There are many BUG_ON in zsmalloc.c which is not recommened so change
them as alternatives.
Normal rule is as follows:
1. avoid BUG_ON if possible. Instead, use VM_BUG_ON or VM_BUG_ON_PAGE
2. use VM_BUG_ON_PAGE if we need to see struct page's fields
3. use those assertion in primitive functions so higher functions can
rely on the assertion in the primitive function.
4. Don't use assertion if following instruction can trigger Oops
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Git-commit: 830e4bc5baa9fda5d45257e9a3dbb3555c6c180e
Git-repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Change-Id: Ia4b15fb09ad5398165781861952d075665c8b8e9
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
Clean up function parameter "struct page". Many functions of zsmalloc
expect that page paramter is "first_page" so use "first_page" rather
than "page" for code readability.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Git-commit: a42094676f076534bf4998625456fe0bb99c1f1e
Git-repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Change-Id: I68c0a37a1fd5c8a9f34c7e7a0d2a580c1720685d
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
Add a new column to pool stats, which will tell how many pages ideally
can be freed by class compaction, so it will be easier to analyze
zsmalloc fragmentation.
At the moment, we have only numbers of FULL and ALMOST_EMPTY classes,
but they don't tell us how badly the class is fragmented internally.
The new /sys/kernel/debug/zsmalloc/zramX/classes output look as follows:
class size almost_full almost_empty obj_allocated obj_used pages_used pages_per_zspage freeable
[..]
12 224 0 2 146 5 8 4 4
13 240 0 0 0 0 0 1 0
14 256 1 13 1840 1672 115 1 10
15 272 0 0 0 0 0 1 0
[..]
49 816 0 3 745 735 149 1 2
51 848 3 4 361 306 76 4 8
52 864 12 14 378 268 81 3 21
54 896 1 12 117 57 26 2 12
57 944 0 0 0 0 0 3 0
[..]
Total 26 131 12709 10994 1071 134
For example, from this particular output we can easily conclude that
class-896 is heavily fragmented -- it occupies 26 pages, 12 can be freed
by compaction.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Git-commit: 1120ed5483941d9cd2cf52cb9644a4311dbd1011
Git-repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Change-Id: Ib3cf57a59c3c3ec469f43f594a1b20514ea8e452
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
When unmapping a huge class page in zs_unmap_object, the page will be
unmapped by kmap_atomic. the "!area->huge" branch in __zs_unmap_object
is alway true, and no code set "area->huge" now, so we can drop it.
Signed-off-by: YiPing Xu <xuyiping@huawei.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Git-commit: a82cbf07131b56e7e51fbb008b82ef769af08790
Git-repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Change-Id: I332dc03f886d1e6547b0b59914046a7924405d1b
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
Reoder the pages_per_zspage field in struct size_class which can
eliminate the 4 bytes hole between it and stats field.
Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Git-commit: 7dfa4612204b511c934ca2a0e4f306f9981bd9aa
Git-repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Change-Id: I82fdd68951448d78540e61f70d8d0123604d7e28
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
Now, VM has a feature to migrate non-lru movable pages so balloon
doesn't need custom migration hooks in migrate.c and compaction.c.
Instead, this patch implements the page->mapping->a_ops->
{isolate|migrate|putback} functions.
With that, we could remove hooks for ballooning in general migration
functions and make balloon compaction simple.
[akpm@linux-foundation.org: compaction.h requires that the includer first include node.h]
Link: http://lkml.kernel.org/r/1464736881-24886-4-git-send-email-minchan@kernel.org
Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Git-commit: b1123ea6d3b3da25af5c8a9d843bd07ab63213f4
Git-repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Change-Id: Ibf5bc7ffcbfd31e01946729dc5366baa79d7cf5e
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
We have allowed migration for only LRU pages until now and it was enough
to make high-order pages. But recently, embedded system(e.g., webOS,
android) uses lots of non-movable pages(e.g., zram, GPU memory) so we
have seen several reports about troubles of small high-order allocation.
For fixing the problem, there were several efforts (e,g,. enhance
compaction algorithm, SLUB fallback to 0-order page, reserved memory,
vmalloc and so on) but if there are lots of non-movable pages in system,
their solutions are void in the long run.
So, this patch is to support facility to change non-movable pages with
movable. For the feature, this patch introduces functions related to
migration to address_space_operations as well as some page flags.
If a driver want to make own pages movable, it should define three
functions which are function pointers of struct
address_space_operations.
1. bool (*isolate_page) (struct page *page, isolate_mode_t mode);
What VM expects on isolate_page function of driver is to return *true*
if driver isolates page successfully. On returing true, VM marks the
page as PG_isolated so concurrent isolation in several CPUs skip the
page for isolation. If a driver cannot isolate the page, it should
return *false*.
Once page is successfully isolated, VM uses page.lru fields so driver
shouldn't expect to preserve values in that fields.
2. int (*migratepage) (struct address_space *mapping,
struct page *newpage, struct page *oldpage, enum migrate_mode);
After isolation, VM calls migratepage of driver with isolated page. The
function of migratepage is to move content of the old page to new page
and set up fields of struct page newpage. Keep in mind that you should
indicate to the VM the oldpage is no longer movable via
__ClearPageMovable() under page_lock if you migrated the oldpage
successfully and returns 0. If driver cannot migrate the page at the
moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page
migration in a short time because VM interprets -EAGAIN as "temporal
migration failure". On returning any error except -EAGAIN, VM will give
up the page migration without retrying in this time.
Driver shouldn't touch page.lru field VM using in the functions.
3. void (*putback_page)(struct page *);
If migration fails on isolated page, VM should return the isolated page
to the driver so VM calls driver's putback_page with migration failed
page. In this function, driver should put the isolated page back to the
own data structure.
4. non-lru movable page flags
There are two page flags for supporting non-lru movable page.
* PG_movable
Driver should use the below function to make page movable under
page_lock.
void __SetPageMovable(struct page *page, struct address_space *mapping)
It needs argument of address_space for registering migration family
functions which will be called by VM. Exactly speaking, PG_movable is
not a real flag of struct page. Rather than, VM reuses page->mapping's
lower bits to represent it.
#define PAGE_MAPPING_MOVABLE 0x2
page->mapping = page->mapping | PAGE_MAPPING_MOVABLE;
so driver shouldn't access page->mapping directly. Instead, driver
should use page_mapping which mask off the low two bits of page->mapping
so it can get right struct address_space.
For testing of non-lru movable page, VM supports __PageMovable function.
However, it doesn't guarantee to identify non-lru movable page because
page->mapping field is unified with other variables in struct page. As
well, if driver releases the page after isolation by VM, page->mapping
doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at
__ClearPageMovable). But __PageMovable is cheap to catch whether page
is LRU or non-lru movable once the page has been isolated. Because LRU
pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also
good for just peeking to test non-lru movable pages before more
expensive checking with lock_page in pfn scanning to select victim.
For guaranteeing non-lru movable page, VM provides PageMovable function.
Unlike __PageMovable, PageMovable functions validates page->mapping and
mapping->a_ops->isolate_page under lock_page. The lock_page prevents
sudden destroying of page->mapping.
Driver using __SetPageMovable should clear the flag via
__ClearMovablePage under page_lock before the releasing the page.
* PG_isolated
To prevent concurrent isolation among several CPUs, VM marks isolated
page as PG_isolated under lock_page. So if a CPU encounters PG_isolated
non-lru movable page, it can skip it. Driver doesn't need to manipulate
the flag because VM will set/clear it automatically. Keep in mind that
if driver sees PG_isolated page, it means the page have been isolated by
VM so it shouldn't touch page.lru field. PG_isolated is alias with
PG_reclaim flag so driver shouldn't use the flag for own purpose.
[opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru]
Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test
Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org
Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: John Einar Reitan <john.reitan@foss.arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Git-commit: bda807d4445414e8e77da704f116bb0880fe0c76
Git-repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Change-Id: I03380d927fed84c7464bd5f7c4405bef6b265b69
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
Recently, I got many reports about perfermance degradation in embedded
system(Android mobile phone, webOS TV and so on) and easy fork fail.
The problem was fragmentation caused by zram and GPU driver mainly.
With memory pressure, their pages were spread out all of pageblock and
it cannot be migrated with current compaction algorithm which supports
only LRU pages. In the end, compaction cannot work well so reclaimer
shrinks all of working set pages. It made system very slow and even to
fail to fork easily which requires order-[2 or 3] allocations.
Other pain point is that they cannot use CMA memory space so when OOM
kill happens, I can see many free pages in CMA area, which is not memory
efficient. In our product which has big CMA memory, it reclaims zones
too exccessively to allocate GPU and zram page although there are lots
of free space in CMA so system becomes very slow easily.
To solve these problem, this patch tries to add facility to migrate
non-lru pages via introducing new functions and page flags to help
migration.
struct address_space_operations {
..
..
bool (*isolate_page)(struct page *, isolate_mode_t);
void (*putback_page)(struct page *);
..
}
new page flags
PG_movable
PG_isolated
For details, please read description in "mm: migrate: support non-lru
movable page migration".
Originally, Gioh Kim had tried to support this feature but he moved so I
took over the work. I took many code from his work and changed a little
bit and Konstantin Khlebnikov helped Gioh a lot so he should deserve to
have many credit, too.
And I should mention Chulmin who have tested this patchset heavily so I
can find many bugs from him. :)
Thanks, Gioh, Konstantin and Chulmin!
This patchset consists of five parts.
1. clean up migration
mm: use put_page to free page instead of putback_lru_page
2. add non-lru page migration feature
mm: migrate: support non-lru movable page migration
3. rework KVM memory-ballooning
mm: balloon: use general non-lru movable page feature
4. zsmalloc refactoring for preparing page migration
zsmalloc: keep max_object in size_class
zsmalloc: use bit_spin_lock
zsmalloc: use accessor
zsmalloc: factor page chain functionality out
zsmalloc: introduce zspage structure
zsmalloc: separate free_zspage from putback_zspage
zsmalloc: use freeobj for index
5. zsmalloc page migration
zsmalloc: page migration support
zram: use __GFP_MOVABLE for memory allocation
This patch (of 12):
Procedure of page migration is as follows:
First of all, it should isolate a page from LRU and try to migrate the
page. If it is successful, it releases the page for freeing.
Otherwise, it should put the page back to LRU list.
For LRU pages, we have used putback_lru_page for both freeing and
putback to LRU list. It's okay because put_page is aware of LRU list so
if it releases last refcount of the page, it removes the page from LRU
list. However, It makes unnecessary operations (e.g., lru_cache_add,
pagevec and flags operations. It would be not significant but no worth
to do) and harder to support new non-lru page migration because put_page
isn't aware of non-lru page's data structure.
To solve the problem, we can add new hook in put_page with PageMovable
flags check but it can increase overhead in hot path and needs new
locking scheme to stabilize the flag check with put_page.
So, this patch cleans it up to divide two semantic(ie, put and putback).
If migration is successful, use put_page instead of putback_lru_page and
use putback_lru_page only on failure. That makes code more readable and
doesn't add overhead in put_page.
Comment from Vlastimil
"Yeah, and compaction (perhaps also other migration users) has to drain
the lru pvec... Getting rid of this stuff is worth even by itself."
Link: http://lkml.kernel.org/r/1464736881-24886-2-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Git-commit: c6c919eb90e021fbcfcbfa9dd3d55930cdbb67f9
Git-repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Change-Id: I2c00623996f8017b9c84ed12fcc4d85290a1712c
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
While testing the kcompactd in my platform 3G MEM only DMA ZONE. I
found the kcompactd never wakeup. It seems the zoneindex has already
minus 1 before. So the traverse here should be <=.
It fixes a regression where kswapd could previously compact, but
kcompactd not. Not a crash fix though.
[akpm@linux-foundation.org: fix kcompactd_do_work() as well, per Hugh]
Link: http://lkml.kernel.org/r/1463659121-84124-1-git-send-email-puck.chen@hisilicon.com
Fixes: accf62422b3a ("mm, kswapd: replace kswapd compaction with waking up kcompactd")
Signed-off-by: Chen Feng <puck.chen@hisilicon.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zhuangluan Su <suzhuangluan@hisilicon.com>
Cc: Yiping Xu <xuyiping@hisilicon.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Git-commit: 6cd9dc3e75078ef646076fa63adfb9b85ced0b66
Git-repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Change-Id: Id5d2fe71ab7e62b0c063b9ba27b3b112447d1fdc
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
Assume memory47 is the last online block left in node1. This will hang:
# echo offline > /sys/devices/system/node/node1/memory47/state
After a couple of minutes, the following pops up in dmesg:
INFO: task bash:957 blocked for more than 120 seconds.
Not tainted 4.6.0-rc6+ #6
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
bash D ffff8800b7adbaf8 0 957 951 0x00000000
Call Trace:
schedule+0x35/0x80
schedule_timeout+0x1ac/0x270
wait_for_completion+0xe1/0x120
kthread_stop+0x4f/0x110
kcompactd_stop+0x26/0x40
__offline_pages.constprop.28+0x7e6/0x840
offline_pages+0x11/0x20
memory_block_action+0x73/0x1d0
memory_subsys_offline+0x47/0x60
device_offline+0x86/0xb0
store_mem_state+0xda/0xf0
dev_attr_store+0x18/0x30
sysfs_kf_write+0x37/0x40
kernfs_fop_write+0x11d/0x170
__vfs_write+0x37/0x120
vfs_write+0xa9/0x1a0
SyS_write+0x55/0xc0
entry_SYSCALL_64_fastpath+0x1a/0xa4
kcompactd is waiting for kcompactd_max_order > 0 when it's woken up to
actually exit. Check kthread_should_stop() to break out of the wait.
Fixes: 698b1b306 ("mm, compaction: introduce kcompactd").
Reported-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Git-commit: 172400c69cb0d0d684b7cd75ac75872b3d7c61a1
Git-repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Change-Id: Ia90162cd5fe4cd502efc6bde3bf70cd227f58899
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
When kswapd goes to sleep it checks if the node is balanced and at first
it sleeps only for HZ/10 time, then rechecks if the node is still
balanced and nobody has woken it during the initial sleep. Only then it
goes fully sleep until an allocation slowpath wakes it up again.
For higher-order allocations, waking up kcompactd is done only before
the full sleep. This turns out to be an issue in case another
high-order allocation fails during the initial sleep. It will wake
kswapd up, however kswapd considers the zone balanced from the order-0
perspective, and will just quickly try to sleep again. So if there's a
longer stream of high-order allocations hitting the slowpath and waking
up kswapd, it might never actually wake up kcompactd, which may be
considered a regression from kswapd-based compaction. In the worst
case, it might be that a single allocation that cannot direct
reclaim/compact itself is waking kswapd in the retry loop and preventing
kcompactd from being woken up and unblocking it.
This patch makes sure kcompactd is woken up in such situations by simply
moving the wakeup before the short initial sleep. More efficient
solution would be to wake kcompactd immediately instead of kswapd if the
node is already order-0 balanced, but in that case we should also move
reset_isolation_suitable() call to kcompactd so it's not adding to the
allocator's latency. Since it's late in the 4.6 cycle, let's go with
the simpler change for now.
Fixes: accf62422b3a ("mm, kswapd: replace kswapd compaction with waking up kcompactd")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Git-commit: fd901c95388b3bd5a6f749ed1d677a672b992298
Git-repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Change-Id: I6ecee84788d40a327d33c1ed3655172f4f20f06b
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
Similarly to direct reclaim/compaction, kswapd attempts to combine
reclaim and compaction to attempt making memory allocation of given
order available.
The details differ from direct reclaim e.g. in having high watermark as
a goal. The code involved in kswapd's reclaim/compaction decisions has
evolved to be quite complex.
Testing reveals that it doesn't actually work in at least one scenario,
and closer inspection suggests that it could be greatly simplified
without compromising on the goal (make high-order page available) or
efficiency (don't reclaim too much). The simplification relieas of
doing all compaction in kcompactd, which is simply woken up when high
watermarks are reached by kswapd's reclaim.
The scenario where kswapd compaction doesn't work was found with mmtests
test stress-highalloc configured to attempt order-9 allocations without
direct reclaim, just waking up kswapd. There was no compaction attempt
from kswapd during the whole test. Some added instrumentation shows
what happens:
- balance_pgdat() sets end_zone to Normal, as it's not balanced
- reclaim is attempted on DMA zone, which sets nr_attempted to 99, but
it cannot reclaim anything, so sc.nr_reclaimed is 0
- for zones DMA32 and Normal, kswapd_shrink_zone uses testorder=0, so
it merely checks if high watermarks were reached for base pages.
This is true, so no reclaim is attempted. For DMA, testorder=0
wasn't used, as compaction_suitable() returned COMPACT_SKIPPED
- even though the pgdat_needs_compaction flag wasn't set to false, no
compaction happens due to the condition sc.nr_reclaimed >
nr_attempted being false (as 0 < 99)
- priority-- due to nr_reclaimed being 0, repeat until priority reaches
0 pgdat_balanced() is false as only the small zone DMA appears
balanced (curiously in that check, watermark appears OK and
compaction_suitable() returns COMPACT_PARTIAL, because a lower
classzone_idx is used there)
Now, even if it was decided that reclaim shouldn't be attempted on the
DMA zone, the scenario would be the same, as (sc.nr_reclaimed=0 >
nr_attempted=0) is also false. The condition really should use >= as
the comment suggests. Then there is a mismatch in the check for setting
pgdat_needs_compaction to false using low watermark, while the rest uses
high watermark, and who knows what other subtlety. Hopefully this
demonstrates that this is unsustainable.
Luckily we can simplify this a lot. The reclaim/compaction decisions
make sense for direct reclaim scenario, but in kswapd, our primary goal
is to reach high watermark in order-0 pages. Afterwards we can attempt
compaction just once. Unlike direct reclaim, we don't reclaim extra
pages (over the high watermark), the current code already disallows it
for good reasons.
After this patch, we simply wake up kcompactd to process the pgdat,
after we have either succeeded or failed to reach the high watermarks in
kswapd, which goes to sleep. We pass kswapd's order and classzone_idx,
so kcompactd can apply the same criteria to determine which zones are
worth compacting. Note that we use the classzone_idx from
wakeup_kswapd(), not balanced_classzone_idx which can include higher
zones that kswapd tried to balance too, but didn't consider them in
pgdat_balanced().
Since kswapd now cannot create high-order pages itself, we need to
adjust how it determines the zones to be balanced. The key element here
is adding a "highorder" parameter to zone_balanced, which, when set to
false, makes it consider only order-0 watermark instead of the desired
higher order (this was done previously by kswapd_shrink_zone(), but not
elsewhere). This false is passed for example in pgdat_balanced().
Importantly, wakeup_kswapd() uses true to make sure kswapd and thus
kcompactd are woken up for a high-order allocation failure.
The last thing is to decide what to do with pageblock_skip bitmap
handling. Compaction maintains a pageblock_skip bitmap to record
pageblocks where isolation recently failed. This bitmap can be reset by
three ways:
1) direct compaction is restarting after going through the full deferred cycle
2) kswapd goes to sleep, and some other direct compaction has previously
finished scanning the whole zone and set zone->compact_blockskip_flush.
Note that a successful direct compaction clears this flag.
3) compaction was invoked manually via trigger in /proc
The case 2) is somewhat fuzzy to begin with, but after introducing
kcompactd we should update it. The check for direct compaction in 1),
and to set the flush flag in 2) use current_is_kswapd(), which doesn't
work for kcompactd. Thus, this patch adds bool direct_compaction to
compact_control to use in 2). For the case 1) we remove the check
completely - unlike the former kswapd compaction, kcompactd does use the
deferred compaction functionality, so flushing tied to restarting from
deferred compaction makes sense here.
Note that when kswapd goes to sleep, kcompactd is woken up, so it will
see the flushed pageblock_skip bits. This is different from when the
former kswapd compaction observed the bits and I believe it makes more
sense. Kcompactd can afford to be more thorough than a direct
compaction trying to limit allocation latency, or kswapd whose primary
goal is to reclaim.
For testing, I used stress-highalloc configured to do order-9
allocations with GFP_NOWAIT|__GFP_HIGH|__GFP_COMP, so they relied just
on kswapd/kcompactd reclaim/compaction (the interfering kernel builds in
phases 1 and 2 work as usual):
stress-highalloc
4.5-rc1+before 4.5-rc1+after
-nodirect -nodirect
Success 1 Min 1.00 ( 0.00%) 5.00 (-66.67%)
Success 1 Mean 1.40 ( 0.00%) 6.20 (-55.00%)
Success 1 Max 2.00 ( 0.00%) 7.00 (-16.67%)
Success 2 Min 1.00 ( 0.00%) 5.00 (-66.67%)
Success 2 Mean 1.80 ( 0.00%) 6.40 (-52.38%)
Success 2 Max 3.00 ( 0.00%) 7.00 (-16.67%)
Success 3 Min 34.00 ( 0.00%) 62.00 ( 1.59%)
Success 3 Mean 41.80 ( 0.00%) 63.80 ( 1.24%)
Success 3 Max 53.00 ( 0.00%) 65.00 ( 2.99%)
User 3166.67 3181.09
System 1153.37 1158.25
Elapsed 1768.53 1799.37
4.5-rc1+before 4.5-rc1+after
-nodirect -nodirect
Direct pages scanned 32938 32797
Kswapd pages scanned 2183166 2202613
Kswapd pages reclaimed 2152359 2143524
Direct pages reclaimed 32735 32545
Percentage direct scans 1% 1%
THP fault alloc 579 612
THP collapse alloc 304 316
THP splits 0 0
THP fault fallback 793 778
THP collapse fail 11 16
Compaction stalls 1013 1007
Compaction success 92 67
Compaction failures 920 939
Page migrate success 238457 721374
Page migrate failure 23021 23469
Compaction pages isolated 504695 1479924
Compaction migrate scanned 661390 8812554
Compaction free scanned 13476658 84327916
Compaction cost 262 838
After this patch we see improvements in allocation success rate
(especially for phase 3) along with increased compaction activity. The
compaction stalls (direct compaction) in the interfering kernel builds
(probably THP's) also decreased somewhat thanks to kcompactd activity,
yet THP alloc successes improved a bit.
Note that elapsed and user time isn't so useful for this benchmark,
because of the background interference being unpredictable. It's just
to quickly spot some major unexpected differences. System time is
somewhat more useful and that didn't increase.
Also (after adjusting mmtests' ftrace monitor):
Time kswapd awake 2547781 2269241
Time kcompactd awake 0 119253
Time direct compacting 939937 557649
Time kswapd compacting 0 0
Time kcompactd compacting 0 119099
The decrease of overal time spent compacting appears to not match the
increased compaction stats. I suspect the tasks get rescheduled and
since the ftrace monitor doesn't see that, the reported time is wall
time, not CPU time. But arguably direct compactors care about overall
latency anyway, whether busy compacting or waiting for CPU doesn't
matter. And that latency seems to almost halved.
It's also interesting how much time kswapd spent awake just going
through all the priorities and failing to even try compacting, over and
over.
We can also configure stress-highalloc to perform both direct
reclaim/compaction and wakeup kswapd/kcompactd, by using
GFP_KERNEL|__GFP_HIGH|__GFP_COMP:
stress-highalloc
4.5-rc1+before 4.5-rc1+after
-direct -direct
Success 1 Min 4.00 ( 0.00%) 9.00 (-50.00%)
Success 1 Mean 8.00 ( 0.00%) 10.00 (-19.05%)
Success 1 Max 12.00 ( 0.00%) 11.00 ( 15.38%)
Success 2 Min 4.00 ( 0.00%) 9.00 (-50.00%)
Success 2 Mean 8.20 ( 0.00%) 10.00 (-16.28%)
Success 2 Max 13.00 ( 0.00%) 11.00 ( 8.33%)
Success 3 Min 75.00 ( 0.00%) 74.00 ( 1.33%)
Success 3 Mean 75.60 ( 0.00%) 75.20 ( 0.53%)
Success 3 Max 77.00 ( 0.00%) 76.00 ( 0.00%)
User 3344.73 3246.04
System 1194.24 1172.29
Elapsed 1838.04 1836.76
4.5-rc1+before 4.5-rc1+after
-direct -direct
Direct pages scanned 125146 120966
Kswapd pages scanned 2119757 2135012
Kswapd pages reclaimed 2073183 2108388
Direct pages reclaimed 124909 120577
Percentage direct scans 5% 5%
THP fault alloc 599 652
THP collapse alloc 323 354
THP splits 0 0
THP fault fallback 806 793
THP collapse fail 17 16
Compaction stalls 2457 2025
Compaction success 906 518
Compaction failures 1551 1507
Page migrate success 2031423 2360608
Page migrate failure 32845 40852
Compaction pages isolated 4129761 4802025
Compaction migrate scanned 11996712 21750613
Compaction free scanned 214970969 344372001
Compaction cost 2271 2694
In this scenario, this patch doesn't change the overall success rate as
direct compaction already tries all it can. There's however significant
reduction in direct compaction stalls (that is, the number of
allocations that went into direct compaction). The number of successes
(i.e. direct compaction stalls that ended up with successful
allocation) is reduced by the same number. This means the offload to
kcompactd is working as expected, and direct compaction is reduced
either due to detecting contention, or compaction deferred by kcompactd.
In the previous version of this patchset there was some apparent
reduction of success rate, but the changes in this version (such as
using sync compaction only), new baseline kernel, and/or averaging
results from 5 executions (my bet), made this go away.
Ftrace-based stats seem to roughly agree:
Time kswapd awake 2532984 2326824
Time kcompactd awake 0 257916
Time direct compacting 864839 735130
Time kswapd compacting 0 0
Time kcompactd compacting 0 257585
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Git-commit: accf62422b3a67fce8ce086aa81c8300ddbf42be
Git-repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Change-Id: I5cc784ff0fb1b28bdcfa8d4ef9bd33f585ee4662
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
We can reuse the nid we've determined instead of repeated pfn_to_nid()
usages. Also zone_to_nid() should be a bit cheaper in general than
pfn_to_nid().
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Git-commit: e888ca3545dc6823603b976e40b62af2c68b6fcc
Git-repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Change-Id: I6bdb2530fd6306ceb49022ef9cdc82b5598ebe8c
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
Memory compaction can be currently performed in several contexts:
- kswapd balancing a zone after a high-order allocation failure
- direct compaction to satisfy a high-order allocation, including THP
page fault attemps
- khugepaged trying to collapse a hugepage
- manually from /proc
The purpose of compaction is two-fold. The obvious purpose is to
satisfy a (pending or future) high-order allocation, and is easy to
evaluate. The other purpose is to keep overal memory fragmentation low
and help the anti-fragmentation mechanism. The success wrt the latter
purpose is more
The current situation wrt the purposes has a few drawbacks:
- compaction is invoked only when a high-order page or hugepage is not
available (or manually). This might be too late for the purposes of
keeping memory fragmentation low.
- direct compaction increases latency of allocations. Again, it would
be better if compaction was performed asynchronously to keep
fragmentation low, before the allocation itself comes.
- (a special case of the previous) the cost of compaction during THP
page faults can easily offset the benefits of THP.
- kswapd compaction appears to be complex, fragile and not working in
some scenarios. It could also end up compacting for a high-order
allocation request when it should be reclaiming memory for a later
order-0 request.
To improve the situation, we should be able to benefit from an
equivalent of kswapd, but for compaction - i.e. a background thread
which responds to fragmentation and the need for high-order allocations
(including hugepages) somewhat proactively.
One possibility is to extend the responsibilities of kswapd, which could
however complicate its design too much. It should be better to let
kswapd handle reclaim, as order-0 allocations are often more critical
than high-order ones.
Another possibility is to extend khugepaged, but this kthread is a
single instance and tied to THP configs.
This patch goes with the option of a new set of per-node kthreads called
kcompactd, and lays the foundations, without introducing any new
tunables. The lifecycle mimics kswapd kthreads, including the memory
hotplug hooks.
For compaction, kcompactd uses the standard compaction_suitable() and
ompact_finished() criteria and the deferred compaction functionality.
Unlike direct compaction, it uses only sync compaction, as there's no
allocation latency to minimize.
This patch doesn't yet add a call to wakeup_kcompactd. The kswapd
compact/reclaim loop for high-order pages will be replaced by waking up
kcompactd in the next patch with the description of what's wrong with
the old approach.
Waking up of the kcompactd threads is also tied to kswapd activity and
follows these rules:
- we don't want to affect any fastpaths, so wake up kcompactd only from
the slowpath, as it's done for kswapd
- if kswapd is doing reclaim, it's more important than compaction, so
don't invoke kcompactd until kswapd goes to sleep
- the target order used for kswapd is passed to kcompactd
Future possible future uses for kcompactd include the ability to wake up
kcompactd on demand in special situations, such as when hugepages are
not available (currently not done due to __GFP_NO_KSWAPD) or when a
fragmentation event (i.e. __rmqueue_fallback()) occurs. It's also
possible to perform periodic compaction with kcompactd.
[arnd@arndb.de: fix build errors with kcompactd]
[paul.gortmaker@windriver.com: don't use modular references for non modular code]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Git-commit: 698b1b30642f1ff0ea10ef1de9745ab633031377
Git-repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Change-Id: I987ae548cba936987b8479dc02de67d0f88b9cb6
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
During work on kcompactd integration I have spotted a confusing check of
balance_classzone_idx, which I believe is bogus.
The balanced_classzone_idx is filled by balance_pgdat() as the highest
zone it attempted to balance. This was introduced by commit dc83edd941
("mm: kswapd: use the classzone idx that kswapd was using for
sleeping_prematurely()").
The intention is that (as expressed in today's function names), the
value used for kswapd_shrink_zone() calls in balance_pgdat() is the same
as for the decisions in kswapd_try_to_sleep().
An unwanted side-effect of that commit was breaking the checks in
kswapd() whether there was another kswapd_wakeup with a tighter (=lower)
classzone_idx. Commits 215ddd6664 ("mm: vmscan: only read
new_classzone_idx from pgdat when reclaiming successfully") and
d2ebd0f6b8 ("kswapd: avoid unnecessary rebalance after an unsuccessful
balancing") tried to fixed, but apparently introduced a bogus check that
this patch removes.
Consider zone indexes X < Y < Z, where:
- Z is the value used for the first kswapd wakeup.
- Y is returned as balanced_classzone_idx, which means zones with index higher
than Y (including Z) were found to be unreclaimable.
- X is the value used for the second kswapd wakeup
The new wakeup with value X means that kswapd is now supposed to balance
harder all zones with index <= X. But instead, due to Y < Z, it will go
sleep and won't read the new value X. This is subtly wrong.
The effect of this patch is that kswapd will react better in some
situations, where e.g. the first wakeup is for ZONE_DMA32, the second is
for ZONE_DMA, and due to unreclaimable ZONE_NORMAL. Before this patch,
kswapd would go sleep instead of reclaiming ZONE_DMA harder. I expect
these situations are very rare, and more value is in better
maintainability due to the removal of confusing and bogus check.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Git-commit: 81c5857b279e6b18f6ff0d1975e80a07af542cd1
Git-repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Change-Id: If520144bb67b346a739166721137284112b9816a
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
As QVR8998 project needed, add configuration for ST touch
panel driver.
Change-Id: I5bf4d705cedb32a26bed3832dac3fe08a0f45cfa
Signed-off-by: Jin Fu <jinf@codeaurora.org>
Add ST touch controller device node for QVR8998.Touch
controller is connected to the host processor via I2C.
Change-Id: Iad7db584a80c025e24f574292a63e019732da12c
Signed-off-by: Jin Fu <jinf@codeaurora.org>
msm8998 has a new version of display hardware block.
This Change adds the dtsi support for sde block.
CRs-Fixed: 2002381
Change-Id: Ib18d2e2134a314295667d557ab314cd9aab82585
Signed-off-by: Gopikrishnaiah Anandan <agopik@codeaurora.org>
Signed-off-by: Manoj Kumar AVM <manojavm@codeaurora.org>
LPM Errata feature is enabled on dwc3 controller which has
DWC3_REVISION_300A.
Change-Id: Iae32496ce5c35515f2b393171a4c3ba27790157b
Signed-off-by: Vijayavardhan Vennapusa <vvreddy@codeaurora.org>
While notifier de_register, we access the list which is not initialized.
Hence can result in access of uninitialized variable.
Update the loop to use correct list variable.
CRs-Fixed: 2002748
Change-Id: Ibff56477ed3fba90c8ff704ea7dbe3c472f59836
Signed-off-by: Vatsal Bucha <vbucha@codeaurora.org>
For sdm630, LM0 and LM2 layer-mixers are present.
LM1 interface mixer is removed. So, enumerate the
LM2 mixer correctly.
Change-Id: Iceff8f215ca34e95556368a13a9b0c8aeb7c2ef3
Signed-off-by: Jayant Shekhar <jshekhar@codeaurora.org>
There is no requirement to vote on active only clock of MMSSNOC cpu clock,
as the handoff flag for rpm clocks already takes care of the initial vote,
until the client puts across a vote.
Change-Id: I7804daa804d06ea3a7a81c4cf33156cc7324a542
Signed-off-by: Taniya Das <tdas@codeaurora.org>
Added logic to get and change format of MI2S
RX and TX streams.
CRs-Fixed: 2006420
Change-Id: I9809724499e0dd0c7f6787be09fbe9d76db684e6
Signed-off-by: Tanya Dixit <tdixit@codeaurora.org>
Update the VFE SVS clock corner from 256MHz to 404MHz.
This will help use a proper AHB clock corner thereby
saving power.
Change-Id: I4adb8b2f2722fbf337cc512cec51bd57676cdeeb
Signed-off-by: Venu Yeshala <vyeshala@codeaurora.org>
Enable it in the debug defconfig only, to allow REGMAP write
through debugfs.
Change-Id: I528415ef5d4427371d4dc24181d783abf780c3bf
Signed-off-by: Ashay Jaiswal <ashayj@codeaurora.org>
Add required support to change QUSB2PHY_PORT_TUNE1/2/3/4/5 registers
dynamically for testing USB electrical complaince.
Change-Id: Id84d460c8f8dc8cdedabe3887859d6b90acf7c3f
Signed-off-by: Vijayavardhan Vennapusa <vvreddy@codeaurora.org>
Since we move to GEF implementation for Dolby post processing,
disabling DAP/DAX2 driver logic on sdm660 target except for
license validation.
CRs-Fixed: 2001077
Change-Id: Ib9e2237a5118fef2f17f745df096d4de2082f0c7
Signed-off-by: Sharad Sangle <assangle@codeaurora.org>
A clk_disable on gate clocks would hold a global
spinlock and it would wait for a halt_delay. In some
race conditions(due to longer delays for gate clocks)
if any other CPU would also invoke a clk_disable then
it could result in a spinlock lockup. Avoid this by
moving the gcc_usb3_phy_pipe_clk clk to branch clock.
CRs-Fixed: 2008439
Change-Id: I177349844c571964637e16a150f93c5912f7dafe
Signed-off-by: Amit Nischal <anischal@codeaurora.org>
Some of the multimedia subsystem clocks are not present in sdm630,
so remove them from registering with clock framework.
Change-Id: I073dc25fa0a0665a5b9b10c4ea977767a1e286d1
Signed-off-by: Odelu Kukatla <okukatla@codeaurora.org>
Add device node for SSC sensor device for QRD SDM660.
This will create a device node to make userspace clients
read sensor related information.
Change-Id: I41f2769cad10c960961039adf177a380c69a3d56
Signed-off-by: Shaoqing Liu <shaoqingliu@codeaurora.org>
Add dai name & slim port numbers for better logs for debugging. Remove
function name from pr_debug as it can be enabled by dynamic debugging.
Change-Id: If9c300e1fe22680e98dd29aadfd2bf3b8c2b5624
Signed-off-by: Rupesh Tatiya <rtatiya@codeaurora.org>
Platform specific initialization may initialize SMMU
(if available) which updates dma operations, therefore
setting of DMA mask needs to be done after platform
specific initialization.
Change-Id: I7b0e90e5e3d03816146f2f73a55dc858e03646dd
Signed-off-by: Hamad Kadmany <hkadmany@codeaurora.org>
On sdm630, VDDIO needs 1.8V and LDO11 votes for 1.88V
which is causing higher power numbers. Update the vote
correctly for LDO11.
Change-Id: I333dbf3077aa528376825f8fb2ff130feba9c477
Signed-off-by: Ashish Garg <ashigarg@codeaurora.org>
RPM has added support for lpcx and lpmx rails stats. Increase rail
buffer length to print stats for these rails.
Change-Id: I565786d847e09f325ae43e9465d744b111e7fa2c
Signed-off-by: Maulik Shah <mkshah@codeaurora.org>
PM660 GPIO11 is used for home key on QRD sdm630 device.
Configure it to input/pull-up mode and add it to gpio-keys
device for key detection.
CRs-Fixed: 2008859
Change-Id: I3f673d925b2186069ac55ab7c9bf72fd241242c8
Signed-off-by: Yingwei Zhao <cyizhao@codeaurora.org>
Modify DMIC settings for sdm660 skus according to hardware
schematics.
Change-Id: I1da83cc0b2924baf5e232463f46b6e38b0614594
CRs-Fixed: 2008708
Signed-off-by: Walter Yang <yandongy@codeaurora.org>