[ Upstream commit 73ac105be390c1de42a2f21643c9778a5e002930 ]
back-end device sdm has already attached a cache_set with ID
f67ebe1f-f8bc-4d73-bfe5-9dc88607f119, then try to attach with
another cache set, and it returns with an error:
[root]# cd /sys/block/sdm/bcache
[root]# echo 5ccd0a63-148e-48b8-afa2-aca9cbd6279f > attach
-bash: echo: write error: Invalid argument
After that, execute a command to modify the label of bcache
device:
[root]# echo data_disk1 > label
Then we reboot the system, when the system power on, the back-end
device can not attach to cache_set, a messages show in the log:
Feb 5 12:05:52 ceph152 kernel: [922385.508498] bcache:
bch_cached_dev_attach() couldn't find uuid for sdm in set
In sysfs_attach(), dc->sb.set_uuid was assigned to the value
which input through sysfs, no matter whether it is success
or not in bch_cached_dev_attach(). For example, If the back-end
device has already attached to an cache set, bch_cached_dev_attach()
would fail, but dc->sb.set_uuid was changed. Then modify the
label of bcache device, it will call bch_write_bdev_super(),
which would write the dc->sb.set_uuid to the super block, so we
record a wrong cache set ID in the super block, after the system
reboot, the cache set couldn't find the uuid of the back-end
device, so the bcache device couldn't exist and use any more.
In this patch, we don't assigned cache set ID to dc->sb.set_uuid
in sysfs_attach() directly, but input it into bch_cached_dev_attach(),
and assigned dc->sb.set_uuid to the cache set ID after the back-end
device attached to the cache set successful.
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 682811b3ce1a5a4e20d700939a9042f01dbc66c4 ]
After long time running of random small IO writing,
I reboot the machine, and after the machine power on,
I found bcache got stuck, the stack is:
[root@ceph153 ~]# cat /proc/2510/task/*/stack
[<ffffffffa06b2455>] closure_sync+0x25/0x90 [bcache]
[<ffffffffa06b6be8>] bch_journal+0x118/0x2b0 [bcache]
[<ffffffffa06b6dc7>] bch_journal_meta+0x47/0x70 [bcache]
[<ffffffffa06be8f7>] bch_prio_write+0x237/0x340 [bcache]
[<ffffffffa06a8018>] bch_allocator_thread+0x3c8/0x3d0 [bcache]
[<ffffffff810a631f>] kthread+0xcf/0xe0
[<ffffffff8164c318>] ret_from_fork+0x58/0x90
[<ffffffffffffffff>] 0xffffffffffffffff
[root@ceph153 ~]# cat /proc/2038/task/*/stack
[<ffffffffa06b1abd>] __bch_btree_map_nodes+0x12d/0x150 [bcache]
[<ffffffffa06b1bd1>] bch_btree_insert+0xf1/0x170 [bcache]
[<ffffffffa06b637f>] bch_journal_replay+0x13f/0x230 [bcache]
[<ffffffffa06c75fe>] run_cache_set+0x79a/0x7c2 [bcache]
[<ffffffffa06c0cf8>] register_bcache+0xd48/0x1310 [bcache]
[<ffffffff812f702f>] kobj_attr_store+0xf/0x20
[<ffffffff8125b216>] sysfs_write_file+0xc6/0x140
[<ffffffff811dfbfd>] vfs_write+0xbd/0x1e0
[<ffffffff811e069f>] SyS_write+0x7f/0xe0
[<ffffffff8164c3c9>] system_call_fastpath+0x16/0x1
The stack shows the register thread and allocator thread
were getting stuck when registering cache device.
I reboot the machine several times, the issue always
exsit in this machine.
I debug the code, and found the call trace as bellow:
register_bcache()
==>run_cache_set()
==>bch_journal_replay()
==>bch_btree_insert()
==>__bch_btree_map_nodes()
==>btree_insert_fn()
==>btree_split() //node need split
==>btree_check_reserve()
In btree_check_reserve(), It will check if there is enough buckets
of RESERVE_BTREE type, since allocator thread did not work yet, so
no buckets of RESERVE_BTREE type allocated, so the register thread
waits on c->btree_cache_wait, and goes to sleep.
Then the allocator thread initialized, the call trace is bellow:
bch_allocator_thread()
==>bch_prio_write()
==>bch_journal_meta()
==>bch_journal()
==>journal_wait_for_write()
In journal_wait_for_write(), It will check if journal is full by
journal_full(), but the long time random small IO writing
causes the exhaustion of journal buckets(journal.blocks_free=0),
In order to release the journal buckets,
the allocator calls btree_flush_write() to flush keys to
btree nodes, and waits on c->journal.wait until btree nodes writing
over or there has already some journal buckets space, then the
allocator thread goes to sleep. but in btree_flush_write(), since
bch_journal_replay() is not finished, so no btree nodes have journal
(condition "if (btree_current_write(b)->journal)" never satisfied),
so we got no btree node to flush, no journal bucket released,
and allocator sleep all the times.
Through the above analysis, we can see that:
1) Register thread wait for allocator thread to allocate buckets of
RESERVE_BTREE type;
2) Alloctor thread wait for register thread to replay journal, so it
can flush btree nodes and get journal bucket.
then they are all got stuck by waiting for each other.
Hua Rui provided a patch for me, by allocating some buckets of
RESERVE_BTREE type in advance, so the register thread can get bucket
when btree node splitting and no need to waiting for the allocator
thread. I tested it, it has effect, and register thread run a step
forward, but finally are still got stuck, the reason is only 8 bucket
of RESERVE_BTREE type were allocated, and in bch_journal_replay(),
after 2 btree nodes splitting, only 4 bucket of RESERVE_BTREE type left,
then btree_check_reserve() is not satisfied anymore, so it goes to sleep
again, and in the same time, alloctor thread did not flush enough btree
nodes to release a journal bucket, so they all got stuck again.
So we need to allocate more buckets of RESERVE_BTREE type in advance,
but how much is enough? By experience and test, I think it should be
as much as journal buckets. Then I modify the code as this patch,
and test in the machine, and it works.
This patch modified base on Hua Rui’s patch, and allocate more buckets
of RESERVE_BTREE type in advance to avoid register thread and allocate
thread going to wait for each other.
[patch v2] ca->sb.njournal_buckets would be 0 in the first time after
cache creation, and no journal exists, so just 8 btree buckets is OK.
Signed-off-by: Hua Rui <huarui.dev@gmail.com>
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 8d29c4426b9f8afaccf28de414fde8a722b35fdf ]
Currently, when a cached device detaching from cache, writeback thread is
not stopped, and writeback_rate_update work is not canceled. For example,
after the following command:
echo 1 >/sys/block/sdb/bcache/detach
you can still see the writeback thread. Then you attach the device to the
cache again, bcache will create another writeback thread, for example,
after below command:
echo ba0fb5cd-658a-4533-9806-6ce166d883b9 > /sys/block/sdb/bcache/attach
then you will see 2 writeback threads.
This patch stops writeback thread and cancels writeback_rate_update work
when cached device detaching from cache.
Compare with patch v1, this v2 patch moves code down into the register
lock for safety in case of any future changes as Coly and Mike suggested.
[edit by mlyle: commit log spelling/formatting]
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 86755b7a96faed57f910f9e6b8061e019ac1ec08 upstream.
This can happen e.g. during disk cloning.
This is an incomplete fix: it does not catch duplicate UUIDs earlier
when things are still unattached. It does not unregister the device.
Further changes to cope better with this are planned but conflict with
Coly's ongoing improvements to handling device errors. In the meantime,
one can manually stop the device after this has happened.
Attempts to attach a duplicate device result in:
[ 136.372404] loop: module loaded
[ 136.424461] bcache: register_bdev() registered backing device loop0
[ 136.424464] bcache: bch_cached_dev_attach() Tried to attach loop0 but duplicate UUID already attached
My test procedure is:
dd if=/dev/sdb1 of=imgfile bs=1024 count=262144
losetup -f imgfile
Signed-off-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn>
Cc: <stable@vger.kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 330a4db89d39a6b43f36da16824eaa7a7509d34d ]
mutex_destroy does nothing most of time, but it's better to call
it to make the code future proof and it also has some meaning
for like mutex debug.
As Coly pointed out in a previous review, bcache_exit() may not be
able to handle all the references properly if userspace registers
cache and backing devices right before bch_debug_init runs and
bch_debug_init failes later. So not exposing userspace interface
until everything is ready to avoid that issue.
Signed-off-by: Liang Chen <liangchen.linux@gmail.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Coly Li <colyli@suse.de>
Reviewed-by: Eric Wheeler <bcache@linux.ewheeler.net>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4b758df21ee7081ab41448d21d60367efaa625b3 upstream.
If blkdev_get_by_path() in register_bcache() fails, we try to lookup the
block device using lookup_bdev() to detect which situation we are in to
properly report error. However we never drop the reference returned to
us from lookup_bdev(). Fix that.
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 175206cf9ab63161dec74d9cd7f9992e062491f5 upstream.
bcache uses a Proportion-Differentiation Controller algorithm to control
writeback rate to cached devices. In the PD controller algorithm, dirty
stripes of thin flash device should not be counted in, because flash only
volumes never write back dirty data.
Currently dirty stripe counter for thin flash device is not initialized
when the thin flash device starts. Which means the following calculation
in PD controller will reference an undefined dirty stripes number, and
all cached devices attached to the same cache set where the thin flash
device lies on may have an inaccurate writeback rate.
This patch calles bch_sectors_dirty_init() in flash_dev_run(), to
correctly initialize dirty stripe counter when the thin flash device
starts to run. This patch also does following parameter data type change,
-void bch_sectors_dirty_init(struct cached_dev *dc);
+void bch_sectors_dirty_init(struct bcache_device *);
to call this function conveniently in flash_dev_run().
(Commit log is composed by Coly Li)
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit acc9cf8c66c66b2cbbdb4a375537edee72be64df upstream.
This patch fixes a cachedev registration-time allocation deadlock.
This can deadlock on boot if your initrd auto-registeres bcache devices:
Allocator thread:
[ 720.727614] INFO: task bcache_allocato:3833 blocked for more than 120 seconds.
[ 720.732361] [<ffffffff816eeac7>] schedule+0x37/0x90
[ 720.732963] [<ffffffffa05192b8>] bch_bucket_alloc+0x188/0x360 [bcache]
[ 720.733538] [<ffffffff810e6950>] ? prepare_to_wait_event+0xf0/0xf0
[ 720.734137] [<ffffffffa05302bd>] bch_prio_write+0x19d/0x340 [bcache]
[ 720.734715] [<ffffffffa05190bf>] bch_allocator_thread+0x3ff/0x470 [bcache]
[ 720.735311] [<ffffffff816ee41c>] ? __schedule+0x2dc/0x950
[ 720.735884] [<ffffffffa0518cc0>] ? invalidate_buckets+0x980/0x980 [bcache]
Registration thread:
[ 720.710403] INFO: task bash:3531 blocked for more than 120 seconds.
[ 720.715226] [<ffffffff816eeac7>] schedule+0x37/0x90
[ 720.715805] [<ffffffffa05235cd>] __bch_btree_map_nodes+0x12d/0x150 [bcache]
[ 720.716409] [<ffffffffa0522d30>] ? bch_btree_insert_check_key+0x1c0/0x1c0 [bcache]
[ 720.717008] [<ffffffffa05236e4>] bch_btree_insert+0xf4/0x170 [bcache]
[ 720.717586] [<ffffffff810e6950>] ? prepare_to_wait_event+0xf0/0xf0
[ 720.718191] [<ffffffffa0527d9a>] bch_journal_replay+0x14a/0x290 [bcache]
[ 720.718766] [<ffffffff810cc90d>] ? ttwu_do_activate.constprop.94+0x5d/0x70
[ 720.719369] [<ffffffff810cf684>] ? try_to_wake_up+0x1d4/0x350
[ 720.719968] [<ffffffffa05317d0>] run_cache_set+0x580/0x8e0 [bcache]
[ 720.720553] [<ffffffffa053302e>] register_bcache+0xe2e/0x13b0 [bcache]
[ 720.721153] [<ffffffff81354cef>] kobj_attr_store+0xf/0x20
[ 720.721730] [<ffffffff812a2dad>] sysfs_kf_write+0x3d/0x50
[ 720.722327] [<ffffffff812a225a>] kernfs_fop_write+0x12a/0x180
[ 720.722904] [<ffffffff81225177>] __vfs_write+0x37/0x110
[ 720.723503] [<ffffffff81228048>] ? __sb_start_write+0x58/0x110
[ 720.724100] [<ffffffff812cedb3>] ? security_file_permission+0x23/0xa0
[ 720.724675] [<ffffffff812258a9>] vfs_write+0xa9/0x1b0
[ 720.725275] [<ffffffff8102479c>] ? do_audit_syscall_entry+0x6c/0x70
[ 720.725849] [<ffffffff81226755>] SyS_write+0x55/0xd0
[ 720.726451] [<ffffffff8106a390>] ? do_page_fault+0x30/0x80
[ 720.727045] [<ffffffff816f2cae>] system_call_fastpath+0x12/0x71
The fifo code in upstream bcache can't use the last element in the buffer,
which was the cause of the bug: if you asked for a power of two size,
it'd give you a fifo that could hold one less than what you asked for
rather than allocating a buffer twice as big.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Tested-by: Eric Wheeler <bcache@linux.ewheeler.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f8b11260a445169989d01df75d35af0f56178f95 upstream.
When bch_cache_set_alloc() fails to kzalloc the cache_set, the
asyncronous closure handling tries to dereference a cache_set that
hadn't yet been allocated inside of cache_set_flush() which is called
by __cache_set_unregister() during cleanup. This appears to happen only
during an OOM condition on bcache_register.
Signed-off-by: Eric Wheeler <bcache@linux.ewheeler.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 07cc6ef8edc47f8b4fc1e276d31127a0a5863d4d upstream.
The bch_writeback_thread might BUG_ON in read_dirty() if
dc->sb==BDEV_STATE_DIRTY and bch_sectors_dirty_init has not yet completed
its related initialization. This patch downs the dc->writeback_lock until
after initialization is complete, thus preventing bch_writeback_thread
from proceeding prematurely.
See this thread:
http://thread.gmane.org/gmane.linux.kernel.bcache.devel/3453
Signed-off-by: Eric Wheeler <bcache@linux.ewheeler.net>
Tested-by: Marc MERLIN <marc@merlins.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d7076f21629f8f329bca4a44dc408d94670f49e2 upstream.
Allows to use register, not register_quiet in udev to avoid "device_busy" error.
The initial patch proposed at https://lkml.org/lkml/2013/8/26/549 by Gabriel de Perthuis
<g2p.code@gmail.com> does not unlock the mutex and hangs the kernel.
See http://thread.gmane.org/gmane.linux.kernel.bcache.devel/2594 for the discussion.
Cc: Denis Bychkov <manover@gmail.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Eric Wheeler <bcache@linux.ewheeler.net>
Cc: Gabriel de Perthuis <g2p.code@gmail.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2ecf0cdb2b437402110ab57546e02abfa68a716b upstream.
In bcache_init() function it forgot to unregister reboot notifier if
bcache fails to unregister a block device. This commit fixes this.
Signed-off-by: Zheng Liu <wenqing.lz@taobao.com>
Tested-by: Joshua Schmid <jschmid@suse.com>
Tested-by: Eric Wheeler <bcache@linux.ewheeler.net>
Cc: Kent Overstreet <kmo@daterainc.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The bcache driver has always accepted arbitrarily large bios and split
them internally. Now that every driver must accept arbitrarily large
bios this code isn't nessecary anymore.
Cc: linux-bcache@vger.kernel.org
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
[dpark: add more description in commit message]
Signed-off-by: Dongsu Park <dpark@posteo.net>
Signed-off-by: Ming Lin <ming.l@ssi.samsung.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently we have two different ways to signal an I/O error on a BIO:
(1) by clearing the BIO_UPTODATE flag
(2) by returning a Linux errno value to the bi_end_io callback
The first one has the drawback of only communicating a single possible
error (-EIO), and the second one has the drawback of not beeing persistent
when bios are queued up, and are not passed along from child to parent
bio in the ever more popular chaining scenario. Having both mechanisms
available has the additional drawback of utterly confusing driver authors
and introducing bugs where various I/O submitters only deal with one of
them, and the others have to add boilerplate code to deal with both kinds
of error returns.
So add a new bi_error field to store an errno value directly in struct
bio and remove the existing mechanisms to clean all this up.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Some drivers use it now, others just set the limits field manually.
But in preparation for splitting this into a hard and soft limit,
ensure that they all call the proper function for setting the hw
limit for discards.
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Use kvfree() instead of open-coding it.
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Cc: Kent Overstreet <kmo@daterainc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Clear QUEUE_FLAG_ADD_RANDOM in all block drivers that set
QUEUE_FLAG_NONROT.
Historically, all block devices have automatically made entropy
contributions. But as previously stated in commit e2e1a148 ("block: add
sysfs knob for turning off disk entropy contributions"):
- On SSD disks, the completion times aren't as random as they
are for rotational drives. So it's questionable whether they
should contribute to the random pool in the first place.
- Calling add_disk_randomness() has a lot of overhead.
There are more reliable sources for randomness than non-rotational block
devices. From a security perspective it is better to err on the side of
caution than to allow entropy contributions from unreliable "random"
sources.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
this is needed for the queue/block device we created (it's done by
blk_cleanup_queue() which we do call) - but calling it for the block devices we
only opened is pointless.
Change-Id: I53dfded14ed15b9581d10ca8399d5e1b3abbf9f2
Since bch_is_open will iterate linked list bch_cache_sets and
uncached_devices, it needs bch_register_lock.
Signed-off-by: Jianjian Huo <samuel.huo@gmail.com>
If register_cache_set() failed, we would touch ca->set after
it had already been freed. Also, fix an assertion to catch
this.
Change-Id: I748e5f5b223e2d9b2602075dec2f997cced2394d
There were two issues here:
- writeback thread did not start until the device first became dirty
- writeback thread used uninterruptible sleep once running
Without this patch I see kernel warnings printed and a load average of
1.52 after booting my test VM. With this patch the warnings are gone and
the load average is near 0.00 as expected.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Tested:
- sometimes bcache_tier test would hang on startup with a failure
to allocate the btree root -- no longer seeing this
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
After detaching a backing device from a cache set, a bit wasn't getting
reset meaning the second detach wouldn't work correctly.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
gc_gen was a temporary used to recalculate last_gc, but since we only need
bucket->last_gc when gc isn't running (gc_mark_valid = 1), we can just update
last_gc directly.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
This was originally added as at optimization that for various reasons isn't
needed anymore, but it does add a lot of nasty corner cases (and it was
responsible for some recently fixed bugs). Just get rid of it now.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
This changes the bucket allocation reserves to use _real_ reserves - separate
freelists - instead of watermarks, which if nothing else makes the current code
saner to reason about and is going to be important in the future when we add
support for multiple btrees.
It also adds btree_check_reserve(), which checks (and locks) the reserves for
both bucket allocation and memory allocation for btree nodes; the old code just
kinda sorta assumed that since (e.g. for btree node splits) it had the root
locked and that meant no other threads could try to make use of the same
reserve; this technically should have been ok for memory allocation (we should
always have a reserve for memory allocation (the btree node cache is used as a
reserve and we preallocate it)), but multiple btrees will mean that locking the
root won't be sufficient anymore, and for the bucket allocation reserve it was
technically possible for the old code to deadlock.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
With the locking rework in the last patch, this shouldn't be needed anymore -
btree_node_write_work() only takes b->write_lock which is never held for very
long.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Add a new lock, b->write_lock, which is required to actually modify - or write -
a btree node; this lock is only held for short durations.
This means we can write out a btree node without taking b->lock, which _is_ held
for long durations - solving a deadlock when btree_flush_write() (from the
journalling code) is called with a btree node locked.
Right now just occurs in bch_btree_set_root(), but with an upcoming journalling
rework is going to happen a lot more.
This also turns b->lock is now more of a read/intent lock instead of a
read/write lock - but not completely, since it still blocks readers. May turn it
into a real intent lock at some point in the future.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Deadlock happened because a foreground write slept, waiting for a bucket
to be allocated. Normally the gc would mark buckets available for invalidation.
But the moving_gc was stuck waiting for outstanding writes to complete.
These writes used the bcache_wq, the same queue foreground writes used.
This fix gives moving_gc its own work queue, so it was still finish moving
even if foreground writes are stuck waiting for allocation. It also makes
work queue a parameter to the data_insert path, so moving_gc can use its
workqueue for writes.
Signed-off-by: Nicholas Swenson <nks@daterainc.com>
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
More disentangling bset.c from the rest of the bcache code - soon, the
sorting routines won't have any dependencies on any outside structs.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Now that we've got code for raid5/6 stripe awareness, bcache just needs
to know about the stripes and when writing partial stripes is expensive
- we probably don't want to enable this optimization for raid1 or 10,
even though they have stripes. So add a flag to queue_limits.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
We need a reserve for allocating buckets for new btree nodes - and now that
we've got multiple btrees, it really needs to be per btree.
This reworks the reserves so we've got separate freelists for each reserve
instead of watermarks, which seems to make things a bit cleaner, and it adds
some code so that btree_split() can make sure the reserve is available before it
starts.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>