Commit graph

3760 commits

Author SHA1 Message Date
Darrick J. Wong
6d43e485e0 xfs: clear _XBF_PAGES from buffers when readahead page
commit 2aa6ba7b5ad3189cc27f14540aa2f57f0ed8df4b upstream.

If we try to allocate memory pages to back an xfs_buf that we're trying
to read, it's possible that we'll be so short on memory that the page
allocation fails.  For a blocking read we'll just wait, but for
readahead we simply dump all the pages we've collected so far.

Unfortunately, after dumping the pages we neglect to clear the
_XBF_PAGES state, which means that the subsequent call to xfs_buf_free
thinks that b_pages still points to pages we own.  It then double-frees
the b_pages pages.

This results in screaming about negative page refcounts from the memory
manager, which xfs oughtn't be triggering.  To reproduce this case,
mount a filesystem where the size of the inodes far outweighs the
availalble memory (a ~500M inode filesystem on a VM with 300MB memory
did the trick here) and run bulkstat in parallel with other memory
eating processes to put a huge load on the system.  The "check summary"
phase of xfs_scrub also works for this purpose.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Cc: Ivan Kozik <ivan@ludios.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-03-30 09:35:19 +02:00
Eric Sandeen
7922c1becb xfs: fix up xfs_swap_extent_forks inline extent handling
commit 4dfce57db6354603641132fac3c887614e3ebe81 upstream.

There have been several reports over the years of NULL pointer
dereferences in xfs_trans_log_inode during xfs_fsr processes,
when the process is doing an fput and tearing down extents
on the temporary inode, something like:

BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
PID: 29439  TASK: ffff880550584fa0  CPU: 6   COMMAND: "xfs_fsr"
    [exception RIP: xfs_trans_log_inode+0x10]
 #9 [ffff8800a57bbbe0] xfs_bunmapi at ffffffffa037398e [xfs]
#10 [ffff8800a57bbce8] xfs_itruncate_extents at ffffffffa0391b29 [xfs]
#11 [ffff8800a57bbd88] xfs_inactive_truncate at ffffffffa0391d0c [xfs]
#12 [ffff8800a57bbdb8] xfs_inactive at ffffffffa0392508 [xfs]
#13 [ffff8800a57bbdd8] xfs_fs_evict_inode at ffffffffa035907e [xfs]
#14 [ffff8800a57bbe00] evict at ffffffff811e1b67
#15 [ffff8800a57bbe28] iput at ffffffff811e23a5
#16 [ffff8800a57bbe58] dentry_kill at ffffffff811dcfc8
#17 [ffff8800a57bbe88] dput at ffffffff811dd06c
#18 [ffff8800a57bbea8] __fput at ffffffff811c823b
#19 [ffff8800a57bbef0] ____fput at ffffffff811c846e
#20 [ffff8800a57bbf00] task_work_run at ffffffff81093b27
#21 [ffff8800a57bbf30] do_notify_resume at ffffffff81013b0c
#22 [ffff8800a57bbf50] int_signal at ffffffff8161405d

As it turns out, this is because the i_itemp pointer, along
with the d_ops pointer, has been overwritten with zeros
when we tear down the extents during truncate.  When the in-core
inode fork on the temporary inode used by xfs_fsr was originally
set up during the extent swap, we mistakenly looked at di_nextents
to determine whether all extents fit inline, but this misses extents
generated by speculative preallocation; we should be using if_bytes
instead.

This mistake corrupts the in-memory inode, and code in
xfs_iext_remove_inline eventually gets bad inputs, causing
it to memmove and memset incorrect ranges; this became apparent
because the two values in ifp->if_u2.if_inline_ext[1] contained
what should have been in d_ops and i_itemp; they were memmoved due
to incorrect array indexing and then the original locations
were zeroed with memset, again due to an array overrun.

Fix this by properly using i_df.if_bytes to determine the number
of extents, not di_nextents.

Thanks to dchinner for looking at this with me and spotting the
root cause.

[nborisov: backported to 4.4]

Cc: stable@vger.kernel.org
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
--
 fs/xfs/xfs_bmap_util.c |    7 +++++--
 1 file changed, 5 insertions(+), 2 deletions(-)
2017-03-30 09:35:18 +02:00
Darrick J. Wong
c4cf86f695 xfs: don't allow di_size with high bit set
commit ef388e2054feedaeb05399ed654bdb06f385d294 upstream.

The on-disk field di_size is used to set i_size, which is a signed
integer of loff_t.  If the high bit of di_size is set, we'll end up with
a negative i_size, which will cause all sorts of problems.  Since the
VFS won't let us create a file with such length, we should catch them
here in the verifier too.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Cc: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-03-30 09:35:18 +02:00
Eric Sandeen
f85a337b40 xfs: set AGI buffer type in xlog_recover_clear_agi_bucket
commit 6b10b23ca94451fae153a5cc8d62fd721bec2019 upstream.

xlog_recover_clear_agi_bucket didn't set the
type to XFS_BLFT_AGI_BUF, so we got a warning during log
replay (or an ASSERT on a debug build).

    XFS (md0): Unknown buffer type 0!
    XFS (md0): _xfs_buf_ioapply: no ops on block 0xaea8802/0x1

Fix this, as was done in f19b872b for 2 other locations
with the same problem.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-01-06 11:16:17 +01:00
Darrick J. Wong
fd9e4cea96 libxfs: clean up _calc_dquots_per_chunk
commit 58d789678546d46d7bbd809dd7dab417c0f23655 upstream.

The function xfs_calc_dquots_per_chunk takes a parameter in units
of basic blocks.  The kernel seems to get the units wrong, but
userspace got 'fixed' by commenting out the unnecessary conversion.
Fix both.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-11-10 16:36:32 +01:00
Jan Kara
57c9cfdb61 posix_acl: Clear SGID bit when setting file permissions
commit 073931017b49d9458aa351605b43a7e34598caef upstream.

When file permissions are modified via chmod(2) and the user is not in
the owning group or capable of CAP_FSETID, the setgid bit is cleared in
inode_change_ok().  Setting a POSIX ACL via setxattr(2) sets the file
permissions as well as the new ACL, but doesn't clear the setgid bit in
a similar way; this allows to bypass the check in chmod(2).  Fix that.

References: CVE-2016-7097
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-10-31 04:13:58 -06:00
Brian Foster
fc4edddc51 xfs: prevent dropping ioend completions during buftarg wait
commit 800b2694f890cc35a1bda63501fc71c94389d517 upstream.

xfs_wait_buftarg() waits for all pending I/O, drains the ioend
completion workqueue and walks the LRU until all buffers in the cache
have been released. This is traditionally an unmount operation` but the
mechanism is also reused during filesystem freeze.

xfs_wait_buftarg() invokes drain_workqueue() as part of the quiesce,
which is intended more for a shutdown sequence in that it indicates to
the queue that new operations are not expected once the drain has begun.
New work jobs after this point result in a WARN_ON_ONCE() and are
otherwise dropped.

With filesystem freeze, however, read operations are allowed and can
proceed during or after the workqueue drain. If such a read occurs
during the drain sequence, the workqueue infrastructure complains about
the queued ioend completion work item and drops it on the floor. As a
result, the buffer remains on the LRU and the freeze never completes.

Despite the fact that the overall buffer cache cleanup is not necessary
during freeze, fix up this operation such that it is safe to invoke
during non-unmount quiesce operations. Replace the drain_workqueue()
call with flush_workqueue(), which runs a similar serialization on
pending workqueue jobs without causing new jobs to be dropped. This is
safe for unmount as unmount independently locks out new operations by
the time xfs_wait_buftarg() is invoked.

cc: <stable@vger.kernel.org>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-30 10:18:37 +02:00
Dave Chinner
f5edb04b45 xfs: fix superblock inprogress check
commit f3d7ebdeb2c297bd26272384e955033493ca291c upstream.

From inspection, the superblock sb_inprogress check is done in the
verifier and triggered only for the primary superblock via a
"bp->b_bn == XFS_SB_DADDR" check.

Unfortunately, the primary superblock is an uncached buffer, and
hence it is configured by xfs_buf_read_uncached() with:

	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */

And so this check never triggers. Fix it.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-15 08:27:52 +02:00
Dave Chinner
55f6ddfcee xfs: handle dquot buffer readahead in log recovery correctly
commit 7d6a13f023567d573ac362502bb702eda716e654 upstream.

When we do dquot readahead in log recovery, we do not use a verifier
as the underlying buffer may not have dquots in it. e.g. the
allocation operation hasn't yet been replayed. Hence we do not want
to fail recovery because we detect an operation to be replayed has
not been run yet. This problem was addressed for inodes in commit
d891400 ("xfs: inode buffers may not be valid during recovery
readahead") but the problem was not recognised to exist for dquots
and their buffers as the dquot readahead did not have a verifier.

The result of not using a verifier is that when the buffer is then
next read to replay a dquot modification, the dquot buffer verifier
will only be attached to the buffer if *readahead is not complete*.
Hence we can read the buffer, replay the dquot changes and then add
it to the delwri submission list without it having a verifier
attached to it. This then generates warnings in xfs_buf_ioapply(),
which catches and warns about this case.

Fix this and make it handle the same readahead verifier error cases
as for inode buffers by adding a new readahead verifier that has a
write operation as well as a read operation that marks the buffer as
not done if any corruption is detected.  Also make sure we don't run
readahead if the dquot buffer has been marked as cancelled by
recovery.

This will result in readahead either succeeding and the buffer
having a valid write verifier, or readahead failing and the buffer
state requiring the subsequent read to resubmit the IO with the new
verifier.  In either case, this will result in the buffer always
ending up with a valid write verifier on it.

Note: we also need to fix the inode buffer readahead error handling
to mark the buffer with EIO. Brian noticed the code I copied from
there wrong during review, so fix it at the same time. Add comments
linking the two functions that handle readahead verifier errors
together so we don't forget this behavioural link in future.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-07 18:14:38 -07:00
Eric Sandeen
063b0dc8b4 xfs: print name of verifier if it fails
commit 233135b763db7c64d07b728a9c66745fb0376275 upstream.

This adds a name to each buf_ops structure, so that if
a verifier fails we can print the type of verifier that
failed it.  Should be a slight debugging aid, I hope.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Cc: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-07 18:14:38 -07:00
Dave Chinner
21cfd6cc64 xfs: skip stale inodes in xfs_iflush_cluster
commit 7d3aa7fe970791f1a674b14572a411accf2f4d4e upstream.

We don't write back stale inodes so we should skip them in
xfs_iflush_cluster, too.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-07 18:14:38 -07:00
Dave Chinner
baa7a74d6d xfs: fix inode validity check in xfs_iflush_cluster
commit 51b07f30a71c27405259a0248206ed4e22adbee2 upstream.

Some careless idiot(*) wrote crap code in commit 1a3e8f3 ("xfs:
convert inode cache lookups to use RCU locking") back in late 2010,
and so xfs_iflush_cluster checks the wrong inode for whether it is
still valid under RCU protection. Fix it to lock and check the
correct inode.

(*) Careless-idiot: Dave Chinner <dchinner@redhat.com>

Discovered-by: Brain Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-07 18:14:38 -07:00
Dave Chinner
7dc8f21bd5 xfs: xfs_iflush_cluster fails to abort on error
commit b1438f477934f5a4d5a44df26f3079a7575d5946 upstream.

When a failure due to an inode buffer occurs, the error handling
fails to abort the inode writeback correctly. This can result in the
inode being reclaimed whilst still in the AIL, leading to
use-after-free situations as well as filesystems that cannot be
unmounted as the inode log items left in the AIL never get removed.

Fix this by ensuring fatal errors from xfs_imap_to_bp() result in
the inode flush being aborted correctly.

Reported-by: Shyam Kaushik <shyam@zadarastorage.com>
Diagnosed-by: Shyam Kaushik <shyam@zadarastorage.com>
Tested-by: Shyam Kaushik <shyam@zadarastorage.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-07 18:14:38 -07:00
Dave Chinner
d7d92ca7dd xfs: Don't wrap growfs AGFL indexes
commit ad747e3b299671e1a53db74963cc6c5f6cdb9f6d upstream.

Commit 96f859d ("libxfs: pack the agfl header structure so
XFS_AGFL_SIZE is correct") allowed the freelist to use the empty
slot at the end of the freelist on 64 bit systems that was not
being used due to sizeof() rounding up the structure size.

This has caused versions of xfs_repair prior to 4.5.0 (which also
has the fix) to report this as a corruption once the filesystem has
been grown. Older kernels can also have problems (seen from a whacky
container/vm management environment) mounting filesystems grown on a
system with a newer kernel than the vm/container it is deployed on.

To avoid this problem, change the initial free list indexes not to
wrap across the end of the AGFL, hence avoiding the initialisation
of agf_fllast to the last index in the AGFL.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-07 18:14:38 -07:00
Eric Sandeen
ec86bfec23 xfs: disallow rw remount on fs with unknown ro-compat features
commit d0a58e833931234c44e515b5b8bede32bd4e6eed upstream.

Today, a kernel which refuses to mount a filesystem read-write
due to unknown ro-compat features can still transition to read-write
via the remount path.  The old kernel is most likely none the wiser,
because it's unaware of the new feature, and isn't using it.  However,
writing to the filesystem may well corrupt metadata related to that
new feature, and moving to a newer kernel which understand the feature
will have problems.

Right now the only ro-compat feature we have is the free inode btree,
which showed up in v3.16.  It would be good to push this back to
all the active stable kernels, I think, so that if anyone is using
newer mkfs (which enables the finobt feature) with older kernel
releases, they'll be protected.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-07 18:14:38 -07:00
Mateusz Guzik
b34291f71d xfs: fix two memory leaks in xfs_attr_list.c error paths
commit 2e83b79b2d6c78bf1b4aa227938a214dcbddc83f upstream.

This plugs 2 trivial leaks in xfs_attr_shortform_list and
xfs_attr3_leaf_list_int.

Signed-off-by: Mateusz Guzik <mguzik@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12 09:08:56 -07:00
Dave Chinner
f86701c4f3 xfs: log mount failures don't wait for buffers to be released
commit 85bec5460ad8e05e0a8d70fb0f6750eb719ad092 upstream.

Recently I've been seeing xfs/051 fail on 1k block size filesystems.
Trying to trace the events during the test lead to the problem going
away, indicating that it was a race condition that lead to this
ASSERT failure:

XFS: Assertion failed: atomic_read(&pag->pag_ref) == 0, file: fs/xfs/xfs_mount.c, line: 156
.....
[<ffffffff814e1257>] xfs_free_perag+0x87/0xb0
[<ffffffff814e21b9>] xfs_mountfs+0x4d9/0x900
[<ffffffff814e5dff>] xfs_fs_fill_super+0x3bf/0x4d0
[<ffffffff811d8800>] mount_bdev+0x180/0x1b0
[<ffffffff814e3ff5>] xfs_fs_mount+0x15/0x20
[<ffffffff811d90a8>] mount_fs+0x38/0x170
[<ffffffff811f4347>] vfs_kern_mount+0x67/0x120
[<ffffffff811f7018>] do_mount+0x218/0xd60
[<ffffffff811f7e5b>] SyS_mount+0x8b/0xd0

When I finally caught it with tracing enabled, I saw that AG 2 had
an elevated reference count and a buffer was responsible for it. I
tracked down the specific buffer, and found that it was missing the
final reference count release that would put it back on the LRU and
hence be found by xfs_wait_buftarg() calls in the log mount failure
handling.

The last four traces for the buffer before the assert were (trimmed
for relevance)

kworker/0:1-5259   xfs_buf_iodone:        hold 2  lock 0 flags ASYNC
kworker/0:1-5259   xfs_buf_ioerror:       hold 2  lock 0 error -5
mount-7163	   xfs_buf_lock_done:     hold 2  lock 0 flags ASYNC
mount-7163	   xfs_buf_unlock:        hold 2  lock 1 flags ASYNC

This is an async write that is completing, so there's nobody waiting
for it directly.  Hence we call xfs_buf_relse() once all the
processing is complete. That does:

static inline void xfs_buf_relse(xfs_buf_t *bp)
{
	xfs_buf_unlock(bp);
	xfs_buf_rele(bp);
}

Now, it's clear that mount is waiting on the buffer lock, and that
it has been released by xfs_buf_relse() and gained by mount. This is
expected, because at this point the mount process is in
xfs_buf_delwri_submit() waiting for all the IO it submitted to
complete.

The mount process, however, is waiting on the lock for the buffer
because it is in xfs_buf_delwri_submit(). This waits for IO
completion, but it doesn't wait for the buffer reference owned by
the IO to go away. The mount process collects all the completions,
fails the log recovery, and the higher level code then calls
xfs_wait_buftarg() to free all the remaining buffers in the
filesystem.

The issue is that on unlocking the buffer, the scheduler has decided
that the mount process has higher priority than the the kworker
thread that is running the IO completion, and so immediately
switched contexts to the mount process from the semaphore unlock
code, hence preventing the kworker thread from finishing the IO
completion and releasing the IO reference to the buffer.

Hence by the time that xfs_wait_buftarg() is run, the buffer still
has an active reference and so isn't on the LRU list that the
function walks to free the remaining buffers. Hence we miss that
buffer and continue onwards to tear down the mount structures,
at which time we get find a stray reference count on the perag
structure. On a non-debug kernel, this will be ignored and the
structure torn down and freed. Hence when the kworker thread is then
rescheduled and the buffer released and freed, it will access a
freed perag structure.

The problem here is that when the log mount fails, we still need to
quiesce the log to ensure that the IO workqueues have returned to
idle before we run xfs_wait_buftarg(). By synchronising the
workqueues, we ensure that all IO completions are fully processed,
not just to the point where buffers have been unlocked. This ensures
we don't end up in the situation above.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25 12:01:24 -08:00
Dave Chinner
16f14a28f6 Revert "xfs: clear PF_NOFREEZE for xfsaild kthread"
commit 3e85286e75224fa3f08bdad20e78c8327742634e upstream.

This reverts commit 24ba16bb3d as it
prevents machines from suspending. This regression occurs when the
xfsaild is idle on entry to suspend, and so there s no activity to
wake it from it's idle sleep and hence see that it is supposed to
freeze. Hence the freezer times out waiting for it and suspend is
cancelled.

There is no obvious fix for this short of freezing the filesystem
properly, so revert this change for now.

Signed-off-by: Dave Chinner <david@fromorbit.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25 12:01:24 -08:00
Dave Chinner
7530e6fdd9 xfs: inode recovery readahead can race with inode buffer creation
commit b79f4a1c68bb99152d0785ee4ea3ab4396cdacc6 upstream.

When we do inode readahead in log recovery, we do can do the
readahead before we've replayed the icreate transaction that stamps
the buffer with inode cores. The inode readahead verifier catches
this and marks the buffer as !done to indicate that it doesn't yet
contain valid inodes.

In adding buffer error notification  (i.e. setting b_error = -EIO at
the same time as as we clear the done flag) to such a readahead
verifier failure, we can then get subsequent inode recovery failing
with this error:

XFS (dm-0): metadata I/O error: block 0xa00060 ("xlog_recover_do..(read#2)") error 5 numblks 32

This occurs when readahead completion races with icreate item replay
such as:

	inode readahead
		find buffer
		lock buffer
		submit RA io
	....
	icreate recovery
	    xfs_trans_get_buffer
		find buffer
		lock buffer
		<blocks on RA completion>
	.....
	<ra completion>
		fails verifier
		clear XBF_DONE
		set bp->b_error = -EIO
		release and unlock buffer
	<icreate gains lock>
	icreate initialises buffer
	marks buffer as done
	adds buffer to delayed write queue
	releases buffer

At this point, we have an initialised inode buffer that is up to
date but has an -EIO state registered against it. When we finally
get to recovering an inode in that buffer:

	inode item recovery
	    xfs_trans_read_buffer
		find buffer
		lock buffer
		sees XBF_DONE is set, returns buffer
	    sees bp->b_error is set
		fail log recovery!

Essentially, we need xfs_trans_get_buf_map() to clear the error status of
the buffer when doing a lookup. This function returns uninitialised
buffers, so the buffer returned can not be in an error state and
none of the code that uses this function expects b_error to be set
on return. Indeed, there is an ASSERT(!bp->b_error); in the
transaction case in xfs_trans_get_buf_map() that would have caught
this if log recovery used transactions....

This patch firstly changes the inode readahead failure to set -EIO
on the buffer, and secondly changes xfs_buf_get_map() to never
return a buffer with an error state set so this first change doesn't
cause unexpected log recovery failures.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25 12:01:24 -08:00
Darrick J. Wong
888959f2fd libxfs: pack the agfl header structure so XFS_AGFL_SIZE is correct
commit 96f859d52bcb1c6ea6f3388d39862bf7143e2f30 upstream.

Because struct xfs_agfl is 36 bytes long and has a 64-bit integer
inside it, gcc will quietly round the structure size up to the nearest
64 bits -- in this case, 40 bytes.  This results in the XFS_AGFL_SIZE
macro returning incorrect results for v5 filesystems on 64-bit
machines (118 items instead of 119).  As a result, a 32-bit xfs_repair
will see garbage in AGFL item 119 and complain.

Therefore, tell gcc not to pad the structure so that the AGFL size
calculation is correct.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25 12:01:24 -08:00
Linus Torvalds
5d2eb548b3 Merge branch 'for-linus-3' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs xattr cleanups from Al Viro.

* 'for-linus-3' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  f2fs: xattr simplifications
  squashfs: xattr simplifications
  9p: xattr simplifications
  xattr handlers: Pass handler to operations instead of flags
  jffs2: Add missing capability check for listing trusted xattrs
  hfsplus: Remove unused xattr handler list operations
  ubifs: Remove unused security xattr handler
  vfs: Fix the posix_acl_xattr_list return value
  vfs: Check attribute names in posix acl xattr handers
2015-11-13 18:02:30 -08:00
Andreas Gruenbacher
d9a82a0403 xattr handlers: Pass handler to operations instead of flags
The xattr_handler operations are currently all passed a file system
specific flags value which the operations can use to disambiguate between
different handlers; some file systems use that to distinguish the xattr
namespace, for example.  In some oprations, it would be useful to also have
access to the handler prefix.  To allow that, pass a pointer to the handler
to operations instead of the flags value alone.

Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-11-13 20:34:32 -05:00
Linus Torvalds
5d50ac70fe xfs: updates for 4.4-rc1
This update contains:
 o per-mount operational statistics in sysfs
 o fixes for concurrent aio append write submission
 o various logging fixes
 o detection of zeroed logs and invalid log sequence numbers on v5 filesystems
 o memory allocation failure message improvements
 o a bunch of xattr/ACL fixes
 o fdatasync optimisation
 o miscellaneous other fixes and cleanups
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1.4.12 (GNU/Linux)
 
 iQIcBAABAgAGBQJWQ7GzAAoJEK3oKUf0dfodJakP/3s3N5ngqRWa+PQwBQPdTO0r
 MBQppSKXWdT7YLhiFt1ZRlvXiMQOIZPNx0yBS9mzQghL9sTGvcPdxjbQnNh6LUnE
 fGC2Yzi/J8lM2M80ezk3JoFqdqAQ/U78ARA/VpZct4imrps/h+s2Klkx87xPJsiK
 /wY56FXFtoUS1ADYhL8qCeiAGOFpyIttiDNOVW3O2ZXn4iJUsa2nLCoiFwF/yFvU
 S85iUJWAsvVSW5WgfUufmodC4u+WOT+9isNRxEmBjpxYYAFrFb5+8DYY3Coh6z0V
 HqYPhpzBOG9gXbAue5v+ccsp2w60atXIFUQkR2HFBblvxsDMkvsgycJWJgDNmJiw
 RYDMBJ26epxUdTScUxijKiGfnnbZW5b+uzp6FvVsE4KPdP62ol7YNqxj8/FFIjQN
 JBl2ooiczOgvhCdvdWmWNEGWHccBcJ8UJ2RzJ0owVIIJZZYwjkZNzeSieWzYc7tr
 b9wBC4wnaYAK/V7aEGLJxMXVjkanrqAnaXf5ymICSFv8me/qAfZ2sLcY2P6SHuhO
 Fmkj6R5Thh1SYxk3thgGFZg7LGuxJW9cmypvFGpKhIvEaNGIM6ScdIwO7kCHYWv7
 3EkP42mmJLIYxKz/q2nHqt7R246YFraIRowLWptJUl32uyzO7SrdKbc8+o5WD4Wl
 2byjE9TjXOa1jGuPa3kN
 =zu+5
 -----END PGP SIGNATURE-----

Merge tag 'xfs-for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs

Pull xfs updates from Dave Chinner:
 "There is nothing really major here - the only significant addition is
  the per-mount operation statistics infrastructure.  Otherwises there's
  various ACL, xattr, DAX, AIO and logging fixes, and a smattering of
  small cleanups and fixes elsewhere.

  Summary:

   - per-mount operational statistics in sysfs
   - fixes for concurrent aio append write submission
   - various logging fixes
   - detection of zeroed logs and invalid log sequence numbers on v5 filesystems
   - memory allocation failure message improvements
   - a bunch of xattr/ACL fixes
   - fdatasync optimisation
   - miscellaneous other fixes and cleanups"

* tag 'xfs-for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (39 commits)
  xfs: give all workqueues rescuer threads
  xfs: fix log recovery op header validation assert
  xfs: Fix error path in xfs_get_acl
  xfs: optimise away log forces on timestamp updates for fdatasync
  xfs: don't leak uuid table on rmmod
  xfs: invalidate cached acl if set via ioctl
  xfs: Plug memory leak in xfs_attrmulti_attr_set
  xfs: Validate the length of on-disk ACLs
  xfs: invalidate cached acl if set directly via xattr
  xfs: xfs_filemap_pmd_fault treats read faults as write faults
  xfs: add ->pfn_mkwrite support for DAX
  xfs: DAX does not use IO completion callbacks
  xfs: Don't use unwritten extents for DAX
  xfs: introduce BMAPI_ZERO for allocating zeroed extents
  xfs: fix inode size update overflow in xfs_map_direct()
  xfs: clear PF_NOFREEZE for xfsaild kthread
  xfs: fix an error code in xfs_fs_fill_super()
  xfs: stats are no longer dependent on CONFIG_PROC_FS
  xfs: simplify /proc teardown & error handling
  xfs: per-filesystem stats counter implementation
  ...
2015-11-11 20:18:48 -08:00
Ross Zwisler
5c50002963 vfs: remove unused wrapper block_page_mkwrite()
The function currently called "__block_page_mkwrite()" used to be called
"block_page_mkwrite()" until a wrapper for this function was added by:

commit 24da4fab5a ("vfs: Create __block_page_mkwrite() helper passing
	error values back")

This wrapper, the current "block_page_mkwrite()", is currently unused.
__block_page_mkwrite() is used directly by ext4, nilfs2 and xfs.

Remove the unused wrapper, rename __block_page_mkwrite() back to
block_page_mkwrite() and update the comment above block_page_mkwrite().

Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.com>
Cc: Jan Kara <jack@suse.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-11-11 02:19:33 -05:00
Dave Chinner
4e14e49a91 Merge branch 'xfs-misc-fixes-for-4.4-3' into for-next 2015-11-10 10:20:48 +11:00
Chris Mason
7a29ac474a xfs: give all workqueues rescuer threads
We're consistently hitting deadlocks here with XFS on recent kernels.
After some digging through the crash files, it looks like everyone in
the system is waiting for XFS to reclaim memory.

Something like this:

PID: 2733434  TASK: ffff8808cd242800  CPU: 19  COMMAND: "java"
 #0 [ffff880019c53588] __schedule at ffffffff818c4df2
 #1 [ffff880019c535d8] schedule at ffffffff818c5517
 #2 [ffff880019c535f8] _xfs_log_force_lsn at ffffffff81316348
 #3 [ffff880019c53688] xfs_log_force_lsn at ffffffff813164fb
 #4 [ffff880019c536b8] xfs_iunpin_wait at ffffffff8130835e
 #5 [ffff880019c53728] xfs_reclaim_inode at ffffffff812fd453
 #6 [ffff880019c53778] xfs_reclaim_inodes_ag at ffffffff812fd8c7
 #7 [ffff880019c53928] xfs_reclaim_inodes_nr at ffffffff812fe433
 #8 [ffff880019c53958] xfs_fs_free_cached_objects at ffffffff8130d3b9
 #9 [ffff880019c53968] super_cache_scan at ffffffff811a6f73
#10 [ffff880019c539c8] shrink_slab at ffffffff811460e6
#11 [ffff880019c53aa8] shrink_zone at ffffffff8114a53f
#12 [ffff880019c53b48] do_try_to_free_pages at ffffffff8114a8ba
#13 [ffff880019c53be8] try_to_free_pages at ffffffff8114ad5a
#14 [ffff880019c53c78] __alloc_pages_nodemask at ffffffff8113e1b8
#15 [ffff880019c53d88] alloc_kmem_pages_node at ffffffff8113e671
#16 [ffff880019c53dd8] copy_process at ffffffff8104f781
#17 [ffff880019c53ec8] do_fork at ffffffff8105129c
#18 [ffff880019c53f38] sys_clone at ffffffff810515b6
#19 [ffff880019c53f48] stub_clone at ffffffff818c8e4d

xfs_log_force_lsn is waiting for logs to get cleaned, which is waiting
for IO, which is waiting for workers to complete the IO which is waiting
for worker threads that don't exist yet:

PID: 2752451  TASK: ffff880bd6bdda00  CPU: 37  COMMAND: "kworker/37:1"
 #0 [ffff8808d20abbb0] __schedule at ffffffff818c4df2
 #1 [ffff8808d20abc00] schedule at ffffffff818c5517
 #2 [ffff8808d20abc20] schedule_timeout at ffffffff818c7c6c
 #3 [ffff8808d20abcc0] wait_for_completion_killable at ffffffff818c6495
 #4 [ffff8808d20abd30] kthread_create_on_node at ffffffff8106ec82
 #5 [ffff8808d20abdf0] create_worker at ffffffff8106752f
 #6 [ffff8808d20abe40] worker_thread at ffffffff810699be
 #7 [ffff8808d20abec0] kthread at ffffffff8106ef59
 #8 [ffff8808d20abf50] ret_from_fork at ffffffff818c8ac8

I think we should be using WQ_MEM_RECLAIM to make sure this thread
pool makes progress when we're not able to allocate new workers.

[dchinner: make all workqueues WQ_MEM_RECLAIM]

Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-10 10:10:34 +11:00
Brian Foster
848ccfc8fe xfs: fix log recovery op header validation assert
Commit 89cebc84 ("xfs: validate transaction header length on log
recovery") added additional validation of the on-disk op header length
to protect from buffer overflow during log recovery. It accounts for the
fact that the transaction header can be split across multiple op
headers. It added an assert for when this occurs that verifies the
length of the second part of a split transaction header is less than a
full transaction header. In other words, it expects that the first op
header of a split transaction header includes at least some portion of
the transaction header.

This expectation is not always valid as a zero-length op header can
exist for the first op header of a split transaction header (see
xlog_recover_add_to_trans() for details). This means that the second op
header can have a valid, full length transaction header and thus the
full header is copied in xlog_recover_add_to_cont_trans(). Fix the
assert in xlog_recover_add_to_cont_trans() to handle this case correctly
and require that the op header length is less than or equal to a full
transaction header.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-10 10:10:33 +11:00
Andreas Gruenbacher
edfb8ebce2 xfs: Fix error path in xfs_get_acl
Error codes from xfs_attr_get other than -ENOATTR were not properly
reported.  Fix that.

In addition, the declaration of struct xfs_inode in xfs_acl.h isn't needed.

Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-10 10:09:45 +11:00
Mel Gorman
d0164adc89 mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts.  They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve".  __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".

Over time, callers had a requirement to not block when fallback options
were available.  Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.

This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative.  High priority users continue to use
__GFP_HIGH.  __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim.  __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim.  __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.

This patch then converts a number of sites

o __GFP_ATOMIC is used by callers that are high priority and have memory
  pools for those requests. GFP_ATOMIC uses this flag.

o Callers that have a limited mempool to guarantee forward progress clear
  __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
  into this category where kswapd will still be woken but atomic reserves
  are not used as there is a one-entry mempool to guarantee progress.

o Callers that are checking if they are non-blocking should use the
  helper gfpflags_allow_blocking() where possible. This is because
  checking for __GFP_WAIT as was done historically now can trigger false
  positives. Some exceptions like dm-crypt.c exist where the code intent
  is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
  flag manipulations.

o Callers that built their own GFP flags instead of starting with GFP_KERNEL
  and friends now also need to specify __GFP_KSWAPD_RECLAIM.

The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.

The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL.  They may
now wish to specify __GFP_KSWAPD_RECLAIM.  It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
Dave Chinner
264e89ad34 Merge branch 'xfs-dax-updates' into for-next 2015-11-03 13:28:41 +11:00
Dave Chinner
2da5c4b05a Merge branch 'xfs-misc-fixes-for-4.4-2' into for-next 2015-11-03 13:27:58 +11:00
Dave Chinner
fc0561cefc xfs: optimise away log forces on timestamp updates for fdatasync
xfs: timestamp updates cause excessive fdatasync log traffic

Sage Weil reported that a ceph test workload was writing to the
log on every fdatasync during an overwrite workload. Event tracing
showed that the only metadata modification being made was the
timestamp updates during the write(2) syscall, but fdatasync(2)
is supposed to ignore them. The key observation was that the
transactions in the log all looked like this:

INODE: #regs: 4   ino: 0x8b  flags: 0x45   dsize: 32

And contained a flags field of 0x45 or 0x85, and had data and
attribute forks following the inode core. This means that the
timestamp updates were triggering dirty relogging of previously
logged parts of the inode that hadn't yet been flushed back to
disk.

There are two parts to this problem. The first is that XFS relogs
dirty regions in subsequent transactions, so it carries around the
fields that have been dirtied since the last time the inode was
written back to disk, not since the last time the inode was forced
into the log.

The second part is that on v5 filesystems, the inode change count
update during inode dirtying also sets the XFS_ILOG_CORE flag, so
on v5 filesystems this makes a timestamp update dirty the entire
inode.

As a result when fdatasync is run, it looks at the dirty fields in
the inode, and sees more than just the timestamp flag, even though
the only metadata change since the last fdatasync was just the
timestamps. Hence we force the log on every subsequent fdatasync
even though it is not needed.

To fix this, add a new field to the inode log item that tracks
changes since the last time fsync/fdatasync forced the log to flush
the changes to the journal. This flag is updated when we dirty the
inode, but we do it before updating the change count so it does not
carry the "core dirty" flag from timestamp updates. The fields are
zeroed when the inode is marked clean (due to writeback/freeing) or
when an fsync/datasync forces the log. Hence if we only dirty the
timestamps on the inode between fsync/fdatasync calls, the fdatasync
will not trigger another log force.

Over 100 runs of the test program:

Ext4 baseline:
	runtime: 1.63s +/- 0.24s
	avg lat: 1.59ms +/- 0.24ms
	iops: ~2000

XFS, vanilla kernel:
        runtime: 2.45s +/- 0.18s
	avg lat: 2.39ms +/- 0.18ms
	log forces: ~400/s
	iops: ~1000

XFS, patched kernel:
        runtime: 1.49s +/- 0.26s
	avg lat: 1.46ms +/- 0.25ms
	log forces: ~30/s
	iops: ~1500

Reported-by: Sage Weil <sage@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 13:14:59 +11:00
Darrick J. Wong
af3b63822e xfs: don't leak uuid table on rmmod
Don't leak the UUID table when the module is unloaded.
(Found with kmemleak.)

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 13:06:34 +11:00
Andreas Gruenbacher
47e1bf6405 xfs: invalidate cached acl if set via ioctl
Setting or removing the "SGI_ACL_[FILE|DEFAULT]" attributes via the
XFS_IOC_ATTRMULTI_BY_HANDLE ioctl completely bypasses the POSIX ACL
infrastructure, like setting the "trusted.SGI_ACL_[FILE|DEFAULT]" xattrs
did until commit 6caa1056.  Similar to that commit, invalidate cached
acls when setting/removing them via the ioctl as well.

Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 12:56:17 +11:00
Andreas Gruenbacher
09cb22d2a5 xfs: Plug memory leak in xfs_attrmulti_attr_set
When setting attributes via XFS_IOC_ATTRMULTI_BY_HANDLE, the user-space
buffer is copied into a new kernel-space buffer via memdup_user; that
buffer then isn't freed.

Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 12:53:54 +11:00
Andreas Gruenbacher
86a21c7974 xfs: Validate the length of on-disk ACLs
In xfs_acl_from_disk, instead of trusting that xfs_acl.acl_cnt is correct,
make sure that the length of the attributes is correct as well.  Also, turn
the aclp parameter into a const pointer.

Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 12:41:59 +11:00
Brian Foster
67d8e04e34 xfs: invalidate cached acl if set directly via xattr
ACLs are stored as extended attributes of the inode to which they apply.
XFS converts the standard "system.posix_acl_[access|default]" attribute
names used to control ACLs to "trusted.SGI_ACL_[FILE|DEFAULT]" as stored
on-disk. These xattrs are directly exposed in on-disk format via
getxattr/setxattr, without any ACL aware code in the path to perform
validation, etc. This is partly historical and supports backup/restore
applications such as xfsdump to back up and restore the binary blob that
represents ACLs as-is.

Andreas reports that the ACLs observed via the getfacl interface is not
consistent when ACLs are set directly via the setxattr path. This occurs
because the ACLs are cached in-core against the inode and the xattr path
has no knowledge that the operation relates to ACLs.

Update the xattr set codepath to trap writes of the special XFS ACL
attributes and invalidate the associated cached ACL when this occurs.
This ensures that the correct ACLs are used on a subsequent operation
through the actual ACL interface.

Note that this does not update or add support for setting the ACL xattrs
directly beyond the restore use case that requires a correctly formatted
binary blob and to restore a consistent i_mode at the same time. It is
still possible for a root user to set an invalid or inconsistent (with
i_mode) ACL blob on-disk and potentially cause corruption.

[ With fixes from Andreas Gruenbacher. ]

Reported-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 12:40:59 +11:00
Dave Chinner
13ad4fe3e0 xfs: xfs_filemap_pmd_fault treats read faults as write faults
The code initially committed didn't have the same checks for write
faults as the dax_pmd_fault code and hence treats all faults as
write faults. We can get read faults through this path because they
is no pmd_mkwrite path for write faults similar to the normal page
fault path. Hence we need to ensure that we only do c/mtime updates
on write faults, and freeze protection is unnecessary for read
faults.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 12:37:02 +11:00
Dave Chinner
3af4928585 xfs: add ->pfn_mkwrite support for DAX
->pfn_mkwrite support is needed so that when a page with allocated
backing store takes a write fault we can check that the fault has
not raced with a truncate and is pointing to a region beyond the
current end of file.

This also allows us to update the timestamp on the inode, too, which
fixes a generic/080 failure.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 12:37:02 +11:00
Dave Chinner
01a155e6cf xfs: DAX does not use IO completion callbacks
For DAX, we are now doing block zeroing during allocation. This
means we no longer need a special DAX fault IO completion callback
to do unwritten extent conversion. Because mmap never extends the
file size (it SEGVs the process) we don't need a callback to update
the file size, either. Hence we can remove the completion callbacks
from the __dax_fault and __dax_mkwrite calls.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 12:37:02 +11:00
Dave Chinner
1ca191576f xfs: Don't use unwritten extents for DAX
DAX has a page fault serialisation problem with block allocation.
Because it allows concurrent page faults and does not have a page
lock to serialise faults to the same page, it can get two concurrent
faults to the page that race.

When two read faults race, this isn't a huge problem as the data
underlying the page is not changing and so "detect and drop" works
just fine. The issues are to do with write faults.

When two write faults occur, we serialise block allocation in
get_blocks() so only one faul will allocate the extent. It will,
however, be marked as an unwritten extent, and that is where the
problem lies - the DAX fault code cannot differentiate between a
block that was just allocated and a block that was preallocated and
needs zeroing. The result is that both write faults end up zeroing
the block and attempting to convert it back to written.

The problem is that the first fault can zero and convert before the
second fault starts zeroing, resulting in the zeroing for the second
fault overwriting the data that the first fault wrote with zeros.
The second fault then attempts to convert the unwritten extent,
which is then a no-op because it's already written. Data loss occurs
as a result of this race.

Because there is no sane locking construct in the page fault code
that we can use for serialisation across the page faults, we need to
ensure block allocation and zeroing occurs atomically in the
filesystem. This means we can still take concurrent page faults and
the only time they will serialise is in the filesystem
mapping/allocation callback. The page fault code will always see
written, initialised extents, so we will be able to remove the
unwritten extent handling from the DAX code when all filesystems are
converted.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 12:37:00 +11:00
Dave Chinner
3fbbbea34b xfs: introduce BMAPI_ZERO for allocating zeroed extents
To enable DAX to do atomic allocation of zeroed extents, we need to
drive the block zeroing deep into the allocator. Because
xfs_bmapi_write() can return merged extents on allocation that were
only partially allocated (i.e. requested range spans allocated and
hole regions, allocation into the hole was contiguous), we cannot
zero the extent returned from xfs_bmapi_write() as that can
overwrite existing data with zeros.

Hence we have to drive the extent zeroing into the allocation code,
prior to where we merge the extents into the BMBT and return the
resultant map. This means we need to propagate this need down to
the xfs_alloc_vextent() and issue the block zeroing at this point.

While this functionality is being introduced for DAX, there is no
reason why it is specific to DAX - we can per-zero blocks during the
allocation transaction on any type of device. It's just slow (and
usually slower than unwritten allocation and conversion) on
traditional block devices so doesn't tend to get used. We can,
however, hook hardware zeroing optimisations via sb_issue_zeroout()
to this operation, so it may be useful in future and hence the
"allocate zeroed blocks" API needs to be implementation neutral.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 12:27:22 +11:00
Dave Chinner
3e12dbbdbd xfs: fix inode size update overflow in xfs_map_direct()
Both direct IO and DAX pass an offset and count into get_blocks that
will overflow a s64 variable when an IO goes into the last supported
block in a file (i.e. at offset 2^63 - 1FSB bytes). This can be seen
from the tracing:

xfs_get_blocks_alloc: [...] offset 0x7ffffffffffff000 count 4096
xfs_gbmap_direct:     [...] offset 0x7ffffffffffff000 count 4096
xfs_gbmap_direct_none:[...] offset 0x7ffffffffffff000 count 4096

0x7ffffffffffff000 + 4096 = 0x8000000000000000, and hence that
overflows the s64 offset and we fail to detect the need for a
filesize update and an ioend is not allocated.

This is *mostly* avoided for direct IO because such extending IOs
occur with full block allocation, and so the "IS_UNWRITTEN()" check
still evaluates as true and we get an ioend that way. However, doing
single sector extending IOs to this last block will expose the fact
that file size updates will not occur after the first allocating
direct IO as the overflow will then be exposed.

There is one further complexity: the DAX page fault path also
exposes the same issue in block allocation. However, page faults
cannot extend the file size, so in this case we want to allocate the
block but do not want to allocate an ioend to enable file size
update at IO completion. Hence we now need to distinguish between
the direct IO patch allocation and dax fault path allocation to
avoid leaking ioend structures.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 12:27:22 +11:00
Jiri Kosina
24ba16bb3d xfs: clear PF_NOFREEZE for xfsaild kthread
Since xfsaild has been converted to kthread in 0030807c, it calls
try_to_freeze() during every AIL push iteration. It however doesn't set
itself as freezable, and therefore this try_to_freeze() will never do
anything.

Before (hopefully eventually) kthread freezing gets converted to fileystem
freezing, we'd rather mark xfsaild freezable (as it can generate I/O
during suspend).

Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-02 13:46:58 +11:00
Dave Chinner
fcd8a399a9 Merge branch 'xfs-stats-fixes' into for-next 2015-10-19 09:03:30 +11:00
Dan Carpenter
f9d460b341 xfs: fix an error code in xfs_fs_fill_super()
If alloc_percpu() fails, we accidentally return PTR_ERR(NULL), which
means success, but we intended to return -ENOMEM.

Fixes: 225e463558 ('xfs: per-filesystem stats in sysfs')
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-10-19 08:42:47 +11:00
Dave Chinner
985ef4dcf9 xfs: stats are no longer dependent on CONFIG_PROC_FS
So we need to fix the makefile to understand this, otherwise build
errors with CONFIG_PROC_FS=n occur.

Reported-and-tested-by: Jim Davis <jim.epost@gmail.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-10-19 08:42:46 +11:00
Dave Chinner
1e2103cbf4 Merge branch 'xfs-misc-fixes-for-4.4-1' into for-next 2015-10-12 18:38:25 +11:00
Dave Chinner
8a56d7c305 Merge branch 'xfs-io-fixes' into for-next 2015-10-12 18:38:11 +11:00
Dave Chinner
316433beda Merge branch 'xfs-logging-fixes' into for-next 2015-10-12 18:37:58 +11:00