cleaner_kthread() kthread calls try_to_freeze() at the beginning of every
cleanup attempt. This operation can't ever succeed though, as the kthread
hasn't marked itself as freezable.
Before (hopefully eventually) kthread freezing gets converted to fileystem
freezing, we'd rather mark cleaner_kthread() freezable (as my
understanding is that it can generate filesystem I/O during suspend).
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Ancient qgroup code call memcpy() on a extent buffer and use it for leaf
iteration.
As extent buffer contains lock, pointers to pages, it's never sane to do
such copy.
The following bug may be caused by this insane operation:
[92098.841309] general protection fault: 0000 [#1] SMP
[92098.841338] Modules linked in: ...
[92098.841814] CPU: 1 PID: 24655 Comm: kworker/u4:12 Not tainted
4.3.0-rc1 #1
[92098.841868] Workqueue: btrfs-qgroup-rescan btrfs_qgroup_rescan_helper
[btrfs]
[92098.842261] Call Trace:
[92098.842277] [<ffffffffc035a5d8>] ? read_extent_buffer+0xb8/0x110
[btrfs]
[92098.842304] [<ffffffffc0396d00>] ? btrfs_find_all_roots+0x60/0x70
[btrfs]
[92098.842329] [<ffffffffc039af3d>]
btrfs_qgroup_rescan_worker+0x28d/0x5a0 [btrfs]
Where btrfs_qgroup_rescan_worker+0x28d is btrfs_disk_key_to_cpu(),
called in reading key from the copied extent_buffer.
This patch will use btrfs_clone_extent_buffer() to a better copy of
extent buffer to deal such case.
Reported-by: Stephane Lesimple <stephane_btrfs@lesimple.fr>
Suggested-by: Filipe Manana <fdmanana@kernel.org>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Enable the extended 'limit' syntax (a range), the new 'stripes' and
extended 'usage' syntax (a range) filters in the filters mask. The patch
comes separate and not within the series that introduced the new filters
because the patch adding the mask was merged in a late rc. The
integration branch was based on an older rc and could not merge the
patch due to the missing changes.
Prerequisities:
* btrfs: check unsupported filters in balance arguments
* btrfs: extend balance filter limit to take minimum and maximum
* btrfs: add balance filter for stripes
* btrfs: extend balance filter usage to take minimum and maximum
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Similar to the 'limit' filter, we can enhance the 'usage' filter to
accept a range. The change is backward compatible, the range is applied
only in connection with the BTRFS_BALANCE_ARGS_USAGE_RANGE flag.
We don't have a usecase yet, the current syntax has been sufficient. The
enhancement should provide parity with other range-like filters.
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Balance block groups which have the given number of stripes, defined by
a range min..max. This is useful to selectively rebalance only chunks
that do not span enough devices, applies to RAID0/10/5/6.
Signed-off-by: Gabríel Arthúr Pétursson <gabriel@system.is>
[ renamed bargs members, added to the UAPI, wrote the changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The 'limit' filter is underdesigned, it should have been a range for
[min,max], with some relaxed semantics when one of the bounds is
missing. Besides that, using a full u64 for a single value is a waste of
bytes.
Let's fix both by extending the use of the u64 bytes for the [min,max]
range. This can be done in a backward compatible way, the range will be
interpreted only if the appropriate flag is set
(BTRFS_BALANCE_ARGS_LIMIT_RANGE).
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The code for btrfs inode-resolve has never worked properly for
files with enough hard links to trigger extrefs. It was trying to
get the leaf out of a path after freeing the path:
btrfs_release_path(path);
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, slot);
The fix here is to use the extent buffer we cloned just a little higher
up to avoid deadlocks caused by using the leaf in the path.
Signed-off-by: Chris Mason <clm@fb.com>
cc: stable@vger.kernel.org # v3.7+
cc: Mark Fasheh <mfasheh@suse.de>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: Chris Mason <clm@fb.com>
We don't verify that all the balance filter arguments supplemented by
the flags are actually known to the kernel. Thus we let it silently pass
and do nothing.
At the moment this means only the 'limit' filter, but we're going to add
a few more soon so it's better to have that fixed. Also in older stable
kernels so that it works with newer userspace tools.
Cc: stable@vger.kernel.org # 3.16+
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
On NOMMU archs, the FDPIC ELF loader sets up the usable brk range to
overlap with all but the last PAGE_SIZE bytes of the stack. This leads
to catastrophic memory reuse/corruption if brk is used. Fix by setting
the brk area to zero size to disable its use.
Signed-off-by: Rich Felker <dalias@libc.org>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
In the kernel 4.2 merge window we had a big changes to the implementation
of delayed references and qgroups which made the no_quota field of delayed
references not used anymore. More specifically the no_quota field is not
used anymore as of:
commit 0ed4792af0 ("btrfs: qgroup: Switch to new extent-oriented qgroup mechanism.")
Leaving the no_quota field actually prevents delayed references from
getting merged, which in turn cause the following BUG_ON(), at
fs/btrfs/extent-tree.c, to be hit when qgroups are enabled:
static int run_delayed_tree_ref(...)
{
(...)
BUG_ON(node->ref_mod != 1);
(...)
}
This happens on a scenario like the following:
1) Ref1 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added.
2) Ref2 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added.
It's not merged with Ref1 because Ref1->no_quota != Ref2->no_quota.
3) Ref3 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added.
It's not merged with the reference at the tail of the list of refs
for bytenr X because the reference at the tail, Ref2 is incompatible
due to Ref2->no_quota != Ref3->no_quota.
4) Ref4 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added.
It's not merged with the reference at the tail of the list of refs
for bytenr X because the reference at the tail, Ref3 is incompatible
due to Ref3->no_quota != Ref4->no_quota.
5) We run delayed references, trigger merging of delayed references,
through __btrfs_run_delayed_refs() -> btrfs_merge_delayed_refs().
6) Ref1 and Ref3 are merged as Ref1->no_quota = Ref3->no_quota and
all other conditions are satisfied too. So Ref1 gets a ref_mod
value of 2.
7) Ref2 and Ref4 are merged as Ref2->no_quota = Ref4->no_quota and
all other conditions are satisfied too. So Ref2 gets a ref_mod
value of 2.
8) Ref1 and Ref2 aren't merged, because they have different values
for their no_quota field.
9) Delayed reference Ref1 is picked for running (select_delayed_ref()
always prefers references with an action == BTRFS_ADD_DELAYED_REF).
So run_delayed_tree_ref() is called for Ref1 which triggers the
BUG_ON because Ref1->red_mod != 1 (equals 2).
So fix this by removing the no_quota field, as it's not used anymore as
of commit 0ed4792af0 ("btrfs: qgroup: Switch to new extent-oriented
qgroup mechanism.").
The use of no_quota was also buggy in at least two places:
1) At delayed-refs.c:btrfs_add_delayed_tree_ref() - we were setting
no_quota to 0 instead of 1 when the following condition was true:
is_fstree(ref_root) || !fs_info->quota_enabled
2) At extent-tree.c:__btrfs_inc_extent_ref() - we were attempting to
reset a node's no_quota when the condition "!is_fstree(root_objectid)
|| !root->fs_info->quota_enabled" was true but we did it only in
an unused local stack variable, that is, we never reset the no_quota
value in the node itself.
This fixes the remainder of problems several people have been having when
running delayed references, mostly while a balance is running in parallel,
on a 4.2+ kernel.
Very special thanks to Stéphane Lesimple for helping debugging this issue
and testing this fix on his multi terabyte filesystem (which took more
than one day to balance alone, plus fsck, etc).
Also, this fixes deadlock issue when using the clone ioctl with qgroups
enabled, as reported by Elias Probst in the mailing list. The deadlock
happens because after calling btrfs_insert_empty_item we have our path
holding a write lock on a leaf of the fs/subvol tree and then before
releasing the path we called check_ref() which did backref walking, when
qgroups are enabled, and tried to read lock the same leaf. The trace for
this case is the following:
INFO: task systemd-nspawn:6095 blocked for more than 120 seconds.
(...)
Call Trace:
[<ffffffff86999201>] schedule+0x74/0x83
[<ffffffff863ef64c>] btrfs_tree_read_lock+0xc0/0xea
[<ffffffff86137ed7>] ? wait_woken+0x74/0x74
[<ffffffff8639f0a7>] btrfs_search_old_slot+0x51a/0x810
[<ffffffff863a129b>] btrfs_next_old_leaf+0xdf/0x3ce
[<ffffffff86413a00>] ? ulist_add_merge+0x1b/0x127
[<ffffffff86411688>] __resolve_indirect_refs+0x62a/0x667
[<ffffffff863ef546>] ? btrfs_clear_lock_blocking_rw+0x78/0xbe
[<ffffffff864122d3>] find_parent_nodes+0xaf3/0xfc6
[<ffffffff86412838>] __btrfs_find_all_roots+0x92/0xf0
[<ffffffff864128f2>] btrfs_find_all_roots+0x45/0x65
[<ffffffff8639a75b>] ? btrfs_get_tree_mod_seq+0x2b/0x88
[<ffffffff863e852e>] check_ref+0x64/0xc4
[<ffffffff863e9e01>] btrfs_clone+0x66e/0xb5d
[<ffffffff863ea77f>] btrfs_ioctl_clone+0x48f/0x5bb
[<ffffffff86048a68>] ? native_sched_clock+0x28/0x77
[<ffffffff863ed9b0>] btrfs_ioctl+0xabc/0x25cb
(...)
The problem goes away by eleminating check_ref(), which no longer is
needed as its purpose was to get a value for the no_quota field of
a delayed reference (this patch removes the no_quota field as mentioned
earlier).
Reported-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Tested-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Reported-by: Elias Probst <mail@eliasprobst.eu>
Reported-by: Peter Becker <floyd.net@gmail.com>
Reported-by: Malte Schröder <malte@tnxip.de>
Reported-by: Derek Dongray <derek@valedon.co.uk>
Reported-by: Erkki Seppala <flux-btrfs@inside.org>
Cc: stable@vger.kernel.org # 4.2+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
In the kernel 4.2 merge window we had a refactoring/rework of the delayed
references implementation in order to fix certain problems with qgroups.
However that rework introduced one more regression that leads to the
following trace when running delayed references for metadata:
[35908.064664] kernel BUG at fs/btrfs/extent-tree.c:1832!
[35908.065201] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
[35908.065201] Modules linked in: dm_flakey dm_mod btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc psmouse i2
[35908.065201] CPU: 14 PID: 15014 Comm: kworker/u32:9 Tainted: G W 4.3.0-rc5-btrfs-next-17+ #1
[35908.065201] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014
[35908.065201] Workqueue: btrfs-extent-refs btrfs_extent_refs_helper [btrfs]
[35908.065201] task: ffff880114b7d780 ti: ffff88010c4c8000 task.ti: ffff88010c4c8000
[35908.065201] RIP: 0010:[<ffffffffa04928b5>] [<ffffffffa04928b5>] insert_inline_extent_backref+0x52/0xb1 [btrfs]
[35908.065201] RSP: 0018:ffff88010c4cbb08 EFLAGS: 00010293
[35908.065201] RAX: 0000000000000000 RBX: ffff88008a661000 RCX: 0000000000000000
[35908.065201] RDX: ffffffffa04dd58f RSI: 0000000000000001 RDI: 0000000000000000
[35908.065201] RBP: ffff88010c4cbb40 R08: 0000000000001000 R09: ffff88010c4cb9f8
[35908.065201] R10: 0000000000000000 R11: 000000000000002c R12: 0000000000000000
[35908.065201] R13: ffff88020a74c578 R14: 0000000000000000 R15: 0000000000000000
[35908.065201] FS: 0000000000000000(0000) GS:ffff88023edc0000(0000) knlGS:0000000000000000
[35908.065201] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[35908.065201] CR2: 00000000015e8708 CR3: 0000000102185000 CR4: 00000000000006e0
[35908.065201] Stack:
[35908.065201] ffff88010c4cbb18 0000000000000f37 ffff88020a74c578 ffff88015a408000
[35908.065201] ffff880154a44000 0000000000000000 0000000000000005 ffff88010c4cbbd8
[35908.065201] ffffffffa0492b9a 0000000000000005 0000000000000000 0000000000000000
[35908.065201] Call Trace:
[35908.065201] [<ffffffffa0492b9a>] __btrfs_inc_extent_ref+0x8b/0x208 [btrfs]
[35908.065201] [<ffffffffa0497117>] ? __btrfs_run_delayed_refs+0x4d4/0xd33 [btrfs]
[35908.065201] [<ffffffffa049773d>] __btrfs_run_delayed_refs+0xafa/0xd33 [btrfs]
[35908.065201] [<ffffffffa04a976a>] ? join_transaction.isra.10+0x25/0x41f [btrfs]
[35908.065201] [<ffffffffa04a97ed>] ? join_transaction.isra.10+0xa8/0x41f [btrfs]
[35908.065201] [<ffffffffa049914d>] btrfs_run_delayed_refs+0x75/0x1dd [btrfs]
[35908.065201] [<ffffffffa04992f1>] delayed_ref_async_start+0x3c/0x7b [btrfs]
[35908.065201] [<ffffffffa04d4b4f>] normal_work_helper+0x14c/0x32a [btrfs]
[35908.065201] [<ffffffffa04d4e93>] btrfs_extent_refs_helper+0x12/0x14 [btrfs]
[35908.065201] [<ffffffff81063b23>] process_one_work+0x24a/0x4ac
[35908.065201] [<ffffffff81064285>] worker_thread+0x206/0x2c2
[35908.065201] [<ffffffff8106407f>] ? rescuer_thread+0x2cb/0x2cb
[35908.065201] [<ffffffff8106407f>] ? rescuer_thread+0x2cb/0x2cb
[35908.065201] [<ffffffff8106904d>] kthread+0xef/0xf7
[35908.065201] [<ffffffff81068f5e>] ? kthread_parkme+0x24/0x24
[35908.065201] [<ffffffff8147d10f>] ret_from_fork+0x3f/0x70
[35908.065201] [<ffffffff81068f5e>] ? kthread_parkme+0x24/0x24
[35908.065201] Code: 6a 01 41 56 41 54 ff 75 10 41 51 4d 89 c1 49 89 c8 48 8d 4d d0 e8 f6 f1 ff ff 48 83 c4 28 85 c0 75 2c 49 81 fc ff 00 00 00 77 02 <0f> 0b 4c 8b 45 30 8b 4d 28 45 31
[35908.065201] RIP [<ffffffffa04928b5>] insert_inline_extent_backref+0x52/0xb1 [btrfs]
[35908.065201] RSP <ffff88010c4cbb08>
[35908.310885] ---[ end trace fe4299baf0666457 ]---
This happens because the new delayed references code no longer merges
delayed references that have different sequence values. The following
steps are an example sequence leading to this issue:
1) Transaction N starts, fs_info->tree_mod_seq has value 0;
2) Extent buffer (btree node) A is allocated, delayed reference Ref1 for
bytenr A is created, with a value of 1 and a seq value of 0;
3) fs_info->tree_mod_seq is incremented to 1;
4) Extent buffer A is deleted through btrfs_del_items(), which calls
btrfs_del_leaf(), which in turn calls btrfs_free_tree_block(). The
later returns the metadata extent associated to extent buffer A to
the free space cache (the range is not pinned), because the extent
buffer was created in the current transaction (N) and writeback never
happened for the extent buffer (flag BTRFS_HEADER_FLAG_WRITTEN not set
in the extent buffer).
This creates the delayed reference Ref2 for bytenr A, with a value
of -1 and a seq value of 1;
5) Delayed reference Ref2 is not merged with Ref1 when we create it,
because they have different sequence numbers (decided at
add_delayed_ref_tail_merge());
6) fs_info->tree_mod_seq is incremented to 2;
7) Some task attempts to allocate a new extent buffer (done at
extent-tree.c:find_free_extent()), but due to heavy fragmentation
and running low on metadata space the clustered allocation fails
and we fall back to unclustered allocation, which finds the
extent at offset A, so a new extent buffer at offset A is allocated.
This creates delayed reference Ref3 for bytenr A, with a value of 1
and a seq value of 2;
8) Ref3 is not merged neither with Ref2 nor Ref1, again because they
all have different seq values;
9) We start running the delayed references (__btrfs_run_delayed_refs());
10) The delayed Ref1 is the first one being applied, which ends up
creating an inline extent backref in the extent tree;
10) Next the delayed reference Ref3 is selected for execution, and not
Ref2, because select_delayed_ref() always gives a preference for
positive references (that have an action of BTRFS_ADD_DELAYED_REF);
11) When running Ref3 we encounter alreay the inline extent backref
in the extent tree at insert_inline_extent_backref(), which makes
us hit the following BUG_ON:
BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
This is always true because owner corresponds to the level of the
extent buffer/btree node in the btree.
For the scenario described above we hit the BUG_ON because we never merge
references that have different seq values.
We used to do the merging before the 4.2 kernel, more specifically, before
the commmits:
c6fc245499 ("btrfs: delayed-ref: Use list to replace the ref_root in ref_head.")
c43d160fcd ("btrfs: delayed-ref: Cleanup the unneeded functions.")
This issue became more exposed after the following change that was added
to 4.2 as well:
cffc3374e5 ("Btrfs: fix order by which delayed references are run")
Which in turn fixed another regression by the two commits previously
mentioned.
So fix this by bringing back the delayed reference merge code, with the
proper adaptations so that it operates against the new data structure
(linked list vs old red black tree implementation).
This issue was hit running fstest btrfs/063 in a loop. Several people have
reported this issue in the mailing list when running on kernels 4.2+.
Very special thanks to Stéphane Lesimple for helping debugging this issue
and testing this fix on his multi terabyte filesystem (which took more
than one day to balance alone, plus fsck, etc).
Fixes: c6fc245499 ("btrfs: delayed-ref: Use list to replace the ref_root in ref_head.")
Reported-by: Peter Becker <floyd.net@gmail.com>
Reported-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Tested-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Reported-by: Malte Schröder <malte@tnxip.de>
Reported-by: Derek Dongray <derek@valedon.co.uk>
Reported-by: Erkki Seppala <flux-btrfs@inside.org>
Cc: stable@vger.kernel.org # 4.2+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Pull block layer fixes from Jens Axboe:
"A final set of fixes for 4.3.
It is (again) bigger than I would have liked, but it's all been
through the testing mill and has been carefully reviewed by multiple
parties. Each fix is either a regression fix for this cycle, or is
marked stable. You can scold me at KS. The pull request contains:
- Three simple fixes for NVMe, fixing regressions since 4.3. From
Arnd, Christoph, and Keith.
- A single xen-blkfront fix from Cathy, fixing a NULL dereference if
an error is returned through the staste change callback.
- Fixup for some bad/sloppy code in nbd that got introduced earlier
in this cycle. From Markus Pargmann.
- A blk-mq tagset use-after-free fix from Junichi.
- A backing device lifetime fix from Tejun, fixing a crash.
- And finally, a set of regression/stable fixes for cgroup writeback
from Tejun"
* 'for-linus' of git://git.kernel.dk/linux-block:
writeback: remove broken rbtree_postorder_for_each_entry_safe() usage in cgwb_bdi_destroy()
NVMe: Fix memory leak on retried commands
block: don't release bdi while request_queue has live references
nvme: use an integer value to Linux errno values
blk-mq: fix use-after-free in blk_mq_free_tag_set()
nvme: fix 32-bit build warning
writeback: fix incorrect calculation of available memory for memcg domains
writeback: memcg dirty_throttle_control should be initialized with wb->memcg_completions
writeback: bdi_writeback iteration must not skip dying ones
writeback: fix bdi_writeback iteration in wakeup_dirtytime_writeback()
writeback: laptop_mode_timer_fn() needs rcu_read_lock() around bdi_writeback iteration
nbd: Add locking for tasks
xen-blkfront: check for null drvdata in blkback_changed (XenbusStateClosing)
Pull btrfs fixes from Chris Mason:
"I have two more small fixes this week:
Qu's fix avoids unneeded COW during fallocate, and Christian found a
memory leak in the error handling of an earlier fix"
* 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: fix possible leak in btrfs_ioctl_balance()
btrfs: Avoid truncate tailing page if fallocate range doesn't exceed inode size
The ioctl is named I2C_RDWR for "I2C read/write". But references to it
were misspelled "rdrw". Fix them.
Signed-off-by: Jean Delvare <jdelvare@suse.de>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
Bruce points out that the increment of the seqid in stateids is not
serialized in any way, so it's possible for racing calls to bump it
twice and end up sending the same stateid. While we don't have any
reports of this problem it _is_ theoretically possible, and could lead
to spurious state recovery by the client.
In the current code, update_stateid is always followed by a memcpy of
that stateid, so we can combine the two operations. For better
atomicity, we add a spinlock to the nfs4_stid and hold that when bumping
the seqid and copying the stateid.
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
In order to allow the client to make a sane determination of what
happened with racing LAYOUTGET/LAYOUTRETURN/CB_LAYOUTRECALL calls, we
must ensure that the seqids return accurately represent the order of
operations. The simplest way to do that is to ensure that operations on
a single stateid are serialized.
This patch adds a mutex to the layout stateid, and locks it when
checking the layout stateid's seqid. The mutex is held over the entire
operation and released after the seqid is bumped.
Note that in the case of CB_LAYOUTRECALL we must move the increment of
the seqid and setting into a new cb "prepare" operation. The lease
infrastructure will call the lm_break callback with a spinlock held, so
and we can't take the mutex in that codepath.
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
At least in the v4.0 case openowners can hang around for a while after
last close, but they shouldn't really block (for example), a new mount
with a different principal.
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
In bakeathon testing Solaris client was getting CLID_INUSE error when
doing a krb5 mount soon after an auth_sys mount, or vice versa.
That's not really necessary since in this case the old client doesn't
have any state any more:
http://tools.ietf.org/html/rfc7530#page-103
"when the server gets a SETCLIENTID for a client ID that
currently has no state, or it has state but the lease has
expired, rather than returning NFS4ERR_CLID_INUSE, the server
MUST allow the SETCLIENTID and confirm the new client ID if
followed by the appropriate SETCLIENTID_CONFIRM."
This doesn't fix the problem completely since our client_has_state()
check counts openowners left around to handle close replays, which we
should probably just remove in this case.
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Any file which includes trace.h will need to include state.h, even if
they aren't using any state tracepoints. Ensure that we include any
headers that might be needed in trace.h instead of relying on the
*.c files to have the right ones.
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Currently we have reference-counted per-net NSM RPC client
which created on the first monitor request and destroyed
after the last unmonitor request. It's needed because
RPC client need to know 'utsname()->nodename', but utsname()
might be NULL when nsm_unmonitor() called.
So instead of holding the rpc client we could just save nodename
in struct nlm_host and pass it to the rpc_create().
Thus ther is no need in keeping rpc client until last
unmonitor request. We could create separate RPC clients
for each monitor/unmonitor requests.
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
dlm_lockres_put will call dlm_lockres_release if it is the last
reference, and then it may call dlm_print_one_lock_resource and
take lockres spinlock.
So unlock lockres spinlock before dlm_lockres_put to avoid deadlock.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All callers use locks_lock_inode_wait() instead.
Signed-off-by: Benjamin Coddington <bcodding@redhat.com>
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Instead of having users check for FL_POSIX or FL_FLOCK to call the correct
locks API function, use the check within locks_lock_inode_wait(). This
allows for some later cleanup.
Signed-off-by: Benjamin Coddington <bcodding@redhat.com>
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Users of the locks API commonly call either posix_lock_file_wait() or
flock_lock_file_wait() depending upon the lock type. Add a new function
locks_lock_inode_wait() which will check and call the correct function for
the type of lock passed in.
Signed-off-by: Benjamin Coddington <bcodding@redhat.com>
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
This patch changes return type of pstore_is_mounted from int to bool.
Signed-off-by: Geliang Tang <geliangtang@163.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
In f2fs_shrink_extent_tree we should stop shrink flow if we have already
shrunk enough nodes in extent cache.
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Now, in ->symlink of f2fs, we kept the fixed invoking order between
f2fs_add_link and page_symlink since we should init node info firstly
in f2fs_add_link, then such node info can be used in page_symlink.
But we didn't fix to release meta info which was done before page_symlink
in our error path, so this will leave us corrupt symlink entry in its
parent's dentry page. Fix this issue by adding f2fs_unlink in the error
path for removing such linking.
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Atomic write page can be GCed, after committing this kind of page, we should
clear the GCed flag for it.
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
pstore doesn't support unregistering yet. It was marked as TODO.
This patch adds some code to fix it:
1) Add functions to unregister kmsg/console/ftrace/pmsg.
2) Add a function to free compression buffer.
3) Unmap the memory and free it.
4) Add a function to unregister pstore filesystem.
Signed-off-by: Geliang Tang <geliangtang@163.com>
Acked-by: Kees Cook <keescook@chromium.org>
[Removed __exit annotation from ramoops_remove(). Reported by Arnd Bergmann]
Signed-off-by: Tony Luck <tony.luck@intel.com>
If we got failure during commit_atomic_write, abort_volatile_write will be
called, but will not drop the inmemory pages due to no FI_ATOMIC_FILE.
Actually, there is no reason to check the flag in abort_volatile_write.
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
When we make ctl->unit allocations from a bitmap there is no point in searching
for the next 0 in the bitmap. If we've found a bit we're done and can just exit
the loop. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We can waste a lot of time searching through bitmaps when we are heavily
fragmented trying to find large contiguous areas that don't exist in the bitmap.
So keep track of the max extent size when we do a full search of a bitmap so
that next time around we can just skip the expensive searching if our max size
is less than what we are looking for. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we are extremely fragmented then we won't be able to create a free_cluster.
So if this happens set last_ptr->fragmented so that all future allcations will
give up trying to create a cluster. When we unpin extents we will unset
->fragmented if we free up a sufficient amount of space in a block group.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We try really really hard to make allocations, but sometimes it is just not
going to happen, especially when free space is extremely fragmented. So add a
few short cuts through the looping states. For example if we couldn't allocate
a chunk, just go straight to the NO_EMPTY_SIZE loop. If there are no uncached
block groups and we've done a full search, go straight to the ALLOC_CHUNK stage.
And finally if we already have empty_size and empty_cluster set to 0 go ahead
and return -ENOSPC. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we hit ENOSPC when setting up a space cache don't bother setting up any of
the other space cache's in this transaction, it'll just induce unnecessary
latency. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we are heavily fragmented we can induce a lot of latency trying to make an
allocation happen that is simply not going to happen. Thankfully we keep track
of our max_extent_size when going through the allocator, so if we get to the
point where we are exiting find_free_extent with ENOSPC then set our
space_info->max_extent_size so we can keep future allocations from having to pay
this cost. We reset the max_extent_size whenever we release pinned bytes back
into this space info so we can redo all the work. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The space cache needs to have contiguous allocations, and the allocator tries to
make allocations by reducing the amount of bytes requested and re-searching.
But this just makes us waste time when we are very fragmented, so if we can't
find our space just exit, don't bother trying to search again. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
I want to set some per transaction flags, so instead of adding yet another int
lets just convert the current two int indicators to flags and add a flags field
for future use. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we are heavily fragmented we will continually try to prealloc the largest
extent size we can every time we call btrfs_reserve_extent. This can be very
expensive when we are heavily fragmented, burning lots of CPU cycles and loops
through the allocator. So instead notice when we get a smaller chunk from the
allocator than what we specified and use this as the new maximum size we try to
allocate. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
In tracking down these weird bitmap problems it was helpful to artificially
create an extremely fragmented file system. These mount options let us either
fragment data or metadata or both. With these options I could reproduce all
sorts of weird latencies and hangs that occur under extreme fragmentation and
get them fixed. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
With my changes to allow us to find old roots when resolving indirect refs I
introduced a regression to the sanity tests. Since we don't really care to go
down into the fs roots we just need to have the old behavior of returning ENOENT
for dummy roots for the sanity tests. In the future if we want to get fancy we
can populate the test fs trees with the references as well. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We have a mechanism to make sure we don't lose updates for ordered extents that
were logged in the transaction that is currently running. We add the ordered
extent to a transaction list and then the transaction waits on all the ordered
extents in that list. However are substantially large file systems this list
can be extremely large, and can give us soft lockups, since the ordered extents
don't remove themselves from the list when they do complete.
To fix this we simply add a counter to the transaction that is incremented any
time we have a logged extent that needs to be completed in the current
transaction. Then when the ordered extent finally completes it decrements the
per transaction counter and wakes up the transaction if we are the last ones.
This will eliminate the softlockup. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add check at btrfs_destroy_inode() time to detect qgroup reserved space
leak.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
In clear_bit_hook, qgroup reserved data is already handled quite well,
either released by finish_ordered_io or invalidatepage.
So calling btrfs_qgroup_free_data() here is completely meaningless, and
since btrfs_qgroup_free_data() will lock io_tree, so it can't be called
with io_tree lock hold.
This patch will add a new function
btrfs_free_reserved_data_space_noquota() for clear_bit_hook() to cease
the lockdep warning.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Now fallocate will do accurate qgroup reserve space check, unlike old
method, which will always reserve the whole length of the range.
With this patch, fallocate will:
1) Iterate the desired range and mark in data rsv map
Only range which is going to be allocated will be recorded in data
rsv map and reserve the space.
For already allocated range (normal/prealloc extent) they will be
skipped.
Also, record the marked range into a new list for later use.
2) If 1) succeeded, do real file extent allocate.
And at file extent allocation time, corresponding range will be
removed from the range in data rsv map.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Now each qgroup reserve for data will has its ftrace event for better
debugging.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
For btrfs_invalidatepage() and its variant evict_inode_truncate_page(),
there will be pages don't reach disk.
In that case, their reserved space won't be release nor freed by
finish_ordered_io() nor delayed_ref handler.
So we must free their qgroup reserved space, or we will leaking reserved
space again.
So this will patch will call btrfs_qgroup_free_data() for
invalidatepage() and its variant evict_inode_truncate_page().
And due to the nature of new btrfs_qgroup_reserve/free_data() reserved
space will only be reserved or freed once, so for pages which are
already flushed to disk, their reserved space will be released and freed
by delayed_ref handler.
Double free won't be a problem.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
For NOCOW and inline case, there will be no delayed_ref created for
them, so we should free their reserved data space at proper
time(finish_ordered_io for NOCOW and cow_file_inline for inline).
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>