Commit graph

704 commits

Author SHA1 Message Date
Eric Dumazet
4657ee0fe0 tcp: limit payload size of sacked skbs
commit 3b4929f65b0d8249f19a50245cd88ed1a2f78cff upstream.

Jonathan Looney reported that TCP can trigger the following crash
in tcp_shifted_skb() :

	BUG_ON(tcp_skb_pcount(skb) < pcount);

This can happen if the remote peer has advertized the smallest
MSS that linux TCP accepts : 48

An skb can hold 17 fragments, and each fragment can hold 32KB
on x86, or 64KB on PowerPC.

This means that the 16bit witdh of TCP_SKB_CB(skb)->tcp_gso_segs
can overflow.

Note that tcp_sendmsg() builds skbs with less than 64KB
of payload, so this problem needs SACK to be enabled.
SACK blocks allow TCP to coalesce multiple skbs in the retransmit
queue, thus filling the 17 fragments to maximal capacity.

CVE-2019-11477 -- u16 overflow of TCP_SKB_CB(skb)->tcp_gso_segs

Backport notes, provided by Joao Martins <joao.m.martins@oracle.com>

v4.15 or since commit 737ff314563 ("tcp: use sequence distance to
detect reordering") had switched from the packet-based FACK tracking and
switched to sequence-based.

v4.14 and older still have the old logic and hence on
tcp_skb_shift_data() needs to retain its original logic and have
@fack_count in sync. In other words, we keep the increment of pcount with
tcp_skb_pcount(skb) to later used that to update fack_count. To make it
more explicit we track the new skb that gets incremented to pcount in
@next_pcount, and we get to avoid the constant invocation of
tcp_skb_pcount(skb) all together.

Fixes: 832d11c5cd ("tcp: Try to restore large SKBs while SACK processing")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Jonathan Looney <jtl@netflix.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Bruce Curtis <brucec@netflix.com>
Cc: Jonathan Lemon <jonathan.lemon@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-17 19:54:22 +02:00
Eric Dumazet
b6d37bba0f tcp: tcp_grow_window() needs to respect tcp_space()
[ Upstream commit 50ce163a72d817a99e8974222dcf2886d5deb1ae ]

For some reason, tcp_grow_window() correctly tests if enough room
is present before attempting to increase tp->rcv_ssthresh,
but does not prevent it to grow past tcp_space()

This is causing hard to debug issues, like failing
the (__tcp_select_window(sk) >= tp->rcv_wnd) test
in __tcp_ack_snd_check(), causing ACK delays and possibly
slow flows.

Depending on tcp_rmem[2], MTU, skb->len/skb->truesize ratio,
we can see the problem happening on "netperf -t TCP_RR -- -r 2000,2000"
after about 60 round trips, when the active side no longer sends
immediate acks.

This bug predates git history.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Wei Wang <weiwan@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27 09:34:00 +02:00
Eric Dumazet
7ed7c0386e tcp/dccp: drop SYN packets if accept queue is full
commit 5ea8ea2cb7f1d0db15762c9b0bb9e7330425a071 upstream.

Per listen(fd, backlog) rules, there is really no point accepting a SYN,
sending a SYNACK, and dropping the following ACK packet if accept queue
is full, because application is not draining accept queue fast enough.

This behavior is fooling TCP clients that believe they established a
flow, while there is nothing at server side. They might then send about
10 MSS (if using IW10) that will be dropped anyway while server is under
stress.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-03 06:23:18 +02:00
Guillaume Nault
191aa19ab8 tcp: handle inet_csk_reqsk_queue_add() failures
[  Upstream commit 9d3e1368bb45893a75a5dfb7cd21fdebfa6b47af ]

Commit 7716682cc58e ("tcp/dccp: fix another race at listener
dismantle") let inet_csk_reqsk_queue_add() fail, and adjusted
{tcp,dccp}_check_req() accordingly. However, TFO and syncookies
weren't modified, thus leaking allocated resources on error.

Contrary to tcp_check_req(), in both syncookies and TFO cases,
we need to drop the request socket. Also, since the child socket is
created with inet_csk_clone_lock(), we have to unlock it and drop an
extra reference (->sk_refcount is initially set to 2 and
inet_csk_reqsk_queue_add() drops only one ref).

For TFO, we also need to revert the work done by tcp_try_fastopen()
(with reqsk_fastopen_remove()).

Fixes: 7716682cc58e ("tcp/dccp: fix another race at listener dismantle")
Signed-off-by: Guillaume Nault <gnault@redhat.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-23 08:44:30 +01:00
Eric Dumazet
eee1af4e26 tcp: add tcp_ooo_try_coalesce() helper
[ Upstream commit 58152ecbbcc6a0ce7fddd5bf5f6ee535834ece0c ]

In case skb in out_or_order_queue is the result of
multiple skbs coalescing, we would like to get a proper gso_segs
counter tracking, so that future tcp_drop() can report an accurate
number.

I chose to not implement this tracking for skbs in receive queue,
since they are not dropped, unless socket is disconnected.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Mao Wenan <maowenan@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-13 09:11:35 +02:00
Eric Dumazet
be28848147 tcp: call tcp_drop() from tcp_data_queue_ofo()
[ Upstream commit 8541b21e781a22dce52a74fef0b9bed00404a1cd ]

In order to be able to give better diagnostics and detect
malicious traffic, we need to have better sk->sk_drops tracking.

Fixes: 9f5afeae5152 ("tcp: use an RB tree for ooo receive queue")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Mao Wenan <maowenan@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-13 09:11:35 +02:00
Eric Dumazet
352b66932a tcp: free batches of packets in tcp_prune_ofo_queue()
[ Upstream commit 72cd43ba64fc172a443410ce01645895850844c8 ]

Juha-Matti Tilli reported that malicious peers could inject tiny
packets in out_of_order_queue, forcing very expensive calls
to tcp_collapse_ofo_queue() and tcp_prune_ofo_queue() for
every incoming packet. out_of_order_queue rb-tree can contain
thousands of nodes, iterating over all of them is not nice.

Before linux-4.9, we would have pruned all packets in ofo_queue
in one go, every XXXX packets. XXXX depends on sk_rcvbuf and skbs
truesize, but is about 7000 packets with tcp_rmem[2] default of 6 MB.

Since we plan to increase tcp_rmem[2] in the future to cope with
modern BDP, can not revert to the old behavior, without great pain.

Strategy taken in this patch is to purge ~12.5 % of the queue capacity.

Fixes: 36a6503fedda ("tcp: refine tcp_prune_ofo_queue() to not drop all packets")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Juha-Matti Tilli <juha-matti.tilli@iki.fi>
Acked-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Mao Wenan <maowenan@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-13 09:11:35 +02:00
Eric Dumazet
e747775172 tcp: fix a stale ooo_last_skb after a replace
[ Upstream commit 76f0dcbb5ae1a7c3dbeec13dd98233b8e6b0b32a ]

When skb replaces another one in ooo queue, I forgot to also
update tp->ooo_last_skb as well, if the replaced skb was the last one
in the queue.

To fix this, we simply can re-use the code that runs after an insertion,
trying to merge skbs at the right of current skb.

This not only fixes the bug, but also remove all small skbs that might
be a subset of the new one.

Example:

We receive segments 2001:3001,  4001:5001

Then we receive 2001:8001 : We should replace 2001:3001 with the big
skb, but also remove 4001:50001 from the queue to save space.

packetdrill test demonstrating the bug

0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
+0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
+0 bind(3, ..., ...) = 0
+0 listen(3, 1) = 0

+0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7>
+0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 7>
+0.100 < . 1:1(0) ack 1 win 1024
+0 accept(3, ..., ...) = 4

+0.01 < . 1001:2001(1000) ack 1 win 1024
+0    > . 1:1(0) ack 1 <nop,nop, sack 1001:2001>

+0.01 < . 1001:3001(2000) ack 1 win 1024
+0    > . 1:1(0) ack 1 <nop,nop, sack 1001:2001 1001:3001>

Fixes: 9f5afeae5152 ("tcp: use an RB tree for ooo receive queue")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Yuchung Cheng <ycheng@google.com>
Cc: Yaogong Wang <wygivan@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Mao Wenan <maowenan@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-13 09:11:34 +02:00
Yaogong Wang
4666b6e2b2 tcp: use an RB tree for ooo receive queue
[ Upstream commit 9f5afeae51526b3ad7b7cb21ee8b145ce6ea7a7a ]

Over the years, TCP BDP has increased by several orders of magnitude,
and some people are considering to reach the 2 Gbytes limit.

Even with current window scale limit of 14, ~1 Gbytes maps to ~740,000
MSS.

In presence of packet losses (or reorders), TCP stores incoming packets
into an out of order queue, and number of skbs sitting there waiting for
the missing packets to be received can be in the 10^5 range.

Most packets are appended to the tail of this queue, and when
packets can finally be transferred to receive queue, we scan the queue
from its head.

However, in presence of heavy losses, we might have to find an arbitrary
point in this queue, involving a linear scan for every incoming packet,
throwing away cpu caches.

This patch converts it to a RB tree, to get bounded latencies.

Yaogong wrote a preliminary patch about 2 years ago.
Eric did the rebase, added ofo_last_skb cache, polishing and tests.

Tested with network dropping between 1 and 10 % packets, with good
success (about 30 % increase of throughput in stress tests)

Next step would be to also use an RB tree for the write queue at sender
side ;)

Signed-off-by: Yaogong Wang <wygivan@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Acked-By: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Mao Wenan <maowenan@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-13 09:11:34 +02:00
Eric Dumazet
ec7055c627 tcp: increment sk_drops for dropped rx packets
[ Upstream commit 532182cd610782db8c18230c2747626562032205 ]

Now ss can report sk_drops, we can instruct TCP to increment
this per socket counter when it drops an incoming frame, to refine
monitoring and debugging.

Following patch takes care of listeners drops.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Mao Wenan <maowenan@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-13 09:11:34 +02:00
Takashi Iwai
42962538cd tcp: Fix missing range_truesize enlargement in the backport
The 4.4.y stable backport dc6ae4dffd for the upstream commit
3d4bf93ac120 ("tcp: detect malicious patterns in
tcp_collapse_ofo_queue()") missed a line that enlarges the
range_truesize value, which broke the whole check.

Fixes: dc6ae4dffd ("tcp: detect malicious patterns in tcp_collapse_ofo_queue()")
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Cc: Michal Kubecek <mkubecek@suse.cz>
2018-08-17 20:56:44 +02:00
Eric Dumazet
27a0762cb5 tcp: add one more quick ack after after ECN events
[ Upstream commit 15ecbe94a45ef88491ca459b26efdd02f91edb6d ]

Larry Brakmo proposal ( https://patchwork.ozlabs.org/patch/935233/
tcp: force cwnd at least 2 in tcp_cwnd_reduction) made us rethink
about our recent patch removing ~16 quick acks after ECN events.

tcp_enter_quickack_mode(sk, 1) makes sure one immediate ack is sent,
but in the case the sender cwnd was lowered to 1, we do not want
to have a delayed ack for the next packet we will receive.

Fixes: 522040ea5fdd ("tcp: do not aggressively quick ack after ECN events")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Neal Cardwell <ncardwell@google.com>
Cc: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-06 16:24:41 +02:00
Yousuk Seung
cd760ab9f4 tcp: refactor tcp_ecn_check_ce to remove sk type cast
[ Upstream commit f4c9f85f3b2cb7669830cd04d0be61192a4d2436 ]

Refactor tcp_ecn_check_ce and __tcp_ecn_check_ce to accept struct sock*
instead of tcp_sock* to clean up type casts. This is a pure refactor
patch.

Signed-off-by: Yousuk Seung <ysseung@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-06 16:24:41 +02:00
Eric Dumazet
96b792d199 tcp: do not aggressively quick ack after ECN events
[ Upstream commit 522040ea5fdd1c33bbf75e1d7c7c0422b96a94ef ]

ECN signals currently forces TCP to enter quickack mode for
up to 16 (TCP_MAX_QUICKACKS) following incoming packets.

We believe this is not needed, and only sending one immediate ack
for the current packet should be enough.

This should reduce the extra load noticed in DCTCP environments,
after congestion events.

This is part 2 of our effort to reduce pure ACK packets.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-06 16:24:41 +02:00
Eric Dumazet
2b30c04bc6 tcp: add max_quickacks param to tcp_incr_quickack and tcp_enter_quickack_mode
[ Upstream commit 9a9c9b51e54618861420093ae6e9b50a961914c5 ]

We want to add finer control of the number of ACK packets sent after
ECN events.

This patch is not changing current behavior, it only enables following
change.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-06 16:24:41 +02:00
Eric Dumazet
e2f337e2bd tcp: do not force quickack when receiving out-of-order packets
[ Upstream commit a3893637e1eb0ef5eb1bbc52b3a8d2dfa317a35d ]

As explained in commit 9f9843a751 ("tcp: properly handle stretch
acks in slow start"), TCP stacks have to consider how many packets
are acknowledged in one single ACK, because of GRO, but also
because of ACK compression or losses.

We plan to add SACK compression in the following patch, we
must therefore not call tcp_enter_quickack_mode()

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-06 16:24:41 +02:00
Eric Dumazet
dc6ae4dffd tcp: detect malicious patterns in tcp_collapse_ofo_queue()
[ Upstream commit 3d4bf93ac12003f9b8e1e2de37fe27983deebdcf ]

In case an attacker feeds tiny packets completely out of order,
tcp_collapse_ofo_queue() might scan the whole rb-tree, performing
expensive copies, but not changing socket memory usage at all.

1) Do not attempt to collapse tiny skbs.
2) Add logic to exit early when too many tiny skbs are detected.

We prefer not doing aggressive collapsing (which copies packets)
for pathological flows, and revert to tcp_prune_ofo_queue() which
will be less expensive.

In the future, we might add the possibility of terminating flows
that are proven to be malicious.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-28 07:45:02 +02:00
Eric Dumazet
5fbec48012 tcp: avoid collapses in tcp_prune_queue() if possible
[ Upstream commit f4a3313d8e2ca9fd8d8f45e40a2903ba782607e7 ]

Right after a TCP flow is created, receiving tiny out of order
packets allways hit the condition :

if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
	tcp_clamp_window(sk);

tcp_clamp_window() increases sk_rcvbuf to match sk_rmem_alloc
(guarded by tcp_rmem[2])

Calling tcp_collapse_ofo_queue() in this case is not useful,
and offers a O(N^2) surface attack to malicious peers.

Better not attempt anything before full queue capacity is reached,
forcing attacker to spend lots of resource and allow us to more
easily detect the abuse.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-28 07:45:02 +02:00
Yuchung Cheng
255924ea89 tcp: do not delay ACK in DCTCP upon CE status change
[ Upstream commit a0496ef2c23b3b180902dd185d0d63ccbc624cf8 ]

Per DCTCP RFC8257 (Section 3.2) the ACK reflecting the CE status change
has to be sent immediately so the sender can respond quickly:

""" When receiving packets, the CE codepoint MUST be processed as follows:

   1.  If the CE codepoint is set and DCTCP.CE is false, set DCTCP.CE to
       true and send an immediate ACK.

   2.  If the CE codepoint is not set and DCTCP.CE is true, set DCTCP.CE
       to false and send an immediate ACK.
"""

Previously DCTCP implementation may continue to delay the ACK. This
patch fixes that to implement the RFC by forcing an immediate ACK.

Tested with this packetdrill script provided by Larry Brakmo

0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
0.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
0.000 setsockopt(3, SOL_TCP, TCP_CONGESTION, "dctcp", 5) = 0
0.000 bind(3, ..., ...) = 0
0.000 listen(3, 1) = 0

0.100 < [ect0] SEW 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7>
0.100 > SE. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 8>
0.110 < [ect0] . 1:1(0) ack 1 win 257
0.200 accept(3, ..., ...) = 4
   +0 setsockopt(4, SOL_SOCKET, SO_DEBUG, [1], 4) = 0

0.200 < [ect0] . 1:1001(1000) ack 1 win 257
0.200 > [ect01] . 1:1(0) ack 1001

0.200 write(4, ..., 1) = 1
0.200 > [ect01] P. 1:2(1) ack 1001

0.200 < [ect0] . 1001:2001(1000) ack 2 win 257
+0.005 < [ce] . 2001:3001(1000) ack 2 win 257

+0.000 > [ect01] . 2:2(0) ack 2001
// Previously the ACK below would be delayed by 40ms
+0.000 > [ect01] E. 2:2(0) ack 3001

+0.500 < F. 9501:9501(0) ack 4 win 257

Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-28 07:45:02 +02:00
Ilpo Järvinen
61c66cc52d tcp: prevent bogus FRTO undos with non-SACK flows
[ Upstream commit 1236f22fbae15df3736ab4a984c64c0c6ee6254c ]

If SACK is not enabled and the first cumulative ACK after the RTO
retransmission covers more than the retransmitted skb, a spurious
FRTO undo will trigger (assuming FRTO is enabled for that RTO).
The reason is that any non-retransmitted segment acknowledged will
set FLAG_ORIG_SACK_ACKED in tcp_clean_rtx_queue even if there is
no indication that it would have been delivered for real (the
scoreboard is not kept with TCPCB_SACKED_ACKED bits in the non-SACK
case so the check for that bit won't help like it does with SACK).
Having FLAG_ORIG_SACK_ACKED set results in the spurious FRTO undo
in tcp_process_loss.

We need to use more strict condition for non-SACK case and check
that none of the cumulatively ACKed segments were retransmitted
to prove that progress is due to original transmissions. Only then
keep FLAG_ORIG_SACK_ACKED set, allowing FRTO undo to proceed in
non-SACK case.

(FLAG_ORIG_SACK_ACKED is planned to be renamed to FLAG_ORIG_PROGRESS
to better indicate its purpose but to keep this change minimal, it
will be done in another patch).

Besides burstiness and congestion control violations, this problem
can result in RTO loop: When the loss recovery is prematurely
undoed, only new data will be transmitted (if available) and
the next retransmission can occur only after a new RTO which in case
of multiple losses (that are not for consecutive packets) requires
one RTO per loss to recover.

Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Tested-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-22 14:25:53 +02:00
Eric Dumazet
4dff97920e tcp: do not overshoot window_clamp in tcp_rcv_space_adjust()
commit 02db55718d53f9d426cee504c27fb768e9ed4ffe upstream.

While rcvbuf is properly clamped by tcp_rmem[2], rcvwin
is left to a potentially too big value.

It has no serious effect, since :
1) tcp_grow_window() has very strict checks.
2) window_clamp can be mangled by user space to any value anyway.

tcp_init_buffer_space() and companions use tcp_full_space(),
we use tcp_win_from_space() to avoid reloading sk->sk_rcvbuf

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Wei Wang <weiwan@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Benjamin Gilbert <benjamin.gilbert@coreos.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-03 11:21:24 +02:00
Eric Dumazet
70741861fc tcp: avoid integer overflows in tcp_rcv_space_adjust()
commit 607065bad9931e72207b0cac365d7d4abc06bd99 upstream.

When using large tcp_rmem[2] values (I did tests with 500 MB),
I noticed overflows while computing rcvwin.

Lets fix this before the following patch.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Wei Wang <weiwan@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
[Backport: sysctl_tcp_rmem is not Namespace-ify'd in older kernels]
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-06-06 16:46:21 +02:00
Jann Horn
09a37b3661 tcp: don't read out-of-bounds opsize
[ Upstream commit 7e5a206ab686f098367b61aca989f5cdfa8114a3 ]

The old code reads the "opsize" variable from out-of-bounds memory (first
byte behind the segment) if a broken TCP segment ends directly after an
opcode that is neither EOL nor NOP.

The result of the read isn't used for anything, so the worst thing that
could theoretically happen is a pagefault; and since the physmap is usually
mostly contiguous, even that seems pretty unlikely.

The following C reproducer triggers the uninitialized read - however, you
can't actually see anything happen unless you put something like a
pr_warn() in tcp_parse_md5sig_option() to print the opsize.

====================================
#define _GNU_SOURCE
#include <arpa/inet.h>
#include <stdlib.h>
#include <errno.h>
#include <stdarg.h>
#include <net/if.h>
#include <linux/if.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/if_tun.h>
#include <err.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <assert.h>

void systemf(const char *command, ...) {
  char *full_command;
  va_list ap;
  va_start(ap, command);
  if (vasprintf(&full_command, command, ap) == -1)
    err(1, "vasprintf");
  va_end(ap);
  printf("systemf: <<<%s>>>\n", full_command);
  system(full_command);
}

char *devname;

int tun_alloc(char *name) {
  int fd = open("/dev/net/tun", O_RDWR);
  if (fd == -1)
    err(1, "open tun dev");
  static struct ifreq req = { .ifr_flags = IFF_TUN|IFF_NO_PI };
  strcpy(req.ifr_name, name);
  if (ioctl(fd, TUNSETIFF, &req))
    err(1, "TUNSETIFF");
  devname = req.ifr_name;
  printf("device name: %s\n", devname);
  return fd;
}

#define IPADDR(a,b,c,d) (((a)<<0)+((b)<<8)+((c)<<16)+((d)<<24))

void sum_accumulate(unsigned int *sum, void *data, int len) {
  assert((len&2)==0);
  for (int i=0; i<len/2; i++) {
    *sum += ntohs(((unsigned short *)data)[i]);
  }
}

unsigned short sum_final(unsigned int sum) {
  sum = (sum >> 16) + (sum & 0xffff);
  sum = (sum >> 16) + (sum & 0xffff);
  return htons(~sum);
}

void fix_ip_sum(struct iphdr *ip) {
  unsigned int sum = 0;
  sum_accumulate(&sum, ip, sizeof(*ip));
  ip->check = sum_final(sum);
}

void fix_tcp_sum(struct iphdr *ip, struct tcphdr *tcp) {
  unsigned int sum = 0;
  struct {
    unsigned int saddr;
    unsigned int daddr;
    unsigned char pad;
    unsigned char proto_num;
    unsigned short tcp_len;
  } fakehdr = {
    .saddr = ip->saddr,
    .daddr = ip->daddr,
    .proto_num = ip->protocol,
    .tcp_len = htons(ntohs(ip->tot_len) - ip->ihl*4)
  };
  sum_accumulate(&sum, &fakehdr, sizeof(fakehdr));
  sum_accumulate(&sum, tcp, tcp->doff*4);
  tcp->check = sum_final(sum);
}

int main(void) {
  int tun_fd = tun_alloc("inject_dev%d");
  systemf("ip link set %s up", devname);
  systemf("ip addr add 192.168.42.1/24 dev %s", devname);

  struct {
    struct iphdr ip;
    struct tcphdr tcp;
    unsigned char tcp_opts[20];
  } __attribute__((packed)) syn_packet = {
    .ip = {
      .ihl = sizeof(struct iphdr)/4,
      .version = 4,
      .tot_len = htons(sizeof(syn_packet)),
      .ttl = 30,
      .protocol = IPPROTO_TCP,
      /* FIXUP check */
      .saddr = IPADDR(192,168,42,2),
      .daddr = IPADDR(192,168,42,1)
    },
    .tcp = {
      .source = htons(1),
      .dest = htons(1337),
      .seq = 0x12345678,
      .doff = (sizeof(syn_packet.tcp)+sizeof(syn_packet.tcp_opts))/4,
      .syn = 1,
      .window = htons(64),
      .check = 0 /*FIXUP*/
    },
    .tcp_opts = {
      /* INVALID: trailing MD5SIG opcode after NOPs */
      1, 1, 1, 1, 1,
      1, 1, 1, 1, 1,
      1, 1, 1, 1, 1,
      1, 1, 1, 1, 19
    }
  };
  fix_ip_sum(&syn_packet.ip);
  fix_tcp_sum(&syn_packet.ip, &syn_packet.tcp);
  while (1) {
    int write_res = write(tun_fd, &syn_packet, sizeof(syn_packet));
    if (write_res != sizeof(syn_packet))
      err(1, "packet write failed");
  }
}
====================================

Fixes: cfb6eeb4c8 ("[TCP]: MD5 Signature Option (RFC2385) support.")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-04-29 07:50:05 +02:00
Eric Dumazet
87d96d1ba2 tcp: better validation of received ack sequences
[ Upstream commit d0e1a1b5a833b625c93d3d49847609350ebd79db ]

Paul Fiterau Brostean reported :

<quote>
Linux TCP stack we analyze exhibits behavior that seems odd to me.
The scenario is as follows (all packets have empty payloads, no window
scaling, rcv/snd window size should not be a factor):

       TEST HARNESS (CLIENT)                        LINUX SERVER

   1.  -                                          LISTEN (server listen,
then accepts)

   2.  - --> <SEQ=100><CTL=SYN>               --> SYN-RECEIVED

   3.  - <-- <SEQ=300><ACK=101><CTL=SYN,ACK>  <-- SYN-RECEIVED

   4.  - --> <SEQ=101><ACK=301><CTL=ACK>      --> ESTABLISHED

   5.  - <-- <SEQ=301><ACK=101><CTL=FIN,ACK>  <-- FIN WAIT-1 (server
opts to close the data connection calling "close" on the connection
socket)

   6.  - --> <SEQ=101><ACK=99999><CTL=FIN,ACK> --> CLOSING (client sends
FIN,ACK with not yet sent acknowledgement number)

   7.  - <-- <SEQ=302><ACK=102><CTL=ACK>      <-- CLOSING (ACK is 102
instead of 101, why?)

... (silence from CLIENT)

   8.  - <-- <SEQ=301><ACK=102><CTL=FIN,ACK>  <-- CLOSING
(retransmission, again ACK is 102)

Now, note that packet 6 while having the expected sequence number,
acknowledges something that wasn't sent by the server. So I would
expect
the packet to maybe prompt an ACK response from the server, and then be
ignored. Yet it is not ignored and actually leads to an increase of the
acknowledgement number in the server's retransmission of the FIN,ACK
packet. The explanation I found is that the FIN  in packet 6 was
processed, despite the acknowledgement number being unacceptable.
Further experiments indeed show that the server processes this FIN,
transitioning to CLOSING, then on receiving an ACK for the FIN it had
send in packet 5, the server (or better said connection) transitions
from CLOSING to TIME_WAIT (as signaled by netstat).

</quote>

Indeed, tcp_rcv_state_process() calls tcp_ack() but
does not exploit the @acceptable status but for TCP_SYN_RECV
state.

What we want here is to send a challenge ACK, if not in TCP_SYN_RECV
state. TCP_FIN_WAIT1 state is not the only state we should fix.

Add a FLAG_NO_CHALLENGE_ACK so that tcp_rcv_state_process()
can choose to send a challenge ACK and discard the packet instead
of wrongly change socket state.

With help from Neal Cardwell.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Paul Fiterau Brostean <p.fiterau-brostean@science.ru.nl>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-04-13 19:50:11 +02:00
Eric Dumazet
2349cbd511 tcp: remove poll() flakes with FastOpen
[ Upstream commit 0f9fa831aecfc297b7b45d4f046759bcefcf87f0 ]

When using TCP FastOpen for an active session, we send one wakeup event
from tcp_finish_connect(), right before the data eventually contained in
the received SYNACK is queued to sk->sk_receive_queue.

This means that depending on machine load or luck, poll() users
might receive POLLOUT events instead of POLLIN|POLLOUT

To fix this, we need to move the call to sk->sk_state_change()
after the (optional) call to tcp_rcv_fastopen_synack()

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-03-24 10:58:42 +01:00
Jason Baron
1b7dbabf02 tcp: correct memory barrier usage in tcp_check_space()
[ Upstream commit 56d806222ace4c3aeae516cd7a855340fb2839d8 ]

sock_reset_flag() maps to __clear_bit() not the atomic version clear_bit().
Thus, we need smp_mb(), smp_mb__after_atomic() is not sufficient.

Fixes: 3c7151275c ("tcp: add memory barriers to write space paths")
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Jason Baron <jbaron@akamai.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-09 18:42:43 +01:00
Eric Dumazet
13eddc6756 tcp/dccp: fix ireq->opt races
[ Upstream commit c92e8c02fe664155ac4234516e32544bec0f113d ]

syzkaller found another bug in DCCP/TCP stacks [1]

For the reasons explained in commit ce1050089c ("tcp/dccp: fix
ireq->pktopts race"), we need to make sure we do not access
ireq->opt unless we own the request sock.

Note the opt field is renamed to ireq_opt to ease grep games.

[1]
BUG: KASAN: use-after-free in ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474
Read of size 1 at addr ffff8801c951039c by task syz-executor5/3295

CPU: 1 PID: 3295 Comm: syz-executor5 Not tainted 4.14.0-rc4+ #80
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
 __dump_stack lib/dump_stack.c:16 [inline]
 dump_stack+0x194/0x257 lib/dump_stack.c:52
 print_address_description+0x73/0x250 mm/kasan/report.c:252
 kasan_report_error mm/kasan/report.c:351 [inline]
 kasan_report+0x25b/0x340 mm/kasan/report.c:409
 __asan_report_load1_noabort+0x14/0x20 mm/kasan/report.c:427
 ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474
 tcp_transmit_skb+0x1ab7/0x3840 net/ipv4/tcp_output.c:1135
 tcp_send_ack.part.37+0x3bb/0x650 net/ipv4/tcp_output.c:3587
 tcp_send_ack+0x49/0x60 net/ipv4/tcp_output.c:3557
 __tcp_ack_snd_check+0x2c6/0x4b0 net/ipv4/tcp_input.c:5072
 tcp_ack_snd_check net/ipv4/tcp_input.c:5085 [inline]
 tcp_rcv_state_process+0x2eff/0x4850 net/ipv4/tcp_input.c:6071
 tcp_child_process+0x342/0x990 net/ipv4/tcp_minisocks.c:816
 tcp_v4_rcv+0x1827/0x2f80 net/ipv4/tcp_ipv4.c:1682
 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216
 NF_HOOK include/linux/netfilter.h:249 [inline]
 ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257
 dst_input include/net/dst.h:464 [inline]
 ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397
 NF_HOOK include/linux/netfilter.h:249 [inline]
 ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493
 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476
 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514
 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587
 netif_receive_skb+0xae/0x390 net/core/dev.c:4611
 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372
 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766
 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792
 call_write_iter include/linux/fs.h:1770 [inline]
 new_sync_write fs/read_write.c:468 [inline]
 __vfs_write+0x68a/0x970 fs/read_write.c:481
 vfs_write+0x18f/0x510 fs/read_write.c:543
 SYSC_write fs/read_write.c:588 [inline]
 SyS_write+0xef/0x220 fs/read_write.c:580
 entry_SYSCALL_64_fastpath+0x1f/0xbe
RIP: 0033:0x40c341
RSP: 002b:00007f469523ec10 EFLAGS: 00000293 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000718000 RCX: 000000000040c341
RDX: 0000000000000037 RSI: 0000000020004000 RDI: 0000000000000015
RBP: 0000000000000086 R08: 0000000000000000 R09: 0000000000000000
R10: 00000000000f4240 R11: 0000000000000293 R12: 00000000004b7fd1
R13: 00000000ffffffff R14: 0000000020000000 R15: 0000000000025000

Allocated by task 3295:
 save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59
 save_stack+0x43/0xd0 mm/kasan/kasan.c:447
 set_track mm/kasan/kasan.c:459 [inline]
 kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:551
 __do_kmalloc mm/slab.c:3725 [inline]
 __kmalloc+0x162/0x760 mm/slab.c:3734
 kmalloc include/linux/slab.h:498 [inline]
 tcp_v4_save_options include/net/tcp.h:1962 [inline]
 tcp_v4_init_req+0x2d3/0x3e0 net/ipv4/tcp_ipv4.c:1271
 tcp_conn_request+0xf6d/0x3410 net/ipv4/tcp_input.c:6283
 tcp_v4_conn_request+0x157/0x210 net/ipv4/tcp_ipv4.c:1313
 tcp_rcv_state_process+0x8ea/0x4850 net/ipv4/tcp_input.c:5857
 tcp_v4_do_rcv+0x55c/0x7d0 net/ipv4/tcp_ipv4.c:1482
 tcp_v4_rcv+0x2d10/0x2f80 net/ipv4/tcp_ipv4.c:1711
 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216
 NF_HOOK include/linux/netfilter.h:249 [inline]
 ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257
 dst_input include/net/dst.h:464 [inline]
 ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397
 NF_HOOK include/linux/netfilter.h:249 [inline]
 ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493
 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476
 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514
 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587
 netif_receive_skb+0xae/0x390 net/core/dev.c:4611
 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372
 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766
 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792
 call_write_iter include/linux/fs.h:1770 [inline]
 new_sync_write fs/read_write.c:468 [inline]
 __vfs_write+0x68a/0x970 fs/read_write.c:481
 vfs_write+0x18f/0x510 fs/read_write.c:543
 SYSC_write fs/read_write.c:588 [inline]
 SyS_write+0xef/0x220 fs/read_write.c:580
 entry_SYSCALL_64_fastpath+0x1f/0xbe

Freed by task 3306:
 save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59
 save_stack+0x43/0xd0 mm/kasan/kasan.c:447
 set_track mm/kasan/kasan.c:459 [inline]
 kasan_slab_free+0x71/0xc0 mm/kasan/kasan.c:524
 __cache_free mm/slab.c:3503 [inline]
 kfree+0xca/0x250 mm/slab.c:3820
 inet_sock_destruct+0x59d/0x950 net/ipv4/af_inet.c:157
 __sk_destruct+0xfd/0x910 net/core/sock.c:1560
 sk_destruct+0x47/0x80 net/core/sock.c:1595
 __sk_free+0x57/0x230 net/core/sock.c:1603
 sk_free+0x2a/0x40 net/core/sock.c:1614
 sock_put include/net/sock.h:1652 [inline]
 inet_csk_complete_hashdance+0xd5/0xf0 net/ipv4/inet_connection_sock.c:959
 tcp_check_req+0xf4d/0x1620 net/ipv4/tcp_minisocks.c:765
 tcp_v4_rcv+0x17f6/0x2f80 net/ipv4/tcp_ipv4.c:1675
 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216
 NF_HOOK include/linux/netfilter.h:249 [inline]
 ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257
 dst_input include/net/dst.h:464 [inline]
 ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397
 NF_HOOK include/linux/netfilter.h:249 [inline]
 ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493
 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476
 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514
 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587
 netif_receive_skb+0xae/0x390 net/core/dev.c:4611
 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372
 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766
 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792
 call_write_iter include/linux/fs.h:1770 [inline]
 new_sync_write fs/read_write.c:468 [inline]
 __vfs_write+0x68a/0x970 fs/read_write.c:481
 vfs_write+0x18f/0x510 fs/read_write.c:543
 SYSC_write fs/read_write.c:588 [inline]
 SyS_write+0xef/0x220 fs/read_write.c:580
 entry_SYSCALL_64_fastpath+0x1f/0xbe

Fixes: e994b2f0fb ("tcp: do not lock listener to process SYN packets")
Fixes: 079096f103 ("tcp/dccp: install syn_recv requests into ehash table")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-18 11:11:06 +01:00
Neal Cardwell
4e39b7409f tcp: when rearming RTO, if RTO time is in past then fire RTO ASAP
[ Upstream commit cdbeb633ca71a02b7b63bfeb94994bf4e1a0b894 ]

In some situations tcp_send_loss_probe() can realize that it's unable
to send a loss probe (TLP), and falls back to calling tcp_rearm_rto()
to schedule an RTO timer. In such cases, sometimes tcp_rearm_rto()
realizes that the RTO was eligible to fire immediately or at some
point in the past (delta_us <= 0). Previously in such cases
tcp_rearm_rto() was scheduling such "overdue" RTOs to happen at now +
icsk_rto, which caused needless delays of hundreds of milliseconds
(and non-linear behavior that made reproducible testing
difficult). This commit changes the logic to schedule "overdue" RTOs
ASAP, rather than at now + icsk_rto.

Fixes: 6ba8a3b19e ("tcp: Tail loss probe (TLP)")
Suggested-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-30 10:19:21 +02:00
Yuchung Cheng
025bb7f7e9 tcp: avoid setting cwnd to invalid ssthresh after cwnd reduction states
[ Upstream commit ed254971edea92c3ac5c67c6a05247a92aa6075e ]

If the sender switches the congestion control during ECN-triggered
cwnd-reduction state (CA_CWR), upon exiting recovery cwnd is set to
the ssthresh value calculated by the previous congestion control. If
the previous congestion control is BBR that always keep ssthresh
to TCP_INIFINITE_SSTHRESH, cwnd ends up being infinite. The safe
step is to avoid assigning invalid ssthresh value when recovery ends.

Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-12 19:29:08 -07:00
Neal Cardwell
627f3abeea tcp: fix tcp_mark_head_lost to check skb len before fragmenting
commit d88270eef4b56bd7973841dd1fed387ccfa83709 upstream.

This commit fixes a corner case in tcp_mark_head_lost() which was
causing the WARN_ON(len > skb->len) in tcp_fragment() to fire.

tcp_mark_head_lost() was assuming that if a packet has
tcp_skb_pcount(skb) of N, then it's safe to fragment off a prefix of
M*mss bytes, for any M < N. But with the tricky way TCP pcounts are
maintained, this is not always true.

For example, suppose the sender sends 4 1-byte packets and have the
last 3 packet sacked. It will merge the last 3 packets in the write
queue into an skb with pcount = 3 and len = 3 bytes. If another
recovery happens after a sack reneging event, tcp_mark_head_lost()
may attempt to split the skb assuming it has more than 2*MSS bytes.

This sounds very counterintuitive, but as the commit description for
the related commit c0638c247f ("tcp: don't fragment SACKed skbs in
tcp_mark_head_lost()") notes, this is because tcp_shifted_skb()
coalesces adjacent regions of SACKed skbs, and when doing this it
preserves the sum of their packet counts in order to reflect the
real-world dynamics on the wire. The c0638c247f commit tried to
avoid problems by not fragmenting SACKed skbs, since SACKed skbs are
where the non-proportionality between pcount and skb->len/mss is known
to be possible. However, that commit did not handle the case where
during a reneging event one of these weird SACKed skbs becomes an
un-SACKed skb, which tcp_mark_head_lost() can then try to fragment.

The fix is to simply mark the entire skb lost when this happens.
This makes the recovery slightly more aggressive in such corner
cases before we detect reordering. But once we detect reordering
this code path is by-passed because FACK is disabled.

Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Vinson Lee <vlee@freedesktop.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-15 11:57:49 +02:00
Soheil Hassas Yeganeh
7ede5c90fc tcp: eliminate negative reordering in tcp_clean_rtx_queue
[ Upstream commit bafbb9c73241760023d8981191ddd30bb1c6dbac ]

tcp_ack() can call tcp_fragment() which may dededuct the
value tp->fackets_out when MSS changes. When prior_fackets
is larger than tp->fackets_out, tcp_clean_rtx_queue() can
invoke tcp_update_reordering() with negative values. This
results in absurd tp->reodering values higher than
sysctl_tcp_max_reordering.

Note that tcp_update_reordering indeeds sets tp->reordering
to min(sysctl_tcp_max_reordering, metric), but because
the comparison is signed, a negative metric always wins.

Fixes: c7caf8d3ed ("[TCP]: Fix reord detection due to snd_una covered holes")
Reported-by: Rebecca Isaacs <risaacs@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07 12:05:57 +02:00
Yuchung Cheng
90e3f8a558 tcp: avoid fragmenting peculiar skbs in SACK
[ Upstream commit b451e5d24ba6687c6f0e7319c727a709a1846c06 ]

This patch fixes a bug in splitting an SKB during SACK
processing. Specifically if an skb contains multiple
packets and is only partially sacked in the higher sequences,
tcp_match_sack_to_skb() splits the skb and marks the second fragment
as SACKed.

The current code further attempts rounding up the first fragment
to MSS boundaries. But it misses a boundary condition when the
rounded-up fragment size (pkt_len) is exactly skb size.  Spliting
such an skb is pointless and causses a kernel warning and aborts
the SACK processing. This patch universally checks such over-split
before calling tcp_fragment to prevent these unnecessary warnings.

Fixes: adb92db857 ("tcp: Make SACK code to split only at mss boundaries")
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07 12:05:57 +02:00
Eric Dumazet
afaed24192 tcp: initialize icsk_ack.lrcvtime at session start time
[ Upstream commit 15bb7745e94a665caf42bfaabf0ce062845b533b ]

icsk_ack.lrcvtime has a 0 value at socket creation time.

tcpi_last_data_recv can have bogus value if no payload is ever received.

This patch initializes icsk_ack.lrcvtime for active sessions
in tcp_finish_connect(), and for passive sessions in
tcp_create_openreq_child()

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-03-30 09:35:14 +02:00
Eric Dumazet
aadcd6a960 tcp: fix a compile error in DBGUNDO()
[ Upstream commit 019b1c9fe32a2a32c1153e31375f87ec3e591273 ]

If DBGUNDO() is enabled (FASTRETRANS_DEBUG > 1), a compile
error will happen, since inet6_sk(sk)->daddr became sk->sk_v6_daddr

Fixes: efe4208f47 ("ipv6: make lookups simpler and faster")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-11-15 07:46:36 +01:00
Jason Baron
5413f1a526 tcp: enable per-socket rate limiting of all 'challenge acks'
[ Upstream commit 083ae308280d13d187512b9babe3454342a7987e ]

The per-socket rate limit for 'challenge acks' was introduced in the
context of limiting ack loops:

commit f2b2c582e8 ("tcp: mitigate ACK loops for connections as tcp_sock")

And I think it can be extended to rate limit all 'challenge acks' on a
per-socket basis.

Since we have the global tcp_challenge_ack_limit, this patch allows for
tcp_challenge_ack_limit to be set to a large value and effectively rely on
the per-socket limit, or set tcp_challenge_ack_limit to a lower value and
still prevents a single connections from consuming the entire challenge ack
quota.

It further moves in the direction of eliminating the global limit at some
point, as Eric Dumazet has suggested. This a follow-up to:
Subject: tcp: make challenge acks less predictable

Cc: Eric Dumazet <edumazet@google.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Yue Cao <ycao009@ucr.edu>
Signed-off-by: Jason Baron <jbaron@akamai.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-08-16 09:30:47 +02:00
Eric Dumazet
72c2d3bcca tcp: make challenge acks less predictable
[ Upstream commit 75ff39ccc1bd5d3c455b6822ab09e533c551f758 ]

Yue Cao claims that current host rate limiting of challenge ACKS
(RFC 5961) could leak enough information to allow a patient attacker
to hijack TCP sessions. He will soon provide details in an academic
paper.

This patch increases the default limit from 100 to 1000, and adds
some randomization so that the attacker can no longer hijack
sessions without spending a considerable amount of probes.

Based on initial analysis and patch from Linus.

Note that we also have per socket rate limiting, so it is tempting
to remove the host limit in the future.

v2: randomize the count of challenge acks per second, not the period.

Fixes: 282f23c6ee ("tcp: implement RFC 5961 3.2")
Reported-by: Yue Cao <ycao009@ucr.edu>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-08-16 09:30:47 +02:00
Yuchung Cheng
8b8a321ff7 tcp: fix zero cwnd in tcp_cwnd_reduction
Patch 3759824da8 ("tcp: PRR uses CRB mode by default and SS mode
conditionally") introduced a bug that cwnd may become 0 when both
inflight and sndcnt are 0 (cwnd = inflight + sndcnt). This may lead
to a div-by-zero if the connection starts another cwnd reduction
phase by setting tp->prior_cwnd to the current cwnd (0) in
tcp_init_cwnd_reduction().

To prevent this we skip PRR operation when nothing is acked or
sacked. Then cwnd must be positive in all cases as long as ssthresh
is positive:

1) The proportional reduction mode
   inflight > ssthresh > 0

2) The reduction bound mode
  a) inflight == ssthresh > 0

  b) inflight < ssthresh
     sndcnt > 0 since newly_acked_sacked > 0 and inflight < ssthresh

Therefore in all cases inflight and sndcnt can not both be 0.
We check invalid tp->prior_cwnd to avoid potential div0 bugs.

In reality this bug is triggered only with a sequence of less common
events.  For example, the connection is terminating an ECN-triggered
cwnd reduction with an inflight 0, then it receives reordered/old
ACKs or DSACKs from prior transmission (which acks nothing). Or the
connection is in fast recovery stage that marks everything lost,
but fails to retransmit due to local issues, then receives data
packets from other end which acks nothing.

Fixes: 3759824da8 ("tcp: PRR uses CRB mode by default and SS mode conditionally")
Reported-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-01-06 16:39:56 -05:00
Eric Dumazet
142a2e7ece tcp: initialize tp->copied_seq in case of cross SYN connection
Dmitry provided a syzkaller (http://github.com/google/syzkaller)
generated program that triggers the WARNING at
net/ipv4/tcp.c:1729 in tcp_recvmsg() :

WARN_ON(tp->copied_seq != tp->rcv_nxt &&
        !(flags & (MSG_PEEK | MSG_TRUNC)));

His program is specifically attempting a Cross SYN TCP exchange,
that we support (for the pleasure of hackers ?), but it looks we
lack proper tcp->copied_seq initialization.

Thanks again Dmitry for your report and testings.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-30 15:34:17 -05:00
Eric Dumazet
5d4c9bfbab tcp: fix potential huge kmalloc() calls in TCP_REPAIR
tcp_send_rcvq() is used for re-injecting data into tcp receive queue.

Problems :

- No check against size is performed, allowed user to fool kernel in
  attempting very large memory allocations, eventually triggering
  OOM when memory is fragmented.

- In case of fault during the copy we do not return correct errno.

Lets use alloc_skb_with_frags() to cook optimal skbs.

Fixes: 292e8d8c85 ("tcp: Move rcvq sending to tcp_input.c")
Fixes: c0e88ff0f2 ("tcp: Repair socket queues")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-20 10:57:33 -05:00
Yuchung Cheng
4f41b1c58a tcp: use RACK to detect losses
This patch implements the second half of RACK that uses the the most
recent transmit time among all delivered packets to detect losses.

tcp_rack_mark_lost() is called upon receiving a dubious ACK.
It then checks if an not-yet-sacked packet was sent at least
"reo_wnd" prior to the sent time of the most recently delivered.
If so the packet is deemed lost.

The "reo_wnd" reordering window starts with 1msec for fast loss
detection and changes to min-RTT/4 when reordering is observed.
We found 1msec accommodates well on tiny degree of reordering
(<3 pkts) on faster links. We use min-RTT instead of SRTT because
reordering is more of a path property but SRTT can be inflated by
self-inflicated congestion. The factor of 4 is borrowed from the
delayed early retransmit and seems to work reasonably well.

Since RACK is still experimental, it is now used as a supplemental
loss detection on top of existing algorithms. It is only effective
after the fast recovery starts or after the timeout occurs. The
fast recovery is still triggered by FACK and/or dupack threshold
instead of RACK.

We introduce a new sysctl net.ipv4.tcp_recovery for future
experiments of loss recoveries. For now RACK can be disabled by
setting it to 0.

Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-21 07:00:53 -07:00
Yuchung Cheng
659a8ad56f tcp: track the packet timings in RACK
This patch is the first half of the RACK loss recovery.

RACK loss recovery uses the notion of time instead
of packet sequence (FACK) or counts (dupthresh). It's inspired by the
previous FACK heuristic in tcp_mark_lost_retrans(): when a limited
transmit (new data packet) is sacked, then current retransmitted
sequence below the newly sacked sequence must been lost,
since at least one round trip time has elapsed.

But it has several limitations:
1) can't detect tail drops since it depends on limited transmit
2) is disabled upon reordering (assumes no reordering)
3) only enabled in fast recovery ut not timeout recovery

RACK (Recently ACK) addresses these limitations with the notion
of time instead: a packet P1 is lost if a later packet P2 is s/acked,
as at least one round trip has passed.

Since RACK cares about the time sequence instead of the data sequence
of packets, it can detect tail drops when later retransmission is
s/acked while FACK or dupthresh can't. For reordering RACK uses a
dynamically adjusted reordering window ("reo_wnd") to reduce false
positives on ever (small) degree of reordering.

This patch implements tcp_advanced_rack() which tracks the
most recent transmission time among the packets that have been
delivered (ACKed or SACKed) in tp->rack.mstamp. This timestamp
is the key to determine which packet has been lost.

Consider an example that the sender sends six packets:
T1: P1 (lost)
T2: P2
T3: P3
T4: P4
T100: sack of P2. rack.mstamp = T2
T101: retransmit P1
T102: sack of P2,P3,P4. rack.mstamp = T4
T205: ACK of P4 since the hole is repaired. rack.mstamp = T101

We need to be careful about spurious retransmission because it may
falsely advance tp->rack.mstamp by an RTT or an RTO, causing RACK
to falsely mark all packets lost, just like a spurious timeout.

We identify spurious retransmission by the ACK's TS echo value.
If TS option is not applicable but the retransmission is acknowledged
less than min-RTT ago, it is likely to be spurious. We refrain from
using the transmission time of these spurious retransmissions.

The second half is implemented in the next patch that marks packet
lost using RACK timestamp.

Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-21 07:00:48 -07:00
Yuchung Cheng
77c631273d tcp: add tcp_tsopt_ecr_before helper
a helper to prepare the main RACK patch

Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-21 07:00:45 -07:00
Yuchung Cheng
af82f4e848 tcp: remove tcp_mark_lost_retrans()
Remove the existing lost retransmit detection because RACK subsumes
it completely. This also stops the overloading the ack_seq field of
the skb control block.

Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-21 07:00:44 -07:00
Yuchung Cheng
f672258391 tcp: track min RTT using windowed min-filter
Kathleen Nichols' algorithm for tracking the minimum RTT of a
data stream over some measurement window. It uses constant space
and constant time per update. Yet it almost always delivers
the same minimum as an implementation that has to keep all
the data in the window. The measurement window is tunable via
sysctl.net.ipv4.tcp_min_rtt_wlen with a default value of 5 minutes.

The algorithm keeps track of the best, 2nd best & 3rd best min
values, maintaining an invariant that the measurement time of
the n'th best >= n-1'th best. It also makes sure that the three
values are widely separated in the time window since that bounds
the worse case error when that data is monotonically increasing
over the window.

Upon getting a new min, we can forget everything earlier because
it has no value - the new min is less than everything else in the
window by definition and it's the most recent. So we restart fresh
on every new min and overwrites the 2nd & 3rd choices. The same
property holds for the 2nd & 3rd best.

Therefore we have to maintain two invariants to maximize the
information in the samples, one on values (1st.v <= 2nd.v <=
3rd.v) and the other on times (now-win <=1st.t <= 2nd.t <= 3rd.t <=
now). These invariants determine the structure of the code

The RTT input to the windowed filter is the minimum RTT measured
from ACK or SACK, or as the last resort from TCP timestamps.

The accessor tcp_min_rtt() returns the minimum RTT seen in the
window. ~0U indicates it is not available. The minimum is 1usec
even if the true RTT is below that.

Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-21 07:00:43 -07:00
Yuchung Cheng
9e45a3e36b tcp: apply Kern's check on RTTs used for congestion control
Currently ca_seq_rtt_us does not use Kern's check. Fix that by
checking if any packet acked is a retransmit, for both RTT used
for RTT estimation and congestion control.

Fixes: 5b08e47ca ("tcp: prefer packet timing to TS-ECR for RTT")
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-21 07:00:41 -07:00
Eric Dumazet
dc6ef6be52 tcp: do not set queue_mapping on SYNACK
At the time of commit fff3269907 ("tcp: reflect SYN queue_mapping into
SYNACK packets") we had little ways to cope with SYN floods.

We no longer need to reflect incoming skb queue mappings, and instead
can pick a TX queue based on cpu cooking the SYNACK, with normal XPS
affinities.

Note that all SYNACK retransmits were picking TX queue 0, this no longer
is a win given that SYNACK rtx are now distributed on all cpus.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-18 22:26:02 -07:00
Eric Dumazet
ed53d0ab76 net: shrink struct sock and request_sock by 8 bytes
One 32bit hole is following skc_refcnt, use it.
skc_incoming_cpu can also be an union for request_sock rcv_wnd.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-12 19:28:22 -07:00
Eric Dumazet
a1a5344ddb tcp: avoid two atomic ops for syncookies
inet_reqsk_alloc() is used to allocate a temporary request
in order to generate a SYNACK with a cookie. Then later,
syncookie validation also uses a temporary request.

These paths already took a reference on listener refcount,
we can avoid a couple of atomic operations.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-05 02:45:27 -07:00
Eric Dumazet
7656d842de tcp: fix fastopen races vs lockless listener
There are multiple races that need fixes :

1) skb_get() + queue skb + kfree_skb() is racy

An accept() can be done on another cpu, data consumed immediately.
tcp_recvmsg() uses __kfree_skb() as it is assumed all skb found in
socket receive queue are private.

Then the kfree_skb() in tcp_rcv_state_process() uses an already freed skb

2) tcp_reqsk_record_syn() needs to be done before tcp_try_fastopen()
for the same reasons.

3) We want to send the SYNACK before queueing child into accept queue,
otherwise we might reintroduce the ooo issue fixed in
commit 7c85af8810 ("tcp: avoid reorders for TFO passive connections")

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-05 02:45:24 -07:00
Eric Dumazet
ca6fb06518 tcp: attach SYNACK messages to request sockets instead of listener
If a listen backlog is very big (to avoid syncookies), then
the listener sk->sk_wmem_alloc is the main source of false
sharing, as we need to touch it twice per SYNACK re-transmit
and TX completion.

(One SYN packet takes listener lock once, but up to 6 SYNACK
are generated)

By attaching the skb to the request socket, we remove this
source of contention.

Tested:

 listen(fd, 10485760); // single listener (no SO_REUSEPORT)
 16 RX/TX queue NIC
 Sustain a SYNFLOOD attack of ~320,000 SYN per second,
 Sending ~1,400,000 SYNACK per second.
 Perf profiles now show listener spinlock being next bottleneck.

    20.29%  [kernel]  [k] queued_spin_lock_slowpath
    10.06%  [kernel]  [k] __inet_lookup_established
     5.12%  [kernel]  [k] reqsk_timer_handler
     3.22%  [kernel]  [k] get_next_timer_interrupt
     3.00%  [kernel]  [k] tcp_make_synack
     2.77%  [kernel]  [k] ipt_do_table
     2.70%  [kernel]  [k] run_timer_softirq
     2.50%  [kernel]  [k] ip_finish_output
     2.04%  [kernel]  [k] cascade

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-03 04:32:43 -07:00