Commit graph

885 commits

Author SHA1 Message Date
Paul Mackerras
b24f36f33e KVM: PPC: Book3S: Trim top 4 bits of physical address in RTAS code
The in-kernel emulation of RTAS functions needs to read the argument
buffer from guest memory in order to find out what function is being
requested.  The guest supplies the guest physical address of the buffer,
and on a real system the code that reads that buffer would run in guest
real mode.  In guest real mode, the processor ignores the top 4 bits
of the address specified in load and store instructions.  In order to
emulate that behaviour correctly, we need to mask off those bits
before calling kvm_read_guest() or kvm_write_guest().  This adds that
masking.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Scott Wood <scottwood@freescale.com>
2014-03-29 19:58:23 +11:00
Michael Neuling
a7d80d01c6 KVM: PPC: Book3S HV: Add get/set_one_reg for new TM state
This adds code to get/set_one_reg to read and write the new transactional
memory (TM) state.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Scott Wood <scottwood@freescale.com>
2014-03-29 19:58:17 +11:00
Michael Neuling
e4e3812150 KVM: PPC: Book3S HV: Add transactional memory support
This adds saving of the transactional memory (TM) checkpointed state
on guest entry and exit.  We only do this if we see that the guest has
an active transaction.

It also adds emulation of the TM state changes when delivering IRQs
into the guest.  According to the architecture, if we are
transactional when an IRQ occurs, the TM state is changed to
suspended, otherwise it's left unchanged.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Scott Wood <scottwood@freescale.com>
2014-03-29 19:58:02 +11:00
Anton Blanchard
7505258c5f KVM: PPC: Book3S HV: Fix KVM hang with CONFIG_KVM_XICS=n
I noticed KVM is broken when KVM in-kernel XICS emulation
(CONFIG_KVM_XICS) is disabled.

The problem was introduced in 48eaef05 (KVM: PPC: Book3S HV: use
xics_wake_cpu only when defined). It used CONFIG_KVM_XICS to wrap
xics_wake_cpu, where CONFIG_PPC_ICP_NATIVE should have been
used.

Signed-off-by: Anton Blanchard <anton@samba.org>
Cc: stable@vger.kernel.org
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Scott Wood <scottwood@freescale.com>
2014-03-26 23:34:56 +11:00
Laurent Dufour
69e9fbb278 KVM: PPC: Book3S: Introduce hypervisor call H_GET_TCE
This introduces the H_GET_TCE hypervisor call, which is basically the
reverse of H_PUT_TCE, as defined in the Power Architecture Platform
Requirements (PAPR).

The hcall H_GET_TCE is required by the kdump kernel, which uses it to
retrieve TCEs set up by the previous (panicked) kernel.

Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2014-03-26 23:34:27 +11:00
Greg Kurz
e59d24e612 KVM: PPC: Book3S HV: Fix incorrect userspace exit on ioeventfd write
When the guest does an MMIO write which is handled successfully by an
ioeventfd, ioeventfd_write() returns 0 (success) and
kvmppc_handle_store() returns EMULATE_DONE.  Then
kvmppc_emulate_mmio() converts EMULATE_DONE to RESUME_GUEST_NV and
this causes an exit from the loop in kvmppc_vcpu_run_hv(), causing an
exit back to userspace with a bogus exit reason code, typically
causing userspace (e.g. qemu) to crash with a message about an unknown
exit code.

This adds handling of RESUME_GUEST_NV in kvmppc_vcpu_run_hv() in order
to fix that.  For generality, we define a helper to check for either
of the return-to-guest codes we use, RESUME_GUEST and RESUME_GUEST_NV,
to make it easy to check for either and provide one place to update if
any other return-to-guest code gets defined in future.

Since it only affects Book3S HV for now, the helper is added to
the kvm_book3s.h header file.

We use the helper in two places in kvmppc_run_core() as well for
future-proofing, though we don't see RESUME_GUEST_NV in either place
at present.

[paulus@samba.org - combined 4 patches into one, rewrote description]

Suggested-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2014-03-26 23:33:44 +11:00
Paul Mackerras
e724f080f5 KVM: PPC: Book3S HV: Fix register usage when loading/saving VRSAVE
Commit 595e4f7e69 ("KVM: PPC: Book3S HV: Use load/store_fp_state
functions in HV guest entry/exit") changed the register usage in
kvmppc_save_fp() and kvmppc_load_fp() but omitted changing the
instructions that load and save VRSAVE.  The result is that the
VRSAVE value was loaded from a constant address, and saved to a
location past the end of the vcpu struct, causing host kernel
memory corruption and various kinds of host kernel crashes.

This fixes the problem by using register r31, which contains the
vcpu pointer, instead of r3 and r4.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-03-13 10:47:01 +01:00
Paul Mackerras
a5b0ccb0b5 KVM: PPC: Book3S HV: Remove bogus duplicate code
Commit 7b490411c3 ("KVM: PPC: Book3S HV: Add new state for
transactional memory") incorrectly added some duplicate code to the
guest exit path because I didn't manage to clean up after a rebase
correctly.  This removes the extraneous material.  The presence of
this extraneous code causes host crashes whenever a guest is run.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-03-13 10:46:52 +01:00
Paolo Bonzini
b73117c493 Merge branch 'kvm-ppc-next' of git://github.com/agraf/linux-2.6 into kvm-queue
Conflicts:
	arch/powerpc/kvm/book3s_hv_rmhandlers.S
	arch/powerpc/kvm/booke.c
2014-01-29 18:29:01 +01:00
Paul Mackerras
4068890931 KVM: PPC: Book3S PR: Cope with doorbell interrupts
When the PR host is running on a POWER8 machine in POWER8 mode, it
will use doorbell interrupts for IPIs.  If one of them arrives while
we are in the guest, we pop out of the guest with trap number 0xA00,
which isn't handled by kvmppc_handle_exit_pr, leading to the following
BUG_ON:

[  331.436215] exit_nr=0xa00 | pc=0x1d2c | msr=0x800000000000d032
[  331.437522] ------------[ cut here ]------------
[  331.438296] kernel BUG at arch/powerpc/kvm/book3s_pr.c:982!
[  331.439063] Oops: Exception in kernel mode, sig: 5 [#2]
[  331.439819] SMP NR_CPUS=1024 NUMA pSeries
[  331.440552] Modules linked in: tun nf_conntrack_netbios_ns nf_conntrack_broadcast ipt_MASQUERADE ip6t_REJECT xt_conntrack ebtable_nat ebtable_broute bridge stp llc ebtable_filter ebtables ip6table_nat nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 ip6table_mangle ip6table_security ip6table_raw ip6table_filter ip6_tables iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw virtio_net kvm binfmt_misc ibmvscsi scsi_transport_srp scsi_tgt virtio_blk
[  331.447614] CPU: 11 PID: 1296 Comm: qemu-system-ppc Tainted: G      D      3.11.7-200.2.fc19.ppc64p7 #1
[  331.448920] task: c0000003bdc8c000 ti: c0000003bd32c000 task.ti: c0000003bd32c000
[  331.450088] NIP: d0000000025d6b9c LR: d0000000025d6b98 CTR: c0000000004cfdd0
[  331.451042] REGS: c0000003bd32f420 TRAP: 0700   Tainted: G      D       (3.11.7-200.2.fc19.ppc64p7)
[  331.452331] MSR: 800000000282b032 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI>  CR: 28004824  XER: 20000000
[  331.454616] SOFTE: 1
[  331.455106] CFAR: c000000000848bb8
[  331.455726]
GPR00: d0000000025d6b98 c0000003bd32f6a0 d0000000026017b8 0000000000000032
GPR04: c0000000018627f8 c000000001873208 320d0a3030303030 3030303030643033
GPR08: c000000000c490a8 0000000000000000 0000000000000000 0000000000000002
GPR12: 0000000028004822 c00000000fdc6300 0000000000000000 00000100076ec310
GPR16: 000000002ae343b8 00003ffffd397398 0000000000000000 0000000000000000
GPR20: 00000100076f16f4 00000100076ebe60 0000000000000008 ffffffffffffffff
GPR24: 0000000000000000 0000008001041e60 0000000000000000 0000008001040ce8
GPR28: c0000003a2d80000 0000000000000a00 0000000000000001 c0000003a2681810
[  331.466504] NIP [d0000000025d6b9c] .kvmppc_handle_exit_pr+0x75c/0xa80 [kvm]
[  331.466999] LR [d0000000025d6b98] .kvmppc_handle_exit_pr+0x758/0xa80 [kvm]
[  331.467517] Call Trace:
[  331.467909] [c0000003bd32f6a0] [d0000000025d6b98] .kvmppc_handle_exit_pr+0x758/0xa80 [kvm] (unreliable)
[  331.468553] [c0000003bd32f750] [d0000000025d98f0] kvm_start_lightweight+0xb4/0xc4 [kvm]
[  331.469189] [c0000003bd32f920] [d0000000025d7648] .kvmppc_vcpu_run_pr+0xd8/0x270 [kvm]
[  331.469838] [c0000003bd32f9c0] [d0000000025cf748] .kvmppc_vcpu_run+0xc8/0xf0 [kvm]
[  331.470790] [c0000003bd32fa50] [d0000000025cc19c] .kvm_arch_vcpu_ioctl_run+0x5c/0x1b0 [kvm]
[  331.471401] [c0000003bd32fae0] [d0000000025c4888] .kvm_vcpu_ioctl+0x478/0x730 [kvm]
[  331.472026] [c0000003bd32fc90] [c00000000026192c] .do_vfs_ioctl+0x4dc/0x7a0
[  331.472561] [c0000003bd32fd80] [c000000000261cc4] .SyS_ioctl+0xd4/0xf0
[  331.473095] [c0000003bd32fe30] [c000000000009ed8] syscall_exit+0x0/0x98
[  331.473633] Instruction dump:
[  331.473766] 4bfff9b4 2b9d0800 419efc18 60000000 60420000 3d220000 e8bf11a0 e8df12a8
[  331.474733] 7fa4eb78 e8698660 48015165 e8410028 <0fe00000> 813f00e4 3ba00000 39290001
[  331.475386] ---[ end trace 49fc47d994c1f8f2 ]---
[  331.479817]

This fixes the problem by making kvmppc_handle_exit_pr() recognize the
interrupt.  We also need to jump to the doorbell interrupt handler in
book3s_segment.S to handle the interrupt on the way out of the guest.
Having done that, there's nothing further to be done in
kvmppc_handle_exit_pr().

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:23 +01:00
Michael Neuling
7b490411c3 KVM: PPC: Book3S HV: Add new state for transactional memory
Add new state for transactional memory (TM) to kvm_vcpu_arch.  Also add
asm-offset bits that are going to be required.

This also moves the existing TFHAR, TFIAR and TEXASR SPRs into a
CONFIG_PPC_TRANSACTIONAL_MEM section.  This requires some code changes to
ensure we still compile with CONFIG_PPC_TRANSACTIONAL_MEM=N.  Much of the added
the added #ifdefs are removed in a later patch when the bulk of the TM code is
added.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix merge conflict]
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:20 +01:00
Anton Blanchard
d682916a38 KVM: PPC: Book3S HV: Basic little-endian guest support
We create a guest MSR from scratch when delivering exceptions in
a few places.  Instead of extracting LPCR[ILE] and inserting it
into MSR_LE each time, we simply create a new variable intr_msr which
contains the entire MSR to use.  For a little-endian guest, userspace
needs to set the ILE (interrupt little-endian) bit in the LPCR for
each vcpu (or at least one vcpu in each virtual core).

[paulus@samba.org - removed H_SET_MODE implementation from original
version of the patch, and made kvmppc_set_lpcr update vcpu->arch.intr_msr.]

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:16 +01:00
Paul Mackerras
8563bf52d5 KVM: PPC: Book3S HV: Add support for DABRX register on POWER7
The DABRX (DABR extension) register on POWER7 processors provides finer
control over which accesses cause a data breakpoint interrupt.  It
contains 3 bits which indicate whether to enable accesses in user,
kernel and hypervisor modes respectively to cause data breakpoint
interrupts, plus one bit that enables both real mode and virtual mode
accesses to cause interrupts.  Currently, KVM sets DABRX to allow
both kernel and user accesses to cause interrupts while in the guest.

This adds support for the guest to specify other values for DABRX.
PAPR defines a H_SET_XDABR hcall to allow the guest to set both DABR
and DABRX with one call.  This adds a real-mode implementation of
H_SET_XDABR, which shares most of its code with the existing H_SET_DABR
implementation.  To support this, we add a per-vcpu field to store the
DABRX value plus code to get and set it via the ONE_REG interface.

For Linux guests to use this new hcall, userspace needs to add
"hcall-xdabr" to the set of strings in the /chosen/hypertas-functions
property in the device tree.  If userspace does this and then migrates
the guest to a host where the kernel doesn't include this patch, then
userspace will need to implement H_SET_XDABR by writing the specified
DABR value to the DABR using the ONE_REG interface.  In that case, the
old kernel will set DABRX to DABRX_USER | DABRX_KERNEL.  That should
still work correctly, at least for Linux guests, since Linux guests
cope with getting data breakpoint interrupts in modes that weren't
requested by just ignoring the interrupt, and Linux guests never set
DABRX_BTI.

The other thing this does is to make H_SET_DABR and H_SET_XDABR work
on POWER8, which has the DAWR and DAWRX instead of DABR/X.  Guests that
know about POWER8 should use H_SET_MODE rather than H_SET_[X]DABR, but
guests running in POWER7 compatibility mode will still use H_SET_[X]DABR.
For them, this adds the logic to convert DABR/X values into DAWR/X values
on POWER8.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:15 +01:00
Paul Mackerras
5d00f66b86 KVM: PPC: Book3S HV: Prepare for host using hypervisor doorbells
POWER8 has support for hypervisor doorbell interrupts.  Though the
kernel doesn't use them for IPIs on the powernv platform yet, it
probably will in future, so this makes KVM cope gracefully if a
hypervisor doorbell interrupt arrives while in a guest.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:13 +01:00
Paul Mackerras
e0622bd9f2 KVM: PPC: Book3S HV: Handle new LPCR bits on POWER8
POWER8 has a bit in the LPCR to enable or disable the PURR and SPURR
registers to count when in the guest.  Set this bit.

POWER8 has a field in the LPCR called AIL (Alternate Interrupt Location)
which is used to enable relocation-on interrupts.  Allow userspace to
set this field.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:11 +01:00
Paul Mackerras
aa31e84322 KVM: PPC: Book3S HV: Handle guest using doorbells for IPIs
* SRR1 wake reason field for system reset interrupt on wakeup from nap
  is now a 4-bit field on P8, compared to 3 bits on P7.

* Set PECEDP in LPCR when napping because of H_CEDE so guest doorbells
  will wake us up.

* Waking up from nap because of a guest doorbell interrupt is not a
  reason to exit the guest.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:10 +01:00
Paul Mackerras
e3bbbbfa13 KVM: PPC: Book3S HV: Consolidate code that checks reason for wake from nap
Currently in book3s_hv_rmhandlers.S we have three places where we
have woken up from nap mode and we check the reason field in SRR1
to see what event woke us up.  This consolidates them into a new
function, kvmppc_check_wake_reason.  It looks at the wake reason
field in SRR1, and if it indicates that an external interrupt caused
the wakeup, calls kvmppc_read_intr to check what sort of interrupt
it was.

This also consolidates the two places where we synthesize an external
interrupt (0x500 vector) for the guest.  Now, if the guest exit code
finds that there was an external interrupt which has been handled
(i.e. it was an IPI indicating that there is now an interrupt pending
for the guest), it jumps to deliver_guest_interrupt, which is in the
last part of the guest entry code, where we synthesize guest external
and decrementer interrupts.  That code has been streamlined a little
and now clears LPCR[MER] when appropriate as well as setting it.

The extra clearing of any pending IPI on a secondary, offline CPU
thread before going back to nap mode has been removed.  It is no longer
necessary now that we have code to read and acknowledge IPIs in the
guest exit path.

This fixes a minor bug in the H_CEDE real-mode handling - previously,
if we found that other threads were already exiting the guest when we
were about to go to nap mode, we would branch to the cede wakeup path
and end up looking in SRR1 for a wakeup reason.  Now we branch to a
point after we have checked the wakeup reason.

This also fixes a minor bug in kvmppc_read_intr - previously it could
return 0xff rather than 1, in the case where we find that a host IPI
is pending after we have cleared the IPI.  Now it returns 1.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:08 +01:00
Paul Mackerras
5557ae0ec7 KVM: PPC: Book3S HV: Implement architecture compatibility modes for POWER8
This allows us to select architecture 2.05 (POWER6) or 2.06 (POWER7)
compatibility modes on a POWER8 processor.  (Note that transactional
memory is disabled for usermode if either or both of the PCR_TM_DIS
and PCR_ARCH_206 bits are set.)

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:06 +01:00
Michael Ellerman
bd3048b80c KVM: PPC: Book3S HV: Add handler for HV facility unavailable
At present this should never happen, since the host kernel sets
HFSCR to allow access to all facilities.  It's better to be prepared
to handle it cleanly if it does ever happen, though.

Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:04 +01:00
Paul Mackerras
ca25205513 KVM: PPC: Book3S HV: Flush the correct number of TLB sets on POWER8
POWER8 has 512 sets in the TLB, compared to 128 for POWER7, so we need
to do more tlbiel instructions when flushing the TLB on POWER8.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:02 +01:00
Michael Neuling
b005255e12 KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs
This adds fields to the struct kvm_vcpu_arch to store the new
guest-accessible SPRs on POWER8, adds code to the get/set_one_reg
functions to allow userspace to access this state, and adds code to
the guest entry and exit to context-switch these SPRs between host
and guest.

Note that DPDES (Directed Privileged Doorbell Exception State) is
shared between threads on a core; hence we store it in struct
kvmppc_vcore and have the master thread save and restore it.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:00 +01:00
Paul Mackerras
e0b7ec058c KVM: PPC: Book3S HV: Align physical and virtual CPU thread numbers
On a threaded processor such as POWER7, we group VCPUs into virtual
cores and arrange that the VCPUs in a virtual core run on the same
physical core.  Currently we don't enforce any correspondence between
virtual thread numbers within a virtual core and physical thread
numbers.  Physical threads are allocated starting at 0 on a first-come
first-served basis to runnable virtual threads (VCPUs).

POWER8 implements a new "msgsndp" instruction which guest kernels can
use to interrupt other threads in the same core or sub-core.  Since
the instruction takes the destination physical thread ID as a parameter,
it becomes necessary to align the physical thread IDs with the virtual
thread IDs, that is, to make sure virtual thread N within a virtual
core always runs on physical thread N.

This means that it's possible that thread 0, which is where we call
__kvmppc_vcore_entry, may end up running some other vcpu than the
one whose task called kvmppc_run_core(), or it may end up running
no vcpu at all, if for example thread 0 of the virtual core is
currently executing in userspace.  However, we do need thread 0
to be responsible for switching the MMU -- a previous version of
this patch that had other threads switching the MMU was found to
be responsible for occasional memory corruption and machine check
interrupts in the guest on POWER7 machines.

To accommodate this, we no longer pass the vcpu pointer to
__kvmppc_vcore_entry, but instead let the assembly code load it from
the PACA.  Since the assembly code will need to know the kvm pointer
and the thread ID for threads which don't have a vcpu, we move the
thread ID into the PACA and we add a kvm pointer to the virtual core
structure.

In the case where thread 0 has no vcpu to run, it still calls into
kvmppc_hv_entry in order to do the MMU switch, and then naps until
either its vcpu is ready to run in the guest, or some other thread
needs to exit the guest.  In the latter case, thread 0 jumps to the
code that switches the MMU back to the host.  This control flow means
that now we switch the MMU before loading any guest vcpu state.
Similarly, on guest exit we now save all the guest vcpu state before
switching the MMU back to the host.  This has required substantial
code movement, making the diff rather large.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:00:59 +01:00
Michael Neuling
eee7ff9d2c KVM: PPC: Book3S HV: Don't set DABR on POWER8
POWER8 doesn't have the DABR and DABRX registers; instead it has
new DAWR/DAWRX registers, which will be handled in a later patch.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:00:57 +01:00
Scott Wood
6c85f52b10 kvm/ppc: IRQ disabling cleanup
Simplify the handling of lazy EE by going directly from fully-enabled
to hard-disabled.  This replaces the lazy_irq_pending() check
(including its misplaced kvm_guest_exit() call).

As suggested by Tiejun Chen, move the interrupt disabling into
kvmppc_prepare_to_enter() rather than have each caller do it.  Also
move the IRQ enabling on heavyweight exit into
kvmppc_prepare_to_enter().

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:00:55 +01:00
Mihai Caraman
70713fe315 KVM: PPC: e500: Fix bad address type in deliver_tlb_misss()
Use gva_t instead of unsigned int for eaddr in deliver_tlb_miss().

Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
CC: stable@vger.kernel.org
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:00:54 +01:00
Andreas Schwab
48eaef0518 KVM: PPC: Book3S HV: use xics_wake_cpu only when defined
Signed-off-by: Andreas Schwab <schwab@linux-m68k.org>
CC: stable@vger.kernel.org
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:00:52 +01:00
Cédric Le Goater
736017752d KVM: PPC: Book3S: MMIO emulation support for little endian guests
MMIO emulation reads the last instruction executed by the guest
and then emulates. If the guest is running in Little Endian order,
or more generally in a different endian order of the host, the
instruction needs to be byte-swapped before being emulated.

This patch adds a helper routine which tests the endian order of
the host and the guest in order to decide whether a byteswap is
needed or not. It is then used to byteswap the last instruction
of the guest in the endian order of the host before MMIO emulation
is performed.

Finally, kvmppc_handle_load() of kvmppc_handle_store() are modified
to reverse the endianness of the MMIO if required.

Signed-off-by: Cédric Le Goater <clg@fr.ibm.com>
[agraf: add booke handling]
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:00:39 +01:00
Linus Torvalds
7ebd3faa9b First round of KVM updates for 3.14; PPC parts will come next week.
Nothing major here, just bugfixes all over the place.  The most
 interesting part is the ARM guys' virtualized interrupt controller
 overhaul, which lets userspace get/set the state and thus enables
 migration of ARM VMs.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABAgAGBQJS3TVKAAoJEBvWZb6bTYbyIFgP/2cmt4ifCuFMaZv4+G1S8jZU
 uC9ZB/+7vzht/p6zAy+4BxurKbHmSBFkC1OKcxYuy7yB4CQkHabzj4V2vRtqFdwH
 5lExP9qh3kqaVLuhnvxLTmkktR3EW4PFy6OI53l5kRNktOXSuZ0aN6K3V7tCg/X0
 iL7ASo4bJKlxeWcDpmuVrNgAajmZVfXrjKY7robgBQno+yIsgKhRZRBQHjozA6B8
 FpCo/k48RZd/EzIbV/PDDRI4hmmry/lgrO9SKjzq56wSqff2bd/k/KYze4dbAPfd
 Ps60enPTuHmeEjjb4MMMU4EKHVdTQFUMx/xZCmT4xzoh8s4of6RHphXbfE0SUznQ
 dTveyEQAR7E3JNS0k1+3WEX5fWlFesp0hO2NeE0wzUq4TAr9ztgVO9NQ6Si15e7Z
 2HysO0T5Ojtt0lY08/PvS6i48eCAuuBomrejJS8hLW4SUZ5adn+yW4Qo7Fp9JeBR
 l9a3LsVT8BZMtUWrUuFcVhlM4MbzElUPjDbgWhR8UYU/kpfVZOQu8qWgGKR4UWXy
 X7/t9l/tjR99CmfMJBAOzJid+ScSpAfg77BdaKiQrVfVIJmsjEjlO8vUMyj5b1HF
 hPX5wNyJjHAOfridLeHSs4Rdm4a8sk8Az5d4h76pLVz8M4jyTi2v0rO3N4/dU/pu
 x7N8KR5hAj+mLBoM9/Al
 =8sYU
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "First round of KVM updates for 3.14; PPC parts will come next week.

  Nothing major here, just bugfixes all over the place.  The most
  interesting part is the ARM guys' virtualized interrupt controller
  overhaul, which lets userspace get/set the state and thus enables
  migration of ARM VMs"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (67 commits)
  kvm: make KVM_MMU_AUDIT help text more readable
  KVM: s390: Fix memory access error detection
  KVM: nVMX: Update guest activity state field on L2 exits
  KVM: nVMX: Fix nested_run_pending on activity state HLT
  KVM: nVMX: Clean up handling of VMX-related MSRs
  KVM: nVMX: Add tracepoints for nested_vmexit and nested_vmexit_inject
  KVM: nVMX: Pass vmexit parameters to nested_vmx_vmexit
  KVM: nVMX: Leave VMX mode on clearing of feature control MSR
  KVM: VMX: Fix DR6 update on #DB exception
  KVM: SVM: Fix reading of DR6
  KVM: x86: Sync DR7 on KVM_SET_DEBUGREGS
  add support for Hyper-V reference time counter
  KVM: remove useless write to vcpu->hv_clock.tsc_timestamp
  KVM: x86: fix tsc catchup issue with tsc scaling
  KVM: x86: limit PIT timer frequency
  KVM: x86: handle invalid root_hpa everywhere
  kvm: Provide kvm_vcpu_eligible_for_directed_yield() stub
  kvm: vfio: silence GCC warning
  KVM: ARM: Remove duplicate include
  arm/arm64: KVM: relax the requirements of VMA alignment for THP
  ...
2014-01-22 21:40:43 -08:00
Zhouyi Zhou
47d45d9f53 KVM: PPC: NULL return of kvmppc_mmu_hpte_cache_next should be handled
NULL return of kvmppc_mmu_hpte_cache_next should be handled

Signed-off-by: Zhouyi Zhou <yizhouzhou@ict.ac.cn>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 10:15:11 +01:00
Tiejun Chen
9bd880a2c8 KVM: PPC: Book3E HV: call RECONCILE_IRQ_STATE to sync the software state
Rather than calling hard_irq_disable() when we're back in C code
we can just call RECONCILE_IRQ_STATE to soft disable IRQs while
we're already in hard disabled state.

This should be functionally equivalent to the code before, but
cleaner and faster.

Signed-off-by: Tiejun Chen <tiejun.chen@windriver.com>
[agraf: fix comment, commit message]
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 10:15:10 +01:00
Bharat Bhushan
08c9a188d0 kvm: powerpc: use caching attributes as per linux pte
KVM uses same WIM tlb attributes as the corresponding qemu pte.
For this we now search the linux pte for the requested page and
get these cache caching/coherency attributes from pte.

Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Reviewed-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 10:15:08 +01:00
Bharat Bhushan
7c85e6b39c kvm: book3s: rename lookup_linux_pte() to lookup_linux_pte_and_update()
lookup_linux_pte() is doing more than lookup, updating the pte,
so for clarity it is renamed to lookup_linux_pte_and_update()

Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Reviewed-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 10:15:06 +01:00
Bharat Bhushan
30a91fe24b kvm: booke: clear host tlb reference flag on guest tlb invalidation
On booke, "struct tlbe_ref" contains host tlb mapping information
(pfn: for guest-pfn to pfn, flags: attribute associated with this mapping)
for a guest tlb entry. So when a guest creates a TLB entry then
"struct tlbe_ref" is set to point to valid "pfn" and set attributes in
"flags" field of the above said structure. When a guest TLB entry is
invalidated then flags field of corresponding "struct tlbe_ref" is
updated to point that this is no more valid, also we selectively clear
some other attribute bits, example: if E500_TLB_BITMAP was set then we clear
E500_TLB_BITMAP, if E500_TLB_TLB0 is set then we clear this.

Ideally we should clear complete "flags" as this entry is invalid and does not
have anything to re-used. The other part of the problem is that when we use
the same entry again then also we do not clear (started doing or-ing etc).

So far it was working because the selectively clearing mentioned above
actually clears "flags" what was set during TLB mapping. But the problem
starts coming when we add more attributes to this then we need to selectively
clear them and which is not needed.

Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Reviewed-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 10:15:04 +01:00
Paul Mackerras
595e4f7e69 KVM: PPC: Book3S HV: Use load/store_fp_state functions in HV guest entry/exit
This modifies kvmppc_load_fp and kvmppc_save_fp to use the generic
FP/VSX and VMX load/store functions instead of open-coding the
FP/VSX/VMX load/store instructions.  Since kvmppc_load/save_fp don't
follow C calling conventions, we make them private symbols within
book3s_hv_rmhandlers.S.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 10:15:03 +01:00
Paul Mackerras
99dae3bad2 KVM: PPC: Load/save FP/VMX/VSX state directly to/from vcpu struct
Now that we have the vcpu floating-point and vector state stored in
the same type of struct as the main kernel uses, we can load that
state directly from the vcpu struct instead of having extra copies
to/from the thread_struct.  Similarly, when the guest state needs to
be saved, we can have it saved it directly to the vcpu struct by
setting the current->thread.fp_save_area and current->thread.vr_save_area
pointers.  That also means that we don't need to back up and restore
userspace's FP/vector state.  This all makes the code simpler and
faster.

Note that it's not necessary to save or modify current->thread.fpexc_mode,
since nothing in KVM uses or is affected by its value.  Nor is it
necessary to touch used_vr or used_vsr.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 10:15:02 +01:00
Paul Mackerras
efff191223 KVM: PPC: Store FP/VSX/VMX state in thread_fp/vr_state structures
This uses struct thread_fp_state and struct thread_vr_state to store
the floating-point, VMX/Altivec and VSX state, rather than flat arrays.
This makes transferring the state to/from the thread_struct simpler
and allows us to unify the get/set_one_reg implementations for the
VSX registers.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 10:15:00 +01:00
Paul Mackerras
09548fdaf3 KVM: PPC: Use load_fp/vr_state rather than load_up_fpu/altivec
The load_up_fpu and load_up_altivec functions were never intended to
be called from C, and do things like modifying the MSR value in their
callers' stack frames, which are assumed to be interrupt frames.  In
addition, on 32-bit Book S they require the MMU to be off.

This makes KVM use the new load_fp_state() and load_vr_state() functions
instead of load_up_fpu/altivec.  This means we can remove the assembler
glue in book3s_rmhandlers.S, and potentially fixes a bug on Book E,
where load_up_fpu was called directly from C.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 10:14:59 +01:00
Gleb Natapov
458ff3c099 KVM: PPC: fix couple of memory leaks in MPIC/XICS devices
XICS failed to free xics structure on error path. MPIC destroy handler
forgot to delete kvm_device structure.

Signed-off-by: Gleb Natapov <gleb@redhat.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 10:14:54 +01:00
Alexander Graf
398a76c677 KVM: PPC: Add devname:kvm aliases for modules
Systems that support automatic loading of kernel modules through
device aliases should try and automatically load kvm when /dev/kvm
gets opened.

Add code to support that magic for all PPC kvm targets, even the
ones that don't support modules yet.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 10:14:00 +01:00
Paul Mackerras
df9059bb64 KVM: PPC: Book3S HV: Don't drop low-order page address bits
Commit caaa4c804f ("KVM: PPC: Book3S HV: Fix physical address
calculations") unfortunately resulted in some low-order address bits
getting dropped in the case where the guest is creating a 4k HPTE
and the host page size is 64k.  By getting the low-order bits from
hva rather than gpa we miss out on bits 12 - 15 in this case, since
hva is at page granularity.  This puts the missing bits back in.

Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-12-18 11:30:35 +01:00
Aneesh Kumar K.V
36e7bb3802 powerpc: book3s: kvm: Don't abuse host r2 in exit path
We don't use PACATOC for PR. Avoid updating HOST_R2 with PR
KVM mode when both HV and PR are enabled in the kernel. Without this we
get the below crash

(qemu)
Unable to handle kernel paging request for data at address 0xffffffffffff8310
Faulting instruction address: 0xc00000000001d5a4
cpu 0x2: Vector: 300 (Data Access) at [c0000001dc53aef0]
    pc: c00000000001d5a4: .vtime_delta.isra.1+0x34/0x1d0
    lr: c00000000001d760: .vtime_account_system+0x20/0x60
    sp: c0000001dc53b170
   msr: 8000000000009032
   dar: ffffffffffff8310
 dsisr: 40000000
  current = 0xc0000001d76c62d0
  paca    = 0xc00000000fef1100   softe: 0        irq_happened: 0x01
    pid   = 4472, comm = qemu-system-ppc
enter ? for help
[c0000001dc53b200] c00000000001d760 .vtime_account_system+0x20/0x60
[c0000001dc53b290] c00000000008d050 .kvmppc_handle_exit_pr+0x60/0xa50
[c0000001dc53b340] c00000000008f51c kvm_start_lightweight+0xb4/0xc4
[c0000001dc53b510] c00000000008cdf0 .kvmppc_vcpu_run_pr+0x150/0x2e0
[c0000001dc53b9e0] c00000000008341c .kvmppc_vcpu_run+0x2c/0x40
[c0000001dc53ba50] c000000000080af4 .kvm_arch_vcpu_ioctl_run+0x54/0x1b0
[c0000001dc53bae0] c00000000007b4c8 .kvm_vcpu_ioctl+0x478/0x730
[c0000001dc53bca0] c0000000002140cc .do_vfs_ioctl+0x4ac/0x770
[c0000001dc53bd80] c0000000002143e8 .SyS_ioctl+0x58/0xb0
[c0000001dc53be30] c000000000009e58 syscall_exit+0x0/0x98

Signed-off-by: Alexander Graf <agraf@suse.de>
2013-12-18 11:29:31 +01:00
Takuya Yoshikawa
c08ac06ab3 KVM: Use cond_resched() directly and remove useless kvm_resched()
Since the commit 15ad7146 ("KVM: Use the scheduler preemption notifiers
to make kvm preemptible"), the remaining stuff in this function is a
simple cond_resched() call with an extra need_resched() check which was
there to avoid dropping VCPUs unnecessarily.  Now it is meaningless.

Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2013-12-13 14:23:45 +01:00
Scott Wood
f5f972102d powerpc/kvm/booke: Fix build break due to stack frame size warning
Commit ce11e48b7f ("KVM: PPC: E500: Add
userspace debug stub support") added "struct thread_struct" to the
stack of kvmppc_vcpu_run().  thread_struct is 1152 bytes on my build,
compared to 48 bytes for the recently-introduced "struct debug_reg".
Use the latter instead.

This fixes the following error:

cc1: warnings being treated as errors
arch/powerpc/kvm/booke.c: In function 'kvmppc_vcpu_run':
arch/powerpc/kvm/booke.c:760:1: error: the frame size of 1424 bytes is larger than 1024 bytes
make[2]: *** [arch/powerpc/kvm/booke.o] Error 1
make[1]: *** [arch/powerpc/kvm] Error 2
make[1]: *** Waiting for unfinished jobs....

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-12-11 00:12:44 +01:00
Alexander Graf
3d3319b45e KVM: PPC: Book3S: PR: Enable interrupts earlier
Now that the svcpu sync is interrupt aware we can enable interrupts
earlier in the exit code path again, moving 32bit and 64bit closer
together.

While at it, document the fact that we're always executing the exit
path with interrupts enabled so that the next person doesn't trap
over this.

Signed-off-by: Alexander Graf <agraf@suse.de>
2013-12-09 09:41:41 +01:00
Alexander Graf
40fdd8c88c KVM: PPC: Book3S: PR: Make svcpu -> vcpu store preempt savvy
As soon as we get back to our "highmem" handler in virtual address
space we may get preempted. Today the reason we can get preempted is
that we replay interrupts and all the lazy logic thinks we have
interrupts enabled.

However, it's not hard to make the code interruptible and that way
we can enable and handle interrupts even earlier.

This fixes random guest crashes that happened with CONFIG_PREEMPT=y
for me.

Signed-off-by: Alexander Graf <agraf@suse.de>
2013-12-09 09:41:39 +01:00
Alexander Graf
d825a04387 KVM: PPC: Book3S: PR: Don't clobber our exit handler id
We call a C helper to save all svcpu fields into our vcpu. The C
ABI states that r12 is considered volatile. However, we keep our
exit handler id in r12 currently.

So we need to save it away into a non-volatile register instead
that definitely does get preserved across the C call.

This bug usually didn't hit anyone yet since gcc is smart enough
to generate code that doesn't even need r12 which means it stayed
identical throughout the call by sheer luck. But we can't rely on
that.

Signed-off-by: Alexander Graf <agraf@suse.de>
2013-12-09 09:41:26 +01:00
Liu Ping Fan
27025a602c powerpc: kvm: optimize "sc 1" as fast return
In some scene, e.g openstack CI, PR guest can trigger "sc 1" frequently,
this patch optimizes the path by directly delivering BOOK3S_INTERRUPT_SYSCALL
to HV guest, so powernv can return to HV guest without heavy exit, i.e,
no need to swap TLB, HTAB,.. etc

Signed-off-by: Liu Ping Fan <pingfank@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-11-21 14:56:45 +01:00
pingfan liu
91648ec09c powerpc: kvm: fix rare but potential deadlock scene
Since kvmppc_hv_find_lock_hpte() is called from both virtmode and
realmode, so it can trigger the deadlock.

Suppose the following scene:

Two physical cpuM, cpuN, two VM instances A, B, each VM has a group of
vcpus.

If on cpuM, vcpu_A_1 holds bitlock X (HPTE_V_HVLOCK), then is switched
out, and on cpuN, vcpu_A_2 try to lock X in realmode, then cpuN will be
caught in realmode for a long time.

What makes things even worse if the following happens,
  On cpuM, bitlockX is hold, on cpuN, Y is hold.
  vcpu_B_2 try to lock Y on cpuM in realmode
  vcpu_A_2 try to lock X on cpuN in realmode

Oops! deadlock happens

Signed-off-by: Liu Ping Fan <pingfank@linux.vnet.ibm.com>
Reviewed-by: Paul Mackerras <paulus@samba.org>
CC: stable@vger.kernel.org
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-11-18 22:41:57 +01:00
Paul Mackerras
c9438092ca KVM: PPC: Book3S HV: Take SRCU read lock around kvm_read_guest() call
Running a kernel with CONFIG_PROVE_RCU=y yields the following diagnostic:

===============================
[ INFO: suspicious RCU usage. ]
3.12.0-rc5-kvm+ #9 Not tainted
-------------------------------

include/linux/kvm_host.h:473 suspicious rcu_dereference_check() usage!

other info that might help us debug this:

rcu_scheduler_active = 1, debug_locks = 0
1 lock held by qemu-system-ppc/4831:

stack backtrace:
CPU: 28 PID: 4831 Comm: qemu-system-ppc Not tainted 3.12.0-rc5-kvm+ #9
Call Trace:
[c000000be462b2a0] [c00000000001644c] .show_stack+0x7c/0x1f0 (unreliable)
[c000000be462b370] [c000000000ad57c0] .dump_stack+0x88/0xb4
[c000000be462b3f0] [c0000000001315e8] .lockdep_rcu_suspicious+0x138/0x180
[c000000be462b480] [c00000000007862c] .gfn_to_memslot+0x13c/0x170
[c000000be462b510] [c00000000007d384] .gfn_to_hva_prot+0x24/0x90
[c000000be462b5a0] [c00000000007d420] .kvm_read_guest_page+0x30/0xd0
[c000000be462b630] [c00000000007d528] .kvm_read_guest+0x68/0x110
[c000000be462b6e0] [c000000000084594] .kvmppc_rtas_hcall+0x34/0x180
[c000000be462b7d0] [c000000000097934] .kvmppc_pseries_do_hcall+0x74/0x830
[c000000be462b880] [c0000000000990e8] .kvmppc_vcpu_run_hv+0xff8/0x15a0
[c000000be462b9e0] [c0000000000839cc] .kvmppc_vcpu_run+0x2c/0x40
[c000000be462ba50] [c0000000000810b4] .kvm_arch_vcpu_ioctl_run+0x54/0x1b0
[c000000be462bae0] [c00000000007b508] .kvm_vcpu_ioctl+0x478/0x730
[c000000be462bca0] [c00000000025532c] .do_vfs_ioctl+0x4dc/0x7a0
[c000000be462bd80] [c0000000002556b4] .SyS_ioctl+0xc4/0xe0
[c000000be462be30] [c000000000009ee4] syscall_exit+0x0/0x98

To fix this, we take the SRCU read lock around the kvmppc_rtas_hcall()
call.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-11-18 22:41:20 +01:00
Paul Mackerras
bf3d32e115 KVM: PPC: Book3S HV: Make tbacct_lock irq-safe
Lockdep reported that there is a potential for deadlock because
vcpu->arch.tbacct_lock is not irq-safe, and is sometimes taken inside
the rq_lock (run-queue lock) in the scheduler, which is taken within
interrupts.  The lockdep splat looks like:

======================================================
[ INFO: HARDIRQ-safe -> HARDIRQ-unsafe lock order detected ]
3.12.0-rc5-kvm+ #8 Not tainted
------------------------------------------------------
qemu-system-ppc/4803 [HC0[0]:SC0[0]:HE0:SE1] is trying to acquire:
(&(&vcpu->arch.tbacct_lock)->rlock){+.+...}, at: [<c0000000000947ac>] .kvmppc_core_vcpu_put_hv+0x2c/0xa0

and this task is already holding:
(&rq->lock){-.-.-.}, at: [<c000000000ac16c0>] .__schedule+0x180/0xaa0
which would create a new lock dependency:
(&rq->lock){-.-.-.} -> (&(&vcpu->arch.tbacct_lock)->rlock){+.+...}

but this new dependency connects a HARDIRQ-irq-safe lock:
(&rq->lock){-.-.-.}
... which became HARDIRQ-irq-safe at:
 [<c00000000013797c>] .lock_acquire+0xbc/0x190
 [<c000000000ac3c74>] ._raw_spin_lock+0x34/0x60
 [<c0000000000f8564>] .scheduler_tick+0x54/0x180
 [<c0000000000c2610>] .update_process_times+0x70/0xa0
 [<c00000000012cdfc>] .tick_periodic+0x3c/0xe0
 [<c00000000012cec8>] .tick_handle_periodic+0x28/0xb0
 [<c00000000001ef40>] .timer_interrupt+0x120/0x2e0
 [<c000000000002868>] decrementer_common+0x168/0x180
 [<c0000000001c7ca4>] .get_page_from_freelist+0x924/0xc10
 [<c0000000001c8e00>] .__alloc_pages_nodemask+0x200/0xba0
 [<c0000000001c9eb8>] .alloc_pages_exact_nid+0x68/0x110
 [<c000000000f4c3ec>] .page_cgroup_init+0x1e0/0x270
 [<c000000000f24480>] .start_kernel+0x3e0/0x4e4
 [<c000000000009d30>] .start_here_common+0x20/0x70

to a HARDIRQ-irq-unsafe lock:
(&(&vcpu->arch.tbacct_lock)->rlock){+.+...}
... which became HARDIRQ-irq-unsafe at:
...  [<c00000000013797c>] .lock_acquire+0xbc/0x190
 [<c000000000ac3c74>] ._raw_spin_lock+0x34/0x60
 [<c0000000000946ac>] .kvmppc_core_vcpu_load_hv+0x2c/0x100
 [<c00000000008394c>] .kvmppc_core_vcpu_load+0x2c/0x40
 [<c000000000081000>] .kvm_arch_vcpu_load+0x10/0x30
 [<c00000000007afd4>] .vcpu_load+0x64/0xd0
 [<c00000000007b0f8>] .kvm_vcpu_ioctl+0x68/0x730
 [<c00000000025530c>] .do_vfs_ioctl+0x4dc/0x7a0
 [<c000000000255694>] .SyS_ioctl+0xc4/0xe0
 [<c000000000009ee4>] syscall_exit+0x0/0x98

Some users have reported this deadlock occurring in practice, though
the reports have been primarily on 3.10.x-based kernels.

This fixes the problem by making tbacct_lock be irq-safe.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-11-18 22:39:23 +01:00