Depending on eth, eth_mido and geth fields in wr_hwprot, don't set
corresponding pins on gpio port b to gpio mode. This avoids
re-resetting the ethernet PHY should this already have been done.
Signed-off-by: Jesper Nilsson <jesper.nilsson@axis.com>
Move the old one to mach-fs and replace with a new one that
only include the correct one for the machine architecture.
Signed-off-by: Jesper Nilsson <jesper.nilsson@axis.com>
Move the old one to mach-fs and replace with a new one that
only include the correct one for the machine architecture.
Signed-off-by: Jesper Nilsson <jesper.nilsson@axis.com>
Register number was incorrect in syscalls
that go via the restartblock (e.g, poll).
Signed-off-by: Edgar Iglesias <Edgar.Iglesias@axis.com>
Signed-off-by: Jesper Nilsson <jesper.nilsson@axis.com>
We don't need to take the BKL here.
Also fixes compile error after last commit (smp_lock.h was not included)
Signed-off-by: Jesper Nilsson <jesper.nilsson@axis.com>
copy_to_user()/copy_from_user() must not be used with spinlocks held.
Move locks inside each case so we have better control of when the locks
are held.
Also, since we use spinlocks, we don't need to hold the BKL, so remove it.
Reported-by: Kulikov Vasiliy <segooon@gmail.com>
Signed-off-by: Jesper Nilsson <jesper.nilsson@axis.com>
All these files use the big kernel lock in a trivial
way to serialize their private file operations,
typically resulting from an earlier semi-automatic
pushdown from VFS.
None of these drivers appears to want to lock against
other code, and they all use the BKL as the top-level
lock in their file operations, meaning that there
is no lock-order inversion problem.
Consequently, we can remove the BKL completely,
replacing it with a per-file mutex in every case.
Using a scripted approach means we can avoid
typos.
file=$1
name=$2
if grep -q lock_kernel ${file} ; then
if grep -q 'include.*linux.mutex.h' ${file} ; then
sed -i '/include.*<linux\/smp_lock.h>/d' ${file}
else
sed -i 's/include.*<linux\/smp_lock.h>.*$/include <linux\/mutex.h>/g' ${file}
fi
sed -i ${file} \
-e "/^#include.*linux.mutex.h/,$ {
1,/^\(static\|int\|long\)/ {
/^\(static\|int\|long\)/istatic DEFINE_MUTEX(${name}_mutex);
} }" \
-e "s/\(un\)*lock_kernel\>[ ]*()/mutex_\1lock(\&${name}_mutex)/g" \
-e '/[ ]*cycle_kernel_lock();/d'
else
sed -i -e '/include.*\<smp_lock.h\>/d' ${file} \
-e '/cycle_kernel_lock()/d'
fi
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Jesper Nilsson <jesper.nilsson@axis.com>
From: Frederic Weisbecker <fweisbec@gmail.com>
Pushdown the bkl to the remaining drivers using the
deprecated .ioctl.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Kacur <jkacur@redhat.com>
As explained in commit 1c0fe6e3bd, we want to call the architecture independent
oom killer when getting an unexplained OOM from handle_mm_fault, rather than
simply killing current.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Jesper Nilsson <jesper.nilsson@axis.com>
Signed-off-by: Mikael Starvik <starvik@axis.com>
GENERIC_TIME was not functional for CRIS, giving random backward
time jumps.
For CRISv32 implement a new clocksource using the free running counter
and ditch the arch_gettimeoffset.
The random time jumps still existed, but turned out to be the write_seqlock
which was missing around our do_timer() call.
So switch over to GENERIC_TIME using the clocksource for CRISv32.
CRISv10 doesn't have the free running counter needed for the
clocksource trick, but we can still use GENERIC_TIME with
arch_gettimeoffset.
Unfortunately, there were problems in using the prescaler register
to timer0 for the gettimeoffset calculation, so it is now ignored,
making our resolution worse by the tune of 40usec (0.4%) worst case.
At the same time, clean up some formatting and use NSEC_PER_SEC
instead of 1000000000.
Signed-off-by: Jesper Nilsson <jesper.nilsson@axis.com>
Pass the correct end of the buffer to p9stat_read.
Signed-off-by: Latchesar Ionkov <lucho@ionkov.net>
Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
Now we use a memory address to store the debug port info, So we need
to read/write this address when we choose DEBUG_LL. When MMU isn't
enable(I.E. the begining part of init stage of the linux kernel boot),
we need to access physical address instead of virtual address,
otherwise the kernel will crash.
Signed-off-by: Jason Wang <jason77.wang@gmail.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
EDAC MC3: CE page 0xc32281, offset 0x8a0, grain 0, syndrome 0x1, row 2, channel 1, label "": amd64_edac
EDAC MC3: CE - no information available: amd64_edacError Overflow
Add the missing space before "Error Overflow" on the second line.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
This file seeks to explain the nuances in various delays;
many driver writers are not necessarily familiar with the
various kernel timers, their shortfalls, and quirks. When
faced with
ndelay, udelay, mdelay, usleep_range, msleep, and msleep_interrubtible
the question "How do I just wait 1 ms for my hardware to
latch?" has the non-intuitive "best" answer:
usleep_range(1000,1500)
This patch is followed by a series of checkpatch additions
that seek to help kernel hackers pick the best delay.
Signed-off-by: Patrick Pannuto <ppannuto@codeaurora.org>
Cc: apw@canonical.com
Cc: corbet@lwn.net
Cc: arjan@linux.intel.com
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
LKML-Reference: <1280786467-26999-3-git-send-email-ppannuto@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
usleep_range is a finer precision implementations of msleep
and is designed to be a drop-in replacement for udelay where
a precise sleep / busy-wait is unnecessary.
Since an easy interface to hrtimers could lead to an undesired
proliferation of interrupts, we provide only a "range" API,
forcing the caller to think about an acceptable tolerance on
both ends and hopefully avoiding introducing another interrupt.
INTRO
As discussed here ( http://lkml.org/lkml/2007/8/3/250 ), msleep(1) is not
precise enough for many drivers (yes, sleep precision is an unfair notion,
but consistently sleeping for ~an order of magnitude greater than requested
is worth fixing). This patch adds a usleep API so that udelay does not have
to be used. Obviously not every udelay can be replaced (those in atomic
contexts or being used for simple bitbanging come to mind), but there are
many, many examples of
mydriver_write(...)
/* Wait for hardware to latch */
udelay(100)
in various drivers where a busy-wait loop is neither beneficial nor
necessary, but msleep simply does not provide enough precision and people
are using a busy-wait loop instead.
CONCERNS FROM THE RFC
Why is udelay a problem / necessary? Most callers of udelay are in device/
driver initialization code, which is serial...
As I see it, there is only benefit to sleeping over a delay; the
notion of "refactoring" areas that use udelay was presented, but
I see usleep as the refactoring. Consider i2c, if the bus is busy,
you need to wait a bit (say 100us) before trying again, your
current options are:
* udelay(100)
* msleep(1) <-- As noted above, actually as high as ~20ms
on some platforms, so not really an option
* Manually set up an hrtimer to try again in 100us (which
is what usleep does anyway...)
People choose the udelay route because it is EASY; we need to
provide a better easy route.
Device / driver / boot code is *currently* serial, but every few
months someone makes noise about parallelizing boot, and IMHO, a
little forward-thinking now is one less thing to worry about
if/when that ever happens
udelay's could be preempted
Sure, but if udelay plans on looping 1000 times, and it gets
preempted on loop 200, whenever it's scheduled again, it is
going to do the next 800 loops.
Is the interruptible case needed?
Probably not, but I see usleep as a very logical parallel to msleep,
so it made sense to include the "full" API. Processors are getting
faster (albeit not as quickly as they are becoming more parallel),
so if someone wanted to be interruptible for a few usecs, why not
let them? If this is a contentious point, I'm happy to remove it.
OTHER THOUGHTS
I believe there is also value in exposing the usleep_range option; it gives
the scheduler a lot more flexibility and allows the programmer to express
his intent much more clearly; it's something I would hope future driver
writers will take advantage of.
To get the results in the NUMBERS section below, I literally s/udelay/usleep
the kernel tree; I had to go in and undo the changes to the USB drivers, but
everything else booted successfully; I find that extremely telling in and
of itself -- many people are using a delay API where a sleep will suit them
just fine.
SOME ATTEMPTS AT NUMBERS
It turns out that calculating quantifiable benefit on this is challenging,
so instead I will simply present the current state of things, and I hope
this to be sufficient:
How many udelay calls are there in 2.6.35-rc5?
udealy(ARG) >= | COUNT
1000 | 319
500 | 414
100 | 1146
20 | 1832
I am working on Android, so that is my focus for this. The following table
is a modified usleep that simply printk's the amount of time requested to
sleep; these tests were run on a kernel with udelay >= 20 --> usleep
"boot" is power-on to lock screen
"power collapse" is when the power button is pushed and the device suspends
"resume" is when the power button is pushed and the lock screen is displayed
(no touchscreen events or anything, just turning on the display)
"use device" is from the unlock swipe to clicking around a bit; there is no
sd card in this phone, so fail loading music, video, camera
ACTION | TOTAL NUMBER OF USLEEP CALLS | NET TIME (us)
boot | 22 | 1250
power-collapse | 9 | 1200
resume | 5 | 500
use device | 59 | 7700
The most interesting category to me is the "use device" field; 7700us of
busy-wait time that could be put towards better responsiveness, or at the
least less power usage.
Signed-off-by: Patrick Pannuto <ppannuto@codeaurora.org>
Cc: apw@canonical.com
Cc: corbet@lwn.net
Cc: arjan@linux.intel.com
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Kgdb uses brki r16, 0x18 instruction to call
low level _debug_exception function which save
current state to pt_regs and call microblaze_kgdb_break
function. _debug_exception should be called only from
the kernel space. User space calling is not supported
because user application debugging uses different handling.
pt_regs_to_gdb_regs loads additional special registers
which can't be changed
* Enable KGDB in Kconfig
* Remove ancient not-tested KGDB support
* Remove ancient _debug_exception code from entry.S
Only MMU KGDB support is supported.
Signed-off-by: Michal Simek <monstr@monstr.eu>
CC: Jason Wessel <jason.wessel@windriver.com>
CC: John Williams <john.williams@petalogix.com>
CC: Edgar E. Iglesias <edgar.iglesias@petalogix.com>
CC: linux-kernel@vger.kernel.org
Acked-by: Jason Wessel <jason.wessel@windriver.com>