norbert Preining <preining@logic.at>
Link: https://lkml.org/lkml/2014/11/4/904
Reported-by: Pavel Machek <pavel@ucw.cz>
Link: https://lkml.org/lkml/2014/11/7/164
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 7d49d88683 ("mm, compaction: reduce zone checking frequency in
the migration scanner") has a side-effect that changes the iteration
range calculation. Before the change, block_end_pfn is calculated using
start_pfn, but now it blindly adds pageblock_nr_pages to the previous
value.
This causes the problem that isolation_start_pfn is larger than
block_end_pfn when we isolate the page with more than pageblock order.
In this case, isolation would fail due to an invalid range parameter.
To prevent this, this patch implements skipping the range until a proper
target pageblock is met. Without this patch, CMA with more than
pageblock order always fails but with this patch it will succeed.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit edc2ca6124 ("mm, compaction: move pageblock checks up from
isolate_migratepages_range()") commonizes isolate_migratepages variants
and make them use isolate_migratepages_block().
isolate_migratepages_block() could stop the execution when enough pages
are isolated, but, there is no code in isolate_migratepages_range() to
handle this case. In the result, even if isolate_migratepages_block()
returns prematurely without checking all pages in the range,
isolate_migratepages_block() is called repeately on the following
pageblock and some pages in the previous range are skipped to check.
Then, CMA is failed frequently due to this fact.
To fix this problem, this patch let isolate_migratepages_range() know
the situation that enough pages are isolated and stop the isolation in
that case.
Note that isolate_migratepages() has no such problem, because, it always
stops the isolation after just one call of isolate_migratepages_block().
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sasha Levin reported KASAN splash inside isolate_migratepages_range().
Problem is in the function __is_movable_balloon_page() which tests
AS_BALLOON_MAP in page->mapping->flags. This function has no protection
against anonymous pages. As result it tried to check address space flags
inside struct anon_vma.
Further investigation shows more problems in current implementation:
* Special branch in __unmap_and_move() never works:
balloon_page_movable() checks page flags and page_count. In
__unmap_and_move() page is locked, reference counter is elevated, thus
balloon_page_movable() always fails. As a result execution goes to the
normal migration path. virtballoon_migratepage() returns
MIGRATEPAGE_BALLOON_SUCCESS instead of MIGRATEPAGE_SUCCESS,
move_to_new_page() thinks this is an error code and assigns
newpage->mapping to NULL. Newly migrated page lose connectivity with
balloon an all ability for further migration.
* lru_lock erroneously required in isolate_migratepages_range() for
isolation ballooned page. This function releases lru_lock periodically,
this makes migration mostly impossible for some pages.
* balloon_page_dequeue have a tight race with balloon_page_isolate:
balloon_page_isolate could be executed in parallel with dequeue between
picking page from list and locking page_lock. Race is rare because they
use trylock_page() for locking.
This patch fixes all of them.
Instead of fake mapping with special flag this patch uses special state of
page->_mapcount: PAGE_BALLOON_MAPCOUNT_VALUE = -256. Buddy allocator uses
PAGE_BUDDY_MAPCOUNT_VALUE = -128 for similar purpose. Storing mark
directly in struct page makes everything safer and easier.
PagePrivate is used to mark pages present in page list (i.e. not
isolated, like PageLRU for normal pages). It replaces special rules for
reference counter and makes balloon migration similar to migration of
normal pages. This flag is protected by page_lock together with link to
the balloon device.
Signed-off-by: Konstantin Khlebnikov <k.khlebnikov@samsung.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Link: http://lkml.kernel.org/p/53E6CEAA.9020105@oracle.com
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: <stable@vger.kernel.org> [3.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
C mm/compaction.o
mm/compaction.c: In function isolate_freepages_block:
mm/compaction.c:364:37: warning: flags may be used uninitialized in this function [-Wmaybe-uninitialized]
&& compact_unlock_should_abort(&cc->zone->lock, flags,
^
Signed-off-by: Xiubo Li <Li.Xiubo@freescale.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
struct compact_control currently converts the gfp mask to a migratetype,
but we need the entire gfp mask in a follow-up patch.
Pass the entire gfp mask as part of struct compact_control.
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page allocator has gfp flags (like __GFP_WAIT) and alloc flags (like
ALLOC_CPUSET) that have separate semantics.
The function allocflags_to_migratetype() actually takes gfp flags, not
alloc flags, and returns a migratetype. Rename it to
gfpflags_to_migratetype().
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The migration scanner skips PageBuddy pages, but does not consider their
order as checking page_order() is generally unsafe without holding the
zone->lock, and acquiring the lock just for the check wouldn't be a good
tradeoff.
Still, this could avoid some iterations over the rest of the buddy page,
and if we are careful, the race window between PageBuddy() check and
page_order() is small, and the worst thing that can happen is that we skip
too much and miss some isolation candidates. This is not that bad, as
compaction can already fail for many other reasons like parallel
allocations, and those have much larger race window.
This patch therefore makes the migration scanner obtain the buddy page
order and use it to skip the whole buddy page, if the order appears to be
in the valid range.
It's important that the page_order() is read only once, so that the value
used in the checks and in the pfn calculation is the same. But in theory
the compiler can replace the local variable by multiple inlines of
page_order(). Therefore, the patch introduces page_order_unsafe() that
uses ACCESS_ONCE to prevent this.
Testing with stress-highalloc from mmtests shows a 15% reduction in number
of pages scanned by migration scanner. The reduction is >60% with
__GFP_NO_KSWAPD allocations, along with success rates better by few
percent.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Unlike the migration scanner, the free scanner remembers the beginning of
the last scanned pageblock in cc->free_pfn. It might be therefore
rescanning pages uselessly when called several times during single
compaction. This might have been useful when pages were returned to the
buddy allocator after a failed migration, but this is no longer the case.
This patch changes the meaning of cc->free_pfn so that if it points to a
middle of a pageblock, that pageblock is scanned only from cc->free_pfn to
the end. isolate_freepages_block() will record the pfn of the last page
it looked at, which is then used to update cc->free_pfn.
In the mmtests stress-highalloc benchmark, this has resulted in lowering
the ratio between pages scanned by both scanners, from 2.5 free pages per
migrate page, to 2.25 free pages per migrate page, without affecting
success rates.
With __GFP_NO_KSWAPD allocations, this appears to result in a worse ratio
(2.1 instead of 1.8), but page migration successes increased by 10%, so
this could mean that more useful work can be done until need_resched()
aborts this kind of compaction.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction scanners try to lock zone locks as late as possible by checking
many page or pageblock properties opportunistically without lock and
skipping them if not unsuitable. For pages that pass the initial checks,
some properties have to be checked again safely under lock. However, if
the lock was already held from a previous iteration in the initial checks,
the rechecks are unnecessary.
This patch therefore skips the rechecks when the lock was already held.
This is now possible to do, since we don't (potentially) drop and
reacquire the lock between the initial checks and the safe rechecks
anymore.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction scanners regularly check for lock contention and need_resched()
through the compact_checklock_irqsave() function. However, if there is no
contention, the lock can be held and IRQ disabled for potentially long
time.
This has been addressed by commit b2eef8c0d0 ("mm: compaction: minimise
the time IRQs are disabled while isolating pages for migration") for the
migration scanner. However, the refactoring done by commit 2a1402aa04
("mm: compaction: acquire the zone->lru_lock as late as possible") has
changed the conditions so that the lock is dropped only when there's
contention on the lock or need_resched() is true. Also, need_resched() is
checked only when the lock is already held. The comment "give a chance to
irqs before checking need_resched" is therefore misleading, as IRQs remain
disabled when the check is done.
This patch restores the behavior intended by commit b2eef8c0d0 and also
tries to better balance and make more deterministic the time spent by
checking for contention vs the time the scanners might run between the
checks. It also avoids situations where checking has not been done often
enough before. The result should be avoiding both too frequent and too
infrequent contention checking, and especially the potentially
long-running scans with IRQs disabled and no checking of need_resched() or
for fatal signal pending, which can happen when many consecutive pages or
pageblocks fail the preliminary tests and do not reach the later call site
to compact_checklock_irqsave(), as explained below.
Before the patch:
In the migration scanner, compact_checklock_irqsave() was called each
loop, if reached. If not reached, some lower-frequency checking could
still be done if the lock was already held, but this would not result in
aborting contended async compaction until reaching
compact_checklock_irqsave() or end of pageblock. In the free scanner, it
was similar but completely without the periodical checking, so lock can be
potentially held until reaching the end of pageblock.
After the patch, in both scanners:
The periodical check is done as the first thing in the loop on each
SWAP_CLUSTER_MAX aligned pfn, using the new compact_unlock_should_abort()
function, which always unlocks the lock (if locked) and aborts async
compaction if scheduling is needed. It also aborts any type of compaction
when a fatal signal is pending.
The compact_checklock_irqsave() function is replaced with a slightly
different compact_trylock_irqsave(). The biggest difference is that the
function is not called at all if the lock is already held. The periodical
need_resched() checking is left solely to compact_unlock_should_abort().
The lock contention avoidance for async compaction is achieved by the
periodical unlock by compact_unlock_should_abort() and by using trylock in
compact_trylock_irqsave() and aborting when trylock fails. Sync
compaction does not use trylock.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Async compaction aborts when it detects zone lock contention or
need_resched() is true. David Rientjes has reported that in practice,
most direct async compactions for THP allocation abort due to
need_resched(). This means that a second direct compaction is never
attempted, which might be OK for a page fault, but khugepaged is intended
to attempt a sync compaction in such case and in these cases it won't.
This patch replaces "bool contended" in compact_control with an int that
distinguishes between aborting due to need_resched() and aborting due to
lock contention. This allows propagating the abort through all compaction
functions as before, but passing the abort reason up to
__alloc_pages_slowpath() which decides when to continue with direct
reclaim and another compaction attempt.
Another problem is that try_to_compact_pages() did not act upon the
reported contention (both need_resched() or lock contention) immediately
and would proceed with another zone from the zonelist. When
need_resched() is true, that means initializing another zone compaction,
only to check again need_resched() in isolate_migratepages() and aborting.
For zone lock contention, the unintended consequence is that the lock
contended status reported back to the allocator is detrmined from the last
zone where compaction was attempted, which is rather arbitrary.
This patch fixes the problem in the following way:
- async compaction of a zone aborting due to need_resched() or fatal signal
pending means that further zones should not be tried. We report
COMPACT_CONTENDED_SCHED to the allocator.
- aborting zone compaction due to lock contention means we can still try
another zone, since it has different set of locks. We report back
COMPACT_CONTENDED_LOCK only if *all* zones where compaction was attempted,
it was aborted due to lock contention.
As a result of these fixes, khugepaged will proceed with second sync
compaction as intended, when the preceding async compaction aborted due to
need_resched(). Page fault compactions aborting due to need_resched()
will spare some cycles previously wasted by initializing another zone
compaction only to abort again. Lock contention will be reported only
when compaction in all zones aborted due to lock contention, and therefore
it's not a good idea to try again after reclaim.
In stress-highalloc from mmtests configured to use __GFP_NO_KSWAPD, this
has improved number of THP collapse allocations by 10%, which shows
positive effect on khugepaged. The benchmark's success rates are
unchanged as it is not recognized as khugepaged. Numbers of compact_stall
and compact_fail events have however decreased by 20%, with
compact_success still a bit improved, which is good. With benchmark
configured not to use __GFP_NO_KSWAPD, there is 6% improvement in THP
collapse allocations, and only slight improvement in stalls and failures.
[akpm@linux-foundation.org: fix warnings]
Reported-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The unification of the migrate and free scanner families of function has
highlighted a difference in how the scanners ensure they only isolate
pages of the intended zone. This is important for taking zone lock or lru
lock of the correct zone. Due to nodes overlapping, it is however
possible to encounter a different zone within the range of the zone being
compacted.
The free scanner, since its inception by commit 748446bb6b ("mm:
compaction: memory compaction core"), has been checking the zone of the
first valid page in a pageblock, and skipping the whole pageblock if the
zone does not match.
This checking was completely missing from the migration scanner at first,
and later added by commit dc9086004b ("mm: compaction: check for
overlapping nodes during isolation for migration") in a reaction to a bug
report. But the zone comparison in migration scanner is done once per a
single scanned page, which is more defensive and thus more costly than a
check per pageblock.
This patch unifies the checking done in both scanners to once per
pageblock, through a new pageblock_pfn_to_page() function, which also
includes pfn_valid() checks. It is more defensive than the current free
scanner checks, as it checks both the first and last page of the
pageblock, but less defensive by the migration scanner per-page checks.
It assumes that node overlapping may result (on some architecture) in a
boundary between two nodes falling into the middle of a pageblock, but
that there cannot be a node0 node1 node0 interleaving within a single
pageblock.
The result is more code being shared and a bit less per-page CPU cost in
the migration scanner.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
isolate_migratepages_range() is the main function of the compaction
scanner, called either on a single pageblock by isolate_migratepages()
during regular compaction, or on an arbitrary range by CMA's
__alloc_contig_migrate_range(). It currently perfoms two pageblock-wide
compaction suitability checks, and because of the CMA callpath, it tracks
if it crossed a pageblock boundary in order to repeat those checks.
However, closer inspection shows that those checks are always true for CMA:
- isolation_suitable() is true because CMA sets cc->ignore_skip_hint to true
- migrate_async_suitable() check is skipped because CMA uses sync compaction
We can therefore move the compaction-specific checks to
isolate_migratepages() and simplify isolate_migratepages_range().
Furthermore, we can mimic the freepage scanner family of functions, which
has isolate_freepages_block() function called both by compaction from
isolate_freepages() and by CMA from isolate_freepages_range(), where each
use-case adds own specific glue code. This allows further code
simplification.
Thus, we rename isolate_migratepages_range() to
isolate_migratepages_block() and limit its functionality to a single
pageblock (or its subset). For CMA, a new different
isolate_migratepages_range() is created as a CMA-specific wrapper for the
_block() function. The checks specific to compaction are moved to
isolate_migratepages(). As part of the unification of these two families
of functions, we remove the redundant zone parameter where applicable,
since zone pointer is already passed in cc->zone.
Furthermore, going back to compact_zone() and compact_finished() when
pageblock is found unsuitable (now by isolate_migratepages()) is wasteful
- the checks are meant to skip pageblocks quickly. The patch therefore
also introduces a simple loop into isolate_migratepages() so that it does
not return immediately on failed pageblock checks, but keeps going until
isolate_migratepages_range() gets called once. Similarily to
isolate_freepages(), the function periodically checks if it needs to
reschedule or abort async compaction.
[iamjoonsoo.kim@lge.com: fix isolated page counting bug in compaction]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
isolate_freepages_block() rechecks if the pageblock is suitable to be a
target for migration after it has taken the zone->lock. However, the
check has been optimized to occur only once per pageblock, and
compact_checklock_irqsave() might be dropping and reacquiring lock, which
means somebody else might have changed the pageblock's migratetype
meanwhile.
Furthermore, nothing prevents the migratetype to change right after
isolate_freepages_block() has finished isolating. Given how imperfect
this is, it's simpler to just rely on the check done in
isolate_freepages() without lock, and not pretend that the recheck under
lock guarantees anything. It is just a heuristic after all.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When direct sync compaction is often unsuccessful, it may become deferred
for some time to avoid further useless attempts, both sync and async.
Successful high-order allocations un-defer compaction, while further
unsuccessful compaction attempts prolong the compaction deferred period.
Currently the checking and setting deferred status is performed only on
the preferred zone of the allocation that invoked direct compaction. But
compaction itself is attempted on all eligible zones in the zonelist, so
the behavior is suboptimal and may lead both to scenarios where 1)
compaction is attempted uselessly, or 2) where it's not attempted despite
good chances of succeeding, as shown on the examples below:
1) A direct compaction with Normal preferred zone failed and set
deferred compaction for the Normal zone. Another unrelated direct
compaction with DMA32 as preferred zone will attempt to compact DMA32
zone even though the first compaction attempt also included DMA32 zone.
In another scenario, compaction with Normal preferred zone failed to
compact Normal zone, but succeeded in the DMA32 zone, so it will not
defer compaction. In the next attempt, it will try Normal zone which
will fail again, instead of skipping Normal zone and trying DMA32
directly.
2) Kswapd will balance DMA32 zone and reset defer status based on
watermarks looking good. A direct compaction with preferred Normal
zone will skip compaction of all zones including DMA32 because Normal
was still deferred. The allocation might have succeeded in DMA32, but
won't.
This patch makes compaction deferring work on individual zone basis
instead of preferred zone. For each zone, it checks compaction_deferred()
to decide if the zone should be skipped. If watermarks fail after
compacting the zone, defer_compaction() is called. The zone where
watermarks passed can still be deferred when the allocation attempt is
unsuccessful. When allocation is successful, compaction_defer_reset() is
called for the zone containing the allocated page. This approach should
approximate calling defer_compaction() only on zones where compaction was
attempted and did not yield allocated page. There might be corner cases
but that is inevitable as long as the decision to stop compacting dues not
guarantee that a page will be allocated.
Due to a new COMPACT_DEFERRED return value, some functions relying
implicitly on COMPACT_SKIPPED = 0 had to be updated, with comments made
more accurate. The did_some_progress output parameter of
__alloc_pages_direct_compact() is removed completely, as the caller
actually does not use it after compaction sets it - it is only considered
when direct reclaim sets it.
During testing on a two-node machine with a single very small Normal zone
on node 1, this patch has improved success rates in stress-highalloc
mmtests benchmark. The success here were previously made worse by commit
3a025760fc ("mm: page_alloc: spill to remote nodes before waking
kswapd") as kswapd was no longer resetting often enough the deferred
compaction for the Normal zone, and DMA32 zones on both nodes were thus
not considered for compaction. On different machine, success rates were
improved with __GFP_NO_KSWAPD allocations.
[akpm@linux-foundation.org: fix CONFIG_COMPACTION=n build]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction uses compact_checklock_irqsave() function to periodically check
for lock contention and need_resched() to either abort async compaction,
or to free the lock, schedule and retake the lock. When aborting,
cc->contended is set to signal the contended state to the caller. Two
problems have been identified in this mechanism.
First, compaction also calls directly cond_resched() in both scanners when
no lock is yet taken. This call either does not abort async compaction,
or set cc->contended appropriately. This patch introduces a new
compact_should_abort() function to achieve both. In isolate_freepages(),
the check frequency is reduced to once by SWAP_CLUSTER_MAX pageblocks to
match what the migration scanner does in the preliminary page checks. In
case a pageblock is found suitable for calling isolate_freepages_block(),
the checks within there are done on higher frequency.
Second, isolate_freepages() does not check if isolate_freepages_block()
aborted due to contention, and advances to the next pageblock. This
violates the principle of aborting on contention, and might result in
pageblocks not being scanned completely, since the scanning cursor is
advanced. This problem has been noticed in the code by Joonsoo Kim when
reviewing related patches. This patch makes isolate_freepages_block()
check the cc->contended flag and abort.
In case isolate_freepages() has already isolated some pages before
aborting due to contention, page migration will proceed, which is OK since
we do not want to waste the work that has been done, and page migration
has own checks for contention. However, we do not want another isolation
attempt by either of the scanners, so cc->contended flag check is added
also to compaction_alloc() and compact_finished() to make sure compaction
is aborted right after the migration.
The outcome of the patch should be reduced lock contention by async
compaction and lower latencies for higher-order allocations where direct
compaction is involved.
[akpm@linux-foundation.org: fix typo in comment]
Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
Tested-by: Kevin Hilman <khilman@linaro.org>
Tested-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Fabio Estevam <fabio.estevam@freescale.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The compaction free scanner in isolate_freepages() currently remembers PFN
of the highest pageblock where it successfully isolates, to be used as the
starting pageblock for the next invocation. The rationale behind this is
that page migration might return free pages to the allocator when
migration fails and we don't want to skip them if the compaction
continues.
Since migration now returns free pages back to compaction code where they
can be reused, this is no longer a concern. This patch changes
isolate_freepages() so that the PFN for restarting is updated with each
pageblock where isolation is attempted. Using stress-highalloc from
mmtests, this resulted in 10% reduction of the pages scanned by the free
scanner.
Note that the somewhat similar functionality that records highest
successful pageblock in zone->compact_cached_free_pfn, remains unchanged.
This cache is used when the whole compaction is restarted, not for
multiple invocations of the free scanner during single compaction.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>