doing: echo 1234 | tee -a /sys/kernel/debug/tracing/set_ftrace_pid
Luckily, this can only be done by root, but still is a nasty bug.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQEcBAABAgAGBQJRaK2+AAoJEOdOSU1xswtMw48IAJPcSNMl1+epx5cPw8pwf+y6
YYvs/Ud3BMPBL+mpNPGNFWY+dWJsAtCtAgkLi0WgdL+b9iPNZrmQqqcP5xWV4uKV
vRX2SPCQcyEn5keNnFdN3fN1R0+Gj4V8kLvxPqugzNrO9EHejx+TJFWjrONzkcSy
g90lY45jfGWW0OS4GuSwHFhKDgcx8/kgb4Whv+xrKzTuX2QkU1BhG9WPsjiHWiL5
WRYjC4LWafrWaPd4cIkzMqj1eU/hL8BkiLLQHM1Tw8yD7t8OPzgmuJMZEh6Cx1iW
/Xrm5QkNEcqQ/vSAC6aWUi22VEgRYDLg8WjngwuMgY1Qa3LE2ex8cUDyk7lJbas=
=SFA8
-----END PGP SIGNATURE-----
Merge tag 'trace-fixes-v3.9-rc-v3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull ftrace fixes from Steven Rostedt:
"Namhyung Kim found and fixed a bug that can crash the kernel by simply
doing: echo 1234 | tee -a /sys/kernel/debug/tracing/set_ftrace_pid
Luckily, this can only be done by root, but still is a nasty bug."
* tag 'trace-fixes-v3.9-rc-v3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
ftrace: Move ftrace_filter_lseek out of CONFIG_DYNAMIC_FTRACE section
tracing: Fix possible NULL pointer dereferences
Nothing is using it yet, but this will allow us to delay the open-time
checks to use time, without breaking the normal UNIX permission
semantics where permissions are determined by the opener (and the file
descriptor can then be passed to a different process, or the process can
drop capabilities).
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It seems that function profiler's hash size is fixed at 1024. Add and
use FTRACE_PROFILE_HASH_BITS instead and update hash size macro.
Link: http://lkml.kernel.org/r/1365551750-4504-1-git-send-email-namhyung@kernel.org
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The ftrace_graph_count can be decreased with a "!" pattern, so that
the enabled flag should be updated too.
Link: http://lkml.kernel.org/r/1365663698-2413-1-git-send-email-namhyung@kernel.org
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: stable@vger.kernel.org
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
As ftrace_filter_lseek is now used with ftrace_pid_fops, it needs to
be moved out of the #ifdef CONFIG_DYNAMIC_FTRACE section as the
ftrace_pid_fops is defined when DYNAMIC_FTRACE is not.
Cc: stable@vger.kernel.org
Cc: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently set_ftrace_pid and set_graph_function files use seq_lseek
for their fops. However seq_open() is called only for FMODE_READ in
the fops->open() so that if an user tries to seek one of those file
when she open it for writing, it sees NULL seq_file and then panic.
It can be easily reproduced with following command:
$ cd /sys/kernel/debug/tracing
$ echo 1234 | sudo tee -a set_ftrace_pid
In this example, GNU coreutils' tee opens the file with fopen(, "a")
and then the fopen() internally calls lseek().
Link: http://lkml.kernel.org/r/1365663302-2170-1-git-send-email-namhyung@kernel.org
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: stable@vger.kernel.org
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The smpboot threads rely on the park/unpark mechanism which binds per
cpu threads on a particular core. Though the functionality is racy:
CPU0 CPU1 CPU2
unpark(T) wake_up_process(T)
clear(SHOULD_PARK) T runs
leave parkme() due to !SHOULD_PARK
bind_to(CPU2) BUG_ON(wrong CPU)
We cannot let the tasks move themself to the target CPU as one of
those tasks is actually the migration thread itself, which requires
that it starts running on the target cpu right away.
The solution to this problem is to prevent wakeups in park mode which
are not from unpark(). That way we can guarantee that the association
of the task to the target cpu is working correctly.
Add a new task state (TASK_PARKED) which prevents other wakeups and
use this state explicitly for the unpark wakeup.
Peter noticed: Also, since the task state is visible to userspace and
all the parked tasks are still in the PID space, its a good hint in ps
and friends that these tasks aren't really there for the moment.
The migration thread has another related issue.
CPU0 CPU1
Bring up CPU2
create_thread(T)
park(T)
wait_for_completion()
parkme()
complete()
sched_set_stop_task()
schedule(TASK_PARKED)
The sched_set_stop_task() call is issued while the task is on the
runqueue of CPU1 and that confuses the hell out of the stop_task class
on that cpu. So we need the same synchronizaion before
sched_set_stop_task().
Reported-by: Dave Jones <davej@redhat.com>
Reported-and-tested-by: Dave Hansen <dave@sr71.net>
Reported-and-tested-by: Borislav Petkov <bp@alien8.de>
Acked-by: Peter Ziljstra <peterz@infradead.org>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: dhillf@gmail.com
Cc: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1304091635430.21884@ionos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
- System reboot/halt fix related to CPU offline ordering
from Huacai Chen.
- intel_pstate driver fix for a delay time computation error
occasionally crashing systems using it from Dirk Brandewie.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQIcBAABAgAGBQJRZynOAAoJEKhOf7ml8uNsYWcQAIZIps7Ivn2+r3ENL+jhTohx
ErEz/cu/YIS/TnDzO3GO+Yo9CcXjUebMWqefIC//YK/K+tNepVOLovthTGiA/X36
23RDRrF1hqZlEgiEfFpuXiyq9u33CbUCYt75tsBXhxJkxeG7J7JfiG4AUh8dED4B
nUCbQ4jWM7r9DYJFl2gjDkFt1SjG/UbxcN9Kua9v4zfJil9fKp9093HHYBHH3a2n
zXlAE7CskXrNOepwp9Efzu5uPU3gbkIiQdKxvUs91remAcZ3fMsbz8CerZlgfy1S
+3f4AuU9i2AXeYI5fanhLo6Mwm8jqBvZ8ZE4Fh/EuQs9eHk7VuRsy7n22zaVeU0A
efaldd/pdP7KbSv5Wrs8adQr3GcRHkuHnMGhTlp41tfR8gJfpZUrK3/6h/jnIPRC
1UnBAF4K67v85fBO6gnC8UhEp3MXXXZoPtPByGILxj34KVn+oHzrVgE+8+ugv7HM
ZJ5jobYPWrxI2lZv5kuBdHCVg2TAC3YUz2aev8cEhIo4vdcIC2cofVDyAcN9ArqF
aF6fcNr6Rgu/M6bB2bP/zbhmDApr8H8z952jss51gprJ+IiKNUh9daiFnYw+o391
9VVTolC7k6P4pXTbtgqEFDLTJ0dKD8i/J4RLHwIsX7jzVgLctyqKZsNXskovjH4p
jqIxu/1SPxR2dtBziUEH
=bkFT
-----END PGP SIGNATURE-----
Merge tag 'pm-3.9-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management fixes from Rafael Wysocki:
- System reboot/halt fix related to CPU offline ordering from Huacai
Chen.
- intel_pstate driver fix for a delay time computation error
occasionally crashing systems using it from Dirk Brandewie.
* tag 'pm-3.9-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
PM / reboot: call syscore_shutdown() after disable_nonboot_cpus()
cpufreq / intel_pstate: Set timer timeout correctly
If the function profiler fails to allocate memory for everything,
it will do a double free on the same pointer which can cause a panic.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQEcBAABAgAGBQJRZdpLAAoJEOdOSU1xswtMyKgH/12ep1nFAYvXQQ04vcV3stCV
7vgk6oDMAGSYgwV2eNUbHNm2zkQBifFxUWLqWyzCd9t4RZUiIv5QHd2a+N2Ta+Xp
Do8zhwod3vzSaZsM3JvQRK5q8U6R72dqroPiv+lJ+jh7cIPdHCm87P+ZPYgAgpfv
6J80Vk34q/HdEGEmNuQgLzgfB+sfld/Ob6Te69f1rmzqCfHCytY1i3R0iPWvaI/v
B8R5cosjDhm0hAljsFlZb2Vl1jb89ByTgX3dL5Ph3O+hnHPCWE+ZQtbLCaOBV9F0
z8glXmAu2XVhv++0d21ul/TddQhVYQYF+ZMawxUlnLVKZ/J66c3l9Omhwf33Wz4=
=+NqN
-----END PGP SIGNATURE-----
Merge tag 'trace-fixes-3.9-rc-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fix from Steven Rostedt:
"Namhyung Kim fixed a long standing bug that can cause a kernel panic.
If the function profiler fails to allocate memory for everything, it
will do a double free on the same pointer which can cause a panic"
* tag 'trace-fixes-3.9-rc-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracing: Fix double free when function profile init failed
On the failure path, stat->start and stat->pages will refer same page.
So it'll attempt to free the same page again and get kernel panic.
Link: http://lkml.kernel.org/r/1364820385-32027-1-git-send-email-namhyung@kernel.org
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: stable@vger.kernel.org
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
memory allocated by kmem_cache_alloc() should be freed using
kmem_cache_free(), not kfree().
Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Signed-off-by: Tejun Heo <tj@kernel.org>
Use strlcpy() instead of strncpy() as it will always add a '\0'
to the end of the string even if the buffer is smaller than what
is being copied.
Link: http://lkml.kernel.org/r/51624254.30301@asianux.com
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
fixes a long time minor bug.
The first patch fixes a race that can happen if the user switches
from the irqsoff tracer to another tracer. If a irqs off latency is
detected, it will try to use the snapshot buffer, but the new tracer
wont have it allocated. There's a nasty warning that gets printed and
the trace is ignored. Nothing crashes, just a nasty WARN_ON is shown.
The second patch fixes an issue where if the sysctl is used to disable
and enable function tracing, it can put the function tracing into an
unstable state.
The third patch fixes an issue with perf using the function tracer.
An update was done, where the stub function could be called during
the perf function tracing, and that stub function wont have the
"control" flag set and cause a nasty warning when running perf.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQEcBAABAgAGBQJRYyyXAAoJEOdOSU1xswtMMtQH/0Ks494IyC9zAcSFZXJGagc2
bV1k2WrHUuXZnDEP3DIrwS87YwYOYD6l/7TW7AUc2AsFIgwsQ8tP+riI2FZVduAs
LLKR3NxE8B8hi+QS7fbEXea6jcRX2I+gnsv8bLenDVbliCWs1wZbSo8jbyOFjpKa
AWRpjIIBmKYB/dGn87YVOLAYHiMUO5WScKwJV0bCL9m5r2/7a1nu1j8KiQ9N0Vun
43jimIHYDlI/eSOGNIJPFAc/zjPXlPDFrpGcPg6wgUDfwSO0Cbz2PM46uxen+s91
Z4mbiqEONSTcl/wKYx9s6zRY+brkvP3AK0d1x1Al+TkTeFeaVPkTwmKSI/e46ow=
=9Ide
-----END PGP SIGNATURE-----
Merge tag 'trace-fixes-3.9-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixes from Steven Rostedt:
"This includes three fixes. Two fix features added in 3.9 and one
fixes a long time minor bug.
The first patch fixes a race that can happen if the user switches from
the irqsoff tracer to another tracer. If a irqs off latency is
detected, it will try to use the snapshot buffer, but the new tracer
wont have it allocated. There's a nasty warning that gets printed and
the trace is ignored. Nothing crashes, just a nasty WARN_ON is shown.
The second patch fixes an issue where if the sysctl is used to disable
and enable function tracing, it can put the function tracing into an
unstable state.
The third patch fixes an issue with perf using the function tracer.
An update was done, where the stub function could be called during the
perf function tracing, and that stub function wont have the "control"
flag set and cause a nasty warning when running perf."
* tag 'trace-fixes-3.9-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
ftrace: Do not call stub functions in control loop
ftrace: Consistently restore trace function on sysctl enabling
tracing: Fix race with update_max_tr_single and changing tracers
As commit 40dc166c (PM / Core: Introduce struct syscore_ops for core
subsystems PM) say, syscore_ops operations should be carried with one
CPU on-line and interrupts disabled. However, after commit f96972f2d
(kernel/sys.c: call disable_nonboot_cpus() in kernel_restart()),
syscore_shutdown() is called before disable_nonboot_cpus(), so break
the rules. We have a MIPS machine with a 8259A PIC, and there is an
external timer (HPET) linked at 8259A. Since 8259A has been shutdown
too early (by syscore_shutdown()), disable_nonboot_cpus() runs without
timer interrupt, so it hangs and reboot fails. This patch call
syscore_shutdown() a little later (after disable_nonboot_cpus()) to
avoid reboot failure, this is the same way as poweroff does.
For consistency, add disable_nonboot_cpus() to kernel_halt().
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The function tracing control loop used by perf spits out a warning
if the called function is not a control function. This is because
the control function references a per cpu allocated data structure
on struct ftrace_ops that is not allocated for other types of
functions.
commit 0a016409e4 "ftrace: Optimize the function tracer list loop"
Had an optimization done to all function tracing loops to optimize
for a single registered ops. Unfortunately, this allows for a slight
race when tracing starts or ends, where the stub function might be
called after the current registered ops is removed. In this case we
get the following dump:
root# perf stat -e ftrace:function sleep 1
[ 74.339105] WARNING: at include/linux/ftrace.h:209 ftrace_ops_control_func+0xde/0xf0()
[ 74.349522] Hardware name: PRIMERGY RX200 S6
[ 74.357149] Modules linked in: sg igb iTCO_wdt ptp pps_core iTCO_vendor_support i7core_edac dca lpc_ich i2c_i801 coretemp edac_core crc32c_intel mfd_core ghash_clmulni_intel dm_multipath acpi_power_meter pcspk
r microcode vhost_net tun macvtap macvlan nfsd kvm_intel kvm auth_rpcgss nfs_acl lockd sunrpc uinput xfs libcrc32c sd_mod crc_t10dif sr_mod cdrom mgag200 i2c_algo_bit drm_kms_helper ttm qla2xxx mptsas ahci drm li
bahci scsi_transport_sas mptscsih libata scsi_transport_fc i2c_core mptbase scsi_tgt dm_mirror dm_region_hash dm_log dm_mod
[ 74.446233] Pid: 1377, comm: perf Tainted: G W 3.9.0-rc1 #1
[ 74.453458] Call Trace:
[ 74.456233] [<ffffffff81062e3f>] warn_slowpath_common+0x7f/0xc0
[ 74.462997] [<ffffffff810fbc60>] ? rcu_note_context_switch+0xa0/0xa0
[ 74.470272] [<ffffffff811041a2>] ? __unregister_ftrace_function+0xa2/0x1a0
[ 74.478117] [<ffffffff81062e9a>] warn_slowpath_null+0x1a/0x20
[ 74.484681] [<ffffffff81102ede>] ftrace_ops_control_func+0xde/0xf0
[ 74.491760] [<ffffffff8162f400>] ftrace_call+0x5/0x2f
[ 74.497511] [<ffffffff8162f400>] ? ftrace_call+0x5/0x2f
[ 74.503486] [<ffffffff8162f400>] ? ftrace_call+0x5/0x2f
[ 74.509500] [<ffffffff810fbc65>] ? synchronize_sched+0x5/0x50
[ 74.516088] [<ffffffff816254d5>] ? _cond_resched+0x5/0x40
[ 74.522268] [<ffffffff810fbc65>] ? synchronize_sched+0x5/0x50
[ 74.528837] [<ffffffff811041a2>] ? __unregister_ftrace_function+0xa2/0x1a0
[ 74.536696] [<ffffffff816254d5>] ? _cond_resched+0x5/0x40
[ 74.542878] [<ffffffff8162402d>] ? mutex_lock+0x1d/0x50
[ 74.548869] [<ffffffff81105c67>] unregister_ftrace_function+0x27/0x50
[ 74.556243] [<ffffffff8111eadf>] perf_ftrace_event_register+0x9f/0x140
[ 74.563709] [<ffffffff816254d5>] ? _cond_resched+0x5/0x40
[ 74.569887] [<ffffffff8162402d>] ? mutex_lock+0x1d/0x50
[ 74.575898] [<ffffffff8111e94e>] perf_trace_destroy+0x2e/0x50
[ 74.582505] [<ffffffff81127ba9>] tp_perf_event_destroy+0x9/0x10
[ 74.589298] [<ffffffff811295d0>] free_event+0x70/0x1a0
[ 74.595208] [<ffffffff8112a579>] perf_event_release_kernel+0x69/0xa0
[ 74.602460] [<ffffffff816254d5>] ? _cond_resched+0x5/0x40
[ 74.608667] [<ffffffff8112a640>] put_event+0x90/0xc0
[ 74.614373] [<ffffffff8112a740>] perf_release+0x10/0x20
[ 74.620367] [<ffffffff811a3044>] __fput+0xf4/0x280
[ 74.625894] [<ffffffff811a31de>] ____fput+0xe/0x10
[ 74.631387] [<ffffffff81083697>] task_work_run+0xa7/0xe0
[ 74.637452] [<ffffffff81014981>] do_notify_resume+0x71/0xb0
[ 74.643843] [<ffffffff8162fa92>] int_signal+0x12/0x17
To fix this a new ftrace_ops flag is added that denotes the ftrace_list_end
ftrace_ops stub as just that, a stub. This flag is now checked in the
control loop and the function is not called if the flag is set.
Thanks to Jovi for not just reporting the bug, but also pointing out
where the bug was in the code.
Link: http://lkml.kernel.org/r/514A8855.7090402@redhat.com
Link: http://lkml.kernel.org/r/1364377499-1900-15-git-send-email-jovi.zhangwei@huawei.com
Tested-by: WANG Chao <chaowang@redhat.com>
Reported-by: WANG Chao <chaowang@redhat.com>
Reported-by: zhangwei(Jovi) <jovi.zhangwei@huawei.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
If we reenable ftrace via syctl, we currently set ftrace_trace_function
based on the previous simplistic algorithm. This is inconsistent with
what update_ftrace_function does. So better call that helper instead.
Link: http://lkml.kernel.org/r/5151D26F.1070702@siemens.com
Cc: stable@vger.kernel.org
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The commit 34600f0e9 "tracing: Fix race with max_tr and changing tracers"
fixed the updating of the main buffers with the race of changing
tracers, but left out the fix to the updating of just a per cpu buffer.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Recent commit 6fac4829 ("cputime: Use accessors to read task
cputime stats") introduced a bug, where we account many times
the cputime of the first thread, instead of cputimes of all
the different threads.
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20130404085740.GA2495@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For NUL terminated string we always need to set '\0' at the end.
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Cc: rostedt@goodmis.org
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/516243B7.9020405@asianux.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For NUL terminated string we always need to set '\0' at the end.
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Cc: rostedt@goodmis.org
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/51624254.30301@asianux.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For NUL terminated string, always make sure that there's '\0' at the end.
In our case we need a return value, so still use strncpy() and
fix up the tail explicitly.
(strlcpy() returns the size, not the pointer)
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Cc: a.p.zijlstra@chello.nl <a.p.zijlstra@chello.nl>
Cc: paulus@samba.org <paulus@samba.org>
Cc: acme@ghostprotocols.net <acme@ghostprotocols.net>
Link: http://lkml.kernel.org/r/51623E0B.7070101@asianux.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 201c373e8e ("sched/debug: Limit sd->*_idx range on
sysctl") was an incomplete bug fix.
This patch fixes sd->*_idx limit range to [0 ~ CPU_LOAD_IDX_MAX-1]
avoiding array overflow caused by setting sd->*_idx to CPU_LOAD_IDX_MAX
on sysctl.
Signed-off-by: Libin <huawei.libin@huawei.com>
Cc: <jiang.liu@huawei.com>
Cc: <guohanjun@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/51626610.2040607@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The sched_clock_remote() implementation has the following inatomicity
problem on 32bit systems when accessing the remote scd->clock, which
is a 64bit value.
CPU0 CPU1
sched_clock_local() sched_clock_remote(CPU0)
...
remote_clock = scd[CPU0]->clock
read_low32bit(scd[CPU0]->clock)
cmpxchg64(scd->clock,...)
read_high32bit(scd[CPU0]->clock)
While the update of scd->clock is using an atomic64 mechanism, the
readout on the remote cpu is not, which can cause completely bogus
readouts.
It is a quite rare problem, because it requires the update to hit the
narrow race window between the low/high readout and the update must go
across the 32bit boundary.
The resulting misbehaviour is, that CPU1 will see the sched_clock on
CPU1 ~4 seconds ahead of it's own and update CPU1s sched_clock value
to this bogus timestamp. This stays that way due to the clamping
implementation for about 4 seconds until the synchronization with
CLOCK_MONOTONIC undoes the problem.
The issue is hard to observe, because it might only result in a less
accurate SCHED_OTHER timeslicing behaviour. To create observable
damage on realtime scheduling classes, it is necessary that the bogus
update of CPU1 sched_clock happens in the context of an realtime
thread, which then gets charged 4 seconds of RT runtime, which results
in the RT throttler mechanism to trigger and prevent scheduling of RT
tasks for a little less than 4 seconds. So this is quite unlikely as
well.
The issue was quite hard to decode as the reproduction time is between
2 days and 3 weeks and intrusive tracing makes it less likely, but the
following trace recorded with trace_clock=global, which uses
sched_clock_local(), gave the final hint:
<idle>-0 0d..30 400269.477150: hrtimer_cancel: hrtimer=0xf7061e80
<idle>-0 0d..30 400269.477151: hrtimer_start: hrtimer=0xf7061e80 ...
irq/20-S-587 1d..32 400273.772118: sched_wakeup: comm= ... target_cpu=0
<idle>-0 0dN.30 400273.772118: hrtimer_cancel: hrtimer=0xf7061e80
What happens is that CPU0 goes idle and invokes
sched_clock_idle_sleep_event() which invokes sched_clock_local() and
CPU1 runs a remote wakeup for CPU0 at the same time, which invokes
sched_remote_clock(). The time jump gets propagated to CPU0 via
sched_remote_clock() and stays stale on both cores for ~4 seconds.
There are only two other possibilities, which could cause a stale
sched clock:
1) ktime_get() which reads out CLOCK_MONOTONIC returns a sporadic
wrong value.
2) sched_clock() which reads the TSC returns a sporadic wrong value.
#1 can be excluded because sched_clock would continue to increase for
one jiffy and then go stale.
#2 can be excluded because it would not make the clock jump
forward. It would just result in a stale sched_clock for one jiffy.
After quite some brain twisting and finding the same pattern on other
traces, sched_clock_remote() remained the only place which could cause
such a problem and as explained above it's indeed racy on 32bit
systems.
So while on 64bit systems the readout is atomic, we need to verify the
remote readout on 32bit machines. We need to protect the local->clock
readout in sched_clock_remote() on 32bit as well because an NMI could
hit between the low and the high readout, call sched_clock_local() and
modify local->clock.
Thanks to Siegfried Wulsch for bearing with my debug requests and
going through the tedious tasks of running a bunch of reproducer
systems to generate the debug information which let me decode the
issue.
Reported-by: Siegfried Wulsch <Siegfried.Wulsch@rovema.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1304051544160.21884@ionos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
destroy_workqueue() performs several sanity checks before proceeding
with destruction of a workqueue. One of the checks verifies that
refcnt of each pwq (pool_workqueue) is over 1 as at that point there
should be no in-flight work items and the only holder of pwq refs is
the workqueue itself.
This worked fine as a workqueue used to hold only one reference to its
pwqs; however, since 4c16bd327c ("workqueue: implement NUMA affinity
for unbound workqueues"), a workqueue may hold multiple references to
its default pwq triggering this sanity check spuriously.
Fix it by not triggering the pwq->refcnt assertion on default pwqs.
An example spurious WARN trigger follows.
WARNING: at kernel/workqueue.c:4201 destroy_workqueue+0x6a/0x13e()
Hardware name: 4286C12
Modules linked in: sdhci_pci sdhci mmc_core usb_storage i915 drm_kms_helper drm i2c_algo_bit i2c_core video
Pid: 361, comm: umount Not tainted 3.9.0-rc5+ #29
Call Trace:
[<c04314a7>] warn_slowpath_common+0x7c/0x93
[<c04314e0>] warn_slowpath_null+0x22/0x24
[<c044796a>] destroy_workqueue+0x6a/0x13e
[<c056dc01>] ext4_put_super+0x43/0x2c4
[<c04fb7b8>] generic_shutdown_super+0x4b/0xb9
[<c04fb848>] kill_block_super+0x22/0x60
[<c04fb960>] deactivate_locked_super+0x2f/0x56
[<c04fc41b>] deactivate_super+0x2e/0x31
[<c050f1e6>] mntput_no_expire+0x103/0x108
[<c050fdce>] sys_umount+0x2a2/0x2c4
[<c050fe0e>] sys_oldumount+0x1e/0x20
[<c085ba4d>] sysenter_do_call+0x12/0x38
tj: Rewrote description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQEcBAABAgAGBQJRWLTrAAoJEHm+PkMAQRiGe8oH/iMy48mecVWvxVZn74Tx3Cef
xmW/PnAIj28EhSPqK49N/Ow6AfQToFKf7AP0ge20KAf5teTq95AY+tH74DAANt8F
BjKXXTZiR5xwBvRkq7CR5wDcCvEcBAAz8fgTEd6SEDB2d2VXFf5eKdKUqt1avTCh
Z6Hup5kuwX+ddtwY2DCBXtp2n6fL0Rm5yLzY1A3OOBye1E7VyLTF7M5BR603Q44P
4kRLxn8+R7jy3hTuZIhAeoS8TKUoBwVk7DmKxEzrhTHZVOmvwE9lEHybRnIyOpd/
k1JnbRbiPsLsCVFOn10SQkGDAIk00lro3tuWP2C1ljERiD/OOh5Ui9nXYAhMkbI=
=q15K
-----END PGP SIGNATURE-----
Merge tag 'v3.9-rc5' into wq/for-3.10
Writeback conversion to workqueue will be based on top of wq/for-3.10
branch to take advantage of custom attrs and NUMA support for unbound
workqueues. Mainline currently contains two commits which result in
non-trivial merge conflicts with wq/for-3.10 and because
block/for-3.10/core is based on v3.9-rc3 which contains one of the
conflicting commits, we need a pre-merge-window merge anyway. Let's
pull v3.9-rc5 into wq/for-3.10 so that the block tree doesn't suffer
from workqueue merge conflicts.
The two conflicts and their resolutions:
* e68035fb65 ("workqueue: convert to idr_alloc()") in mainline changes
worker_pool_assign_id() to use idr_alloc() instead of the old idr
interface. worker_pool_assign_id() goes through multiple locking
changes in wq/for-3.10 causing the following conflict.
static int worker_pool_assign_id(struct worker_pool *pool)
{
int ret;
<<<<<<< HEAD
lockdep_assert_held(&wq_pool_mutex);
do {
if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
return -ENOMEM;
ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
} while (ret == -EAGAIN);
=======
mutex_lock(&worker_pool_idr_mutex);
ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
if (ret >= 0)
pool->id = ret;
mutex_unlock(&worker_pool_idr_mutex);
>>>>>>> c67bf5361e7e66a0ff1f4caf95f89347d55dfb89
return ret < 0 ? ret : 0;
}
We want locking from the former and idr_alloc() usage from the
latter, which can be combined to the following.
static int worker_pool_assign_id(struct worker_pool *pool)
{
int ret;
lockdep_assert_held(&wq_pool_mutex);
ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
if (ret >= 0) {
pool->id = ret;
return 0;
}
return ret;
}
* eb2834285c ("workqueue: fix possible pool stall bug in
wq_unbind_fn()") updated wq_unbind_fn() such that it has single
larger for_each_std_worker_pool() loop instead of two separate loops
with a schedule() call inbetween. wq/for-3.10 renamed
pool->assoc_mutex to pool->manager_mutex causing the following
conflict (earlier function body and comments omitted for brevity).
static void wq_unbind_fn(struct work_struct *work)
{
...
spin_unlock_irq(&pool->lock);
<<<<<<< HEAD
mutex_unlock(&pool->manager_mutex);
}
=======
mutex_unlock(&pool->assoc_mutex);
>>>>>>> c67bf5361e7e66a0ff1f4caf95f89347d55dfb89
schedule();
<<<<<<< HEAD
for_each_cpu_worker_pool(pool, cpu)
=======
>>>>>>> c67bf5361e7e66a0ff1f4caf95f89347d55dfb89
atomic_set(&pool->nr_running, 0);
spin_lock_irq(&pool->lock);
wake_up_worker(pool);
spin_unlock_irq(&pool->lock);
}
}
The resolution is mostly trivial. We want the control flow of the
latter with the rename of the former.
static void wq_unbind_fn(struct work_struct *work)
{
...
spin_unlock_irq(&pool->lock);
mutex_unlock(&pool->manager_mutex);
schedule();
atomic_set(&pool->nr_running, 0);
spin_lock_irq(&pool->lock);
wake_up_worker(pool);
spin_unlock_irq(&pool->lock);
}
}
Signed-off-by: Tejun Heo <tj@kernel.org>
Unbound workqueues are now NUMA aware. Let's add some control knobs
and update sysfs interface accordingly.
* Add kernel param workqueue.numa_disable which disables NUMA affinity
globally.
* Replace sysfs file "pool_id" with "pool_ids" which contain
node:pool_id pairs. This change is userland-visible but "pool_id"
hasn't seen a release yet, so this is okay.
* Add a new sysf files "numa" which can toggle NUMA affinity on
individual workqueues. This is implemented as attrs->no_numa whichn
is special in that it isn't part of a pool's attributes. It only
affects how apply_workqueue_attrs() picks which pools to use.
After "pool_ids" change, first_pwq() doesn't have any user left.
Removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Currently, an unbound workqueue has single current, or first, pwq
(pool_workqueue) to which all new work items are queued. This often
isn't optimal on NUMA machines as workers may jump around across node
boundaries and work items get assigned to workers without any regard
to NUMA affinity.
This patch implements NUMA affinity for unbound workqueues. Instead
of mapping all entries of numa_pwq_tbl[] to the same pwq,
apply_workqueue_attrs() now creates a separate pwq covering the
intersecting CPUs for each NUMA node which has online CPUs in
@attrs->cpumask. Nodes which don't have intersecting possible CPUs
are mapped to pwqs covering whole @attrs->cpumask.
As CPUs come up and go down, the pool association is changed
accordingly. Changing pool association may involve allocating new
pools which may fail. To avoid failing CPU_DOWN, each workqueue
always keeps a default pwq which covers whole attrs->cpumask which is
used as fallback if pool creation fails during a CPU hotplug
operation.
This ensures that all work items issued on a NUMA node is executed on
the same node as long as the workqueue allows execution on the CPUs of
the node.
As this maps a workqueue to multiple pwqs and max_active is per-pwq,
this change the behavior of max_active. The limit is now per NUMA
node instead of global. While this is an actual change, max_active is
already per-cpu for per-cpu workqueues and primarily used as safety
mechanism rather than for active concurrency control. Concurrency is
usually limited from workqueue users by the number of concurrently
active work items and this change shouldn't matter much.
v2: Fixed pwq freeing in apply_workqueue_attrs() error path. Spotted
by Lai.
v3: The previous version incorrectly made a workqueue spanning
multiple nodes spread work items over all online CPUs when some of
its nodes don't have any desired cpus. Reimplemented so that NUMA
affinity is properly updated as CPUs go up and down. This problem
was spotted by Lai Jiangshan.
v4: destroy_workqueue() was putting wq->dfl_pwq and then clearing it;
however, wq may be freed at any time after dfl_pwq is put making
the clearing use-after-free. Clear wq->dfl_pwq before putting it.
v5: apply_workqueue_attrs() was leaking @tmp_attrs, @new_attrs and
@pwq_tbl after success. Fixed.
Retry loop in wq_update_unbound_numa_attrs() isn't necessary as
application of new attrs is excluded via CPU hotplug. Removed.
Documentation on CPU affinity guarantee on CPU_DOWN added.
All changes are suggested by Lai Jiangshan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Factor out lock pool, put_pwq(), unlock sequence into
put_pwq_unlocked(). The two existing places are converted and there
will be more with NUMA affinity support.
This is to prepare for NUMA affinity support for unbound workqueues
and doesn't introduce any functional difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Factor out pool_workqueue linking and installation into numa_pwq_tbl[]
from apply_workqueue_attrs() into numa_pwq_tbl_install(). link_pwq()
is made safe to call multiple times. numa_pwq_tbl_install() links the
pwq, installs it into numa_pwq_tbl[] at the specified node and returns
the old entry.
@last_pwq is removed from link_pwq() as the return value of the new
function can be used instead.
This is to prepare for NUMA affinity support for unbound workqueues.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Use kmem_cache_alloc_node() with @pool->node instead of
kmem_cache_zalloc() when allocating a pool_workqueue so that it's
allocated on the same node as the associated worker_pool. As there's
no no kmem_cache_zalloc_node(), move zeroing to init_pwq().
This was suggested by Lai Jiangshan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Break init_and_link_pwq() into init_pwq() and link_pwq() and move
unbound-workqueue specific handling into apply_workqueue_attrs().
Also, factor out unbound pool and pool_workqueue allocation into
alloc_unbound_pwq().
This reorganization is to prepare for NUMA affinity and doesn't
introduce any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Currently, an unbound workqueue has only one "current" pool_workqueue
associated with it. It may have multple pool_workqueues but only the
first pool_workqueue servies new work items. For NUMA affinity, we
want to change this so that there are multiple current pool_workqueues
serving different NUMA nodes.
Introduce workqueue->numa_pwq_tbl[] which is indexed by NUMA node and
points to the pool_workqueue to use for each possible node. This
replaces first_pwq() in __queue_work() and workqueue_congested().
numa_pwq_tbl[] is currently initialized to point to the same
pool_workqueue as first_pwq() so this patch doesn't make any behavior
changes.
v2: Use rcu_dereference_raw() in unbound_pwq_by_node() as the function
may be called only with wq->mutex held.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Move wq->flags and ->cpu_pwqs to the end of workqueue_struct and align
them to the cacheline. These two fields are used in the work item
issue path and thus hot. The scheduled NUMA affinity support will add
dispatch table at the end of workqueue_struct and relocating these two
fields will allow us hitting only single cacheline on hot paths.
Note that wq->pwqs isn't moved although it currently is being used in
the work item issue path for unbound workqueues. The dispatch table
mentioned above will replace its use in the issue path, so it will
become cold once NUMA support is implemented.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Currently workqueue->name[] is of flexible length. We want to use the
flexible field for something more useful and there isn't much benefit
in allowing arbitrary name length anyway. Make it fixed len capping
at 24 bytes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Currently, when exposing attrs of an unbound workqueue via sysfs, the
workqueue_attrs of first_pwq() is used as that should equal the
current state of the workqueue.
The planned NUMA affinity support will make unbound workqueues make
use of multiple pool_workqueues for different NUMA nodes and the above
assumption will no longer hold. Introduce workqueue->unbound_attrs
which records the current attrs in effect and use it for sysfs instead
of first_pwq()->attrs.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
When worker tasks are created using kthread_create_on_node(),
currently only per-cpu ones have the matching NUMA node specified.
All unbound workers are always created with NUMA_NO_NODE.
Now that an unbound worker pool may have an arbitrary cpumask
associated with it, this isn't optimal. Add pool->node which is
determined by the pool's cpumask. If the pool's cpumask is contained
inside a NUMA node proper, the pool is associated with that node, and
all workers of the pool are created on that node.
This currently only makes difference for unbound worker pools with
cpumask contained inside single NUMA node, but this will serve as
foundation for making all unbound pools NUMA-affine.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Currently, all workqueue workers which have negative nice value has
'H' postfixed to their names. This is necessary for per-cpu workers
as they use the CPU number instead of pool->id to identify the pool
and the 'H' postfix is the only thing distinguishing normal and
highpri workers.
As workers for unbound pools use pool->id, the 'H' postfix is purely
informational. TASK_COMM_LEN is 16 and after the static part and
delimiters, there are only five characters left for the pool and
worker IDs. We're expecting to have more unbound pools with the
scheduled NUMA awareness support. Let's drop the non-essential 'H'
postfix from unbound kworker name.
While at it, restructure kthread_create*() invocation to help future
NUMA related changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Unbound workqueues are going to be NUMA-affine. Add wq_numa_tbl_len
and wq_numa_possible_cpumask[] in preparation. The former is the
highest NUMA node ID + 1 and the latter is masks of possibles CPUs for
each NUMA node.
This patch only introduces these. Future patches will make use of
them.
v2: NUMA initialization move into wq_numa_init(). Also, the possible
cpumask array is not created if there aren't multiple nodes on the
system. wq_numa_enabled bool added.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
The scheduled NUMA affinity support for unbound workqueues would need
to walk workqueues list and pool related operations on each workqueue.
Move wq_pool_mutex locking out of get/put_unbound_pool() to their
callers so that pool operations can be performed while walking the
workqueues list, which is also protected by wq_pool_mutex.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
29c91e9912 ("workqueue: implement attribute-based unbound worker_pool
management") implemented attrs based worker_pool matching. It tried
to avoid false negative when comparing cpumasks with custom hash
function; unfortunately, the hash and comparison functions fail to
ignore CPUs which are not possible. It incorrectly assumed that
bitmap_copy() skips leftover bits in the last word of bitmap and
cpumask_equal() ignores impossible CPUs.
This patch updates attrs->cpumask handling such that impossible CPUs
are properly ignored.
* Hash and copy functions no longer do anything special. They expect
their callers to clear impossible CPUs.
* alloc_workqueue_attrs() initializes the cpumask to cpu_possible_mask
instead of setting all bits and explicit cpumask_setall() for
unbound_std_wq_attrs[] in init_workqueues() is dropped.
* apply_workqueue_attrs() is now responsible for ignoring impossible
CPUs. It makes a copy of @attrs and clears impossible CPUs before
doing anything else.
Signed-off-by: Tejun Heo <tj@kernel.org>
8864b4e59 ("workqueue: implement get/put_pwq()") implemented pwq
(pool_workqueue) refcnting which frees workqueue when the last pwq
goes away. It determined whether it was the last pwq by testing
wq->pwqs is empty. Unfortunately, the test was done outside wq->mutex
and multiple pwq release could race and try to free wq multiple times
leading to oops.
Test wq->pwqs emptiness while holding wq->mutex.
Signed-off-by: Tejun Heo <tj@kernel.org>
This reverts commit 6aa9707099.
Commit 6aa9707099 ("lockdep: check that no locks held at freeze time")
causes problems with NFS root filesystems. The failures were noticed on
OMAP2 and 3 boards during kernel init:
[ BUG: swapper/0/1 still has locks held! ]
3.9.0-rc3-00344-ga937536 #1 Not tainted
-------------------------------------
1 lock held by swapper/0/1:
#0: (&type->s_umount_key#13/1){+.+.+.}, at: [<c011e84c>] sget+0x248/0x574
stack backtrace:
rpc_wait_bit_killable
__wait_on_bit
out_of_line_wait_on_bit
__rpc_execute
rpc_run_task
rpc_call_sync
nfs_proc_get_root
nfs_get_root
nfs_fs_mount_common
nfs_try_mount
nfs_fs_mount
mount_fs
vfs_kern_mount
do_mount
sys_mount
do_mount_root
mount_root
prepare_namespace
kernel_init_freeable
kernel_init
Although the rootfs mounts, the system is unstable. Here's a transcript
from a PM test:
http://www.pwsan.com/omap/testlogs/test_v3.9-rc3/20130317194234/pm/37xxevm/37xxevm_log.txt
Here's what the test log should look like:
http://www.pwsan.com/omap/testlogs/test_v3.8/20130218214403/pm/37xxevm/37xxevm_log.txt
Mailing list discussion is here:
http://lkml.org/lkml/2013/3/4/221
Deal with this for v3.9 by reverting the problem commit, until folks can
figure out the right long-term course of action.
Signed-off-by: Paul Walmsley <paul@pwsan.com>
Cc: Mandeep Singh Baines <msb@chromium.org>
Cc: Jeff Layton <jlayton@redhat.com>
Cc: Shawn Guo <shawn.guo@linaro.org>
Cc: <maciej.rutecki@gmail.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ben Chan <benchan@chromium.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull userns fixes from Eric W Biederman:
"The bulk of the changes are fixing the worst consequences of the user
namespace design oversight in not considering what happens when one
namespace starts off as a clone of another namespace, as happens with
the mount namespace.
The rest of the changes are just plain bug fixes.
Many thanks to Andy Lutomirski for pointing out many of these issues."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
userns: Restrict when proc and sysfs can be mounted
ipc: Restrict mounting the mqueue filesystem
vfs: Carefully propogate mounts across user namespaces
vfs: Add a mount flag to lock read only bind mounts
userns: Don't allow creation if the user is chrooted
yama: Better permission check for ptraceme
pid: Handle the exit of a multi-threaded init.
scm: Require CAP_SYS_ADMIN over the current pidns to spoof pids.