XFS_EFI_CANCELED has not been set in the code base since
xfs_efi_cancel() was removed back in 2006 by commit
065d312e15 ("[XFS] Remove unused
iop_abort log item operation), and even then xfs_efi_cancel() was
never called. I haven't tracked it back further than that (beyond
git history), but it indicates that the handling of EFIs in
cancelled transactions has been broken for a long time.
Basically, when we get an IOP_UNPIN(lip, 1); call from
xfs_trans_uncommit() (i.e. remove == 1), if we don't free the log
item descriptor we leak it. Fix the behviour to be correct and kill
the XFS_EFI_CANCELED flag.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
reiserfs_acl_chmod() can be called by reiserfs_set_attr() and then take
the reiserfs lock a second time. Thereafter it may call journal_begin()
that definitely requires the lock not to be nested in order to release
it before taking the journal mutex because the reiserfs lock depends on
the journal mutex already.
So, aviod nesting the lock in reiserfs_acl_chmod().
Reported-by: Pawel Zawora <pzawora@gmail.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Tested-by: Pawel Zawora <pzawora@gmail.com>
Cc: Jeff Mahoney <jeffm@suse.com>
Cc: <stable@kernel.org> [2.6.32.x+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the attribute cache timeout for CIFS is hardcoded to 1 second. This
means that the client might have to issue a QPATHINFO/QFILEINFO call every 1
second to verify if something has changes, which seems too expensive. On the
other hand, if the timeout is hardcoded to a higher value, workloads that
expect strict cache coherency might see unexpected results.
Making attribute cache timeout as a tunable will allow us to make a tradeoff
between performance and cache metadata correctness depending on the
application/workload needs.
Add 'actimeo' tunable that can be used to tune the attribute cache timeout.
The default timeout is set to 1 second. Also, display actimeo option value in
/proc/mounts.
It appears to me that 'actimeo' and the proposed (but not yet merged)
'strictcache' option cannot coexist, so care must be taken that we reset the
other option if one of them is set.
Changes since last post:
- fix option parsing and handle possible values correcly
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Suresh Jayaraman <sjayaraman@suse.de>
Signed-off-by: Steve French <sfrench@us.ibm.com>
* 'for-linus' of git://oss.sgi.com/xfs/xfs:
xfs: only run xfs_error_test if error injection is active
xfs: avoid moving stale inodes in the AIL
xfs: delayed alloc blocks beyond EOF are valid after writeback
xfs: push stale, pinned buffers on trylock failures
xfs: fix failed write truncation handling.
* git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6:
cifs: fix parsing of hostname in dfs referrals
cifs: display fsc in /proc/mounts
cifs: enable fscache iff fsc mount option is used explicitly
cifs: allow fsc mount option only if CONFIG_CIFS_FSCACHE is set
cifs: Handle extended attribute name cifs_acl to generate cifs acl blob (try #4)
cifs: Misc. cleanup in cifsacl handling [try #4]
cifs: trivial comment fix for cifs_invalidate_mapping
[CIFS] fs/cifs/Kconfig: CIFS depends on CRYPTO_HMAC
cifs: don't take extra tlink reference in initiate_cifs_search
cifs: Percolate error up to the caller during get/set acls [try #4]
cifs: fix another memleak, in cifs_root_iget
cifs: fix potential use-after-free in cifs_oplock_break_put
We need to ensure that the entries in the nfs_cache_array get cleared
when the page is removed from the page cache. To do so, we use the
freepage address_space operation.
Change nfs_readdir_clear_array to use kmap_atomic(), so that the
function can be safely called from all contexts.
Finally, modify the cache_page_release helper to call
nfs_readdir_clear_array directly, when dealing with an anonymous
page from 'uncached_readdir'.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Now that the buffer reclaim infrastructure can handle different reclaim
priorities for different types of buffers, reconnect the hooks in the
XFS code that has been sitting dormant since it was ported to Linux. This
should finally give use reclaim prioritisation that is on a par with the
functionality that Irix provided XFS 15 years ago.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Introduce a per-buftarg LRU for memory reclaim to operate on. This
is the last piece we need to put in place so that we can fully
control the buffer lifecycle. This allows XFS to be responsibile for
maintaining the working set of buffers under memory pressure instead
of relying on the VM reclaim not to take pages we need out from
underneath us.
The implementation introduces a b_lru_ref counter into the buffer.
This is currently set to 1 whenever the buffer is referenced and so is used to
determine if the buffer should be added to the LRU or not when freed.
Effectively it allows lazy LRU initialisation of the buffer so we do not need
to touch the LRU list and locks in xfs_buf_find().
Instead, when the buffer is being released and we drop the last
reference to it, we check the b_lru_ref count and if it is none zero
we re-add the buffer reference and add the inode to the LRU. The
b_lru_ref counter is decremented by the shrinker, and whenever the
shrinker comes across a buffer with a zero b_lru_ref counter, if
released the LRU reference on the buffer. In the absence of a lookup
race, this will result in the buffer being freed.
This counting mechanism is used instead of a reference flag so that
it is simple to re-introduce buffer-type specific reclaim reference
counts to prioritise reclaim more effectively. We still have all
those hooks in the XFS code, so this will provide the infrastructure
to re-implement that functionality.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Fill in the local lock with response data if appropriate,
and don't call posix_lock_file when reading locks.
Signed-off-by: Herb Shiu <herb_shiu@tcloudcomputing.com>
Acked-by: Greg Farnum <gregf@hq.newdream.net>
Signed-off-by: Sage Weil <sage@newdream.net>
Previously the kernel client incorrectly assumed everything was a directory.
Signed-off-by: Herb Shiu <herb_shiu@tcloudcomputing.com>
Acked-by: Greg Farnum <gregf@hq.newdream.net>
Signed-off-by: Sage Weil <sage@newdream.net>
last may be NULL, but we dereference it in the else branch without
checking. Normally it doesn't trigger because last == NULL when fpos == 2,
but it could happen on a newly opened dir if the user seeks forward.
Reported-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Sage Weil <sage@newdream.net>
Recent tests writing lots of small files showed the flusher thread
being CPU bound and taking a long time to do allocations on a debug
kernel. perf showed this as the prime reason:
samples pcnt function DSO
_______ _____ ___________________________ _________________
224648.00 36.8% xfs_error_test [kernel.kallsyms]
86045.00 14.1% xfs_btree_check_sblock [kernel.kallsyms]
39778.00 6.5% prandom32 [kernel.kallsyms]
37436.00 6.1% xfs_btree_increment [kernel.kallsyms]
29278.00 4.8% xfs_btree_get_rec [kernel.kallsyms]
27717.00 4.5% random32 [kernel.kallsyms]
Walking btree blocks during allocation checking them requires each
block (a cache hit, so no I/O) call xfs_error_test(), which then
does a random32() call as the first operation. IOWs, ~50% of the
CPU is being consumed just testing whether we need to inject an
error, even though error injection is not active.
Kill this overhead when error injection is not active by adding a
global counter of active error traps and only calling into
xfs_error_test when fault injection is active.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When an inode has been marked stale because the cluster is being
freed, we don't want to (re-)insert this inode into the AIL. There
is a race condition where the cluster buffer may be unpinned before
the inode is inserted into the AIL during transaction committed
processing. If the buffer is unpinned before the inode item has been
committed and inserted, then it is possible for the buffer to be
released and hence processthe stale inode callbacks before the inode
is inserted into the AIL.
In this case, we then insert a clean, stale inode into the AIL which
will never get removed by an IO completion. It will, however, get
reclaimed and that triggers an assert in xfs_inode_free()
complaining about freeing an inode still in the AIL.
This race can be avoided by not moving stale inodes forward in the AIL
during transaction commit completion processing. This closes the
race condition by ensuring we never insert clean stale inodes into
the AIL. It is safe to do this because a dirty stale inode, by
definition, must already be in the AIL.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
There is an assumption in the parts of XFS that flushing a dirty
file will make all the delayed allocation blocks disappear from an
inode. That is, that after calling xfs_flush_pages() then
ip->i_delayed_blks will be zero.
This is an invalid assumption as we may have specualtive
preallocation beyond EOF and they are recorded in
ip->i_delayed_blks. A flush of the dirty pages of an inode will not
change the state of these blocks beyond EOF, so a non-zero
deeelalloc block count after a flush is valid.
The bmap code has an invalid ASSERT() that needs to be removed, and
the swapext code has a bug in that while it swaps the data forks
around, it fails to swap the i_delayed_blks counter associated with
the fork and hence can get the block accounting wrong.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
As reported by Nick Piggin, XFS is suffering from long pauses under
highly concurrent workloads when hosted on ramdisks. The problem is
that an inode buffer is stuck in the pinned state in memory and as a
result either the inode buffer or one of the inodes within the
buffer is stopping the tail of the log from being moved forward.
The system remains in this state until a periodic log force issued
by xfssyncd causes the buffer to be unpinned. The main problem is
that these are stale buffers, and are hence held locked until the
transaction/checkpoint that marked them state has been committed to
disk. When the filesystem gets into this state, only the xfssyncd
can cause the async transactions to be committed to disk and hence
unpin the inode buffer.
This problem was encountered when scaling the busy extent list, but
only the blocking lock interface was fixed to solve the problem.
Extend the same fix to the buffer trylock operations - if we fail to
lock a pinned, stale buffer, then force the log immediately so that
when the next attempt to lock it comes around, it will have been
unpinned.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Since the move to the new truncate sequence we call xfs_setattr to
truncate down excessively instanciated blocks. As shown by the testcase
in kernel.org BZ #22452 that doesn't work too well. Due to the confusion
of the internal inode size, and the VFS inode i_size it zeroes data that
it shouldn't.
But full blown truncate seems like overkill here. We only instanciate
delayed allocations in the write path, and given that we never released
the iolock we can't have converted them to real allocations yet either.
The only nasty case is pre-existing preallocation which we need to skip.
We already do this for page discard during writeback, so make the delayed
allocation block punching a generic function and call it from the failed
write path as well as xfs_aops_discard_page. The callers are
responsible for ensuring that partial blocks are not truncated away,
and that they hold the ilock.
Based on a fix originally from Christoph Hellwig. This version used
filesystem blocks as the range unit.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We need to use the cookie from the previous array entry, not the
actual cookie that we are searching for (except for the case of
uncached_readdir).
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Note: this patch targets 2.6.37 and tries to be as simple as possible.
That is why it adds more copy-and-paste horror into fs/compat.c and
uglifies fs/exec.c, this will be cleanuped later.
compat_copy_strings() plays with bprm->vma/mm directly and thus has
two problems: it lacks the RLIMIT_STACK check and argv/envp memory
is not visible to oom killer.
Export acct_arg_size() and get_arg_page(), change compat_copy_strings()
to use get_arg_page(), change compat_do_execve() to do acct_arg_size(0)
as do_execve() does.
Add the fatal_signal_pending/cond_resched checks into compat_count() and
compat_copy_strings(), this matches the code in fs/exec.c and certainly
makes sense.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Brad Spengler published a local memory-allocation DoS that
evades the OOM-killer (though not the virtual memory RLIMIT):
http://www.grsecurity.net/~spender/64bit_dos.c
execve()->copy_strings() can allocate a lot of memory, but
this is not visible to oom-killer, nobody can see the nascent
bprm->mm and take it into account.
With this patch get_arg_page() increments current's MM_ANONPAGES
counter every time we allocate the new page for argv/envp. When
do_execve() succeds or fails, we change this counter back.
Technically this is not 100% correct, we can't know if the new
page is swapped out and turn MM_ANONPAGES into MM_SWAPENTS, but
I don't think this really matters and everything becomes correct
once exec changes ->mm or fails.
Reported-by: Brad Spengler <spender@grsecurity.net>
Reviewed-and-discussed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The DFS referral parsing code does a memchr() call to find the '\\'
delimiter that separates the hostname in the referral UNC from the
sharename. It then uses that value to set the length of the hostname via
pointer subtraction. Instead of subtracting the start of the hostname
however, it subtracts the start of the UNC, which causes the code to
pass in a hostname length that is 2 bytes too long.
Regression introduced in commit 1a4240f4.
Reported-and-Tested-by: Robbert Kouprie <robbert@exx.nl>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Cc: Wang Lei <wang840925@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: stable@kernel.org
Signed-off-by: Steve French <sfrench@us.ibm.com>
When comparing filehandles in the helper nfs_same_file(), we should not be
using 'strncmp()': filehandles are not null terminated strings.
Instead, we should just use the existing helper nfs_compare_fh().
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can only merge the fields into a bitfield if the locking
rules for them are the same. In this case gl_spin covers all
of the fields (write side) but a couple of them are used
with GLF_LOCK as the read side lock, which should be ok
since we know that the field in question won't be changing
at the time.
The gl_req setting has to be done earlier (in glock.c) in order
to place it under gl_spin. The gl_reply setting also has to be
brought under gl_spin in order to comply with the new rules.
This saves 4*sizeof(unsigned int) per glock.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Cc: Bob Peterson <rpeterso@redhat.com>
When you truncate the rindex file, you need to avoid calling gfs2_rindex_hold,
since you already hold it. However, if you haven't already read in the
resource groups, you need to do that.
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Verify that the total length of the iovec returned in FUSE_IOCTL_RETRY
doesn't overflow iov_length().
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
CC: Tejun Heo <tj@kernel.org>
CC: <stable@kernel.org> [2.6.31+]
If a 32bit CUSE server is run on 64bit this results in EIO being
returned to the caller.
The reason is that FUSE_IOCTL_RETRY reply was defined to use 'struct
iovec', which is different on 32bit and 64bit archs.
Work around this by looking at the size of the reply to determine
which struct was used. This is only needed if CONFIG_COMPAT is
defined.
A more permanent fix for the interface will be to use the same struct
on both 32bit and 64bit.
Reported-by: "ccmail111" <ccmail111@yahoo.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
CC: Tejun Heo <tj@kernel.org>
CC: <stable@kernel.org> [2.6.31+]
When GFS2 grew the filesystem, it was never rereading the rindex file during
the grow. This is necessary for large grows when the filesystem is almost full,
and GFS2 needs to use some of the space allocated earlier in the grow to
complete it. Now, if GFS2 fails to reserve the necessary space and the rindex
file is not uptodate, it rereads it. Also, the only difference between
gfs2_ri_update() and gfs2_ri_update_special() was that gfs2_ri_update_special()
didn't clear out the existing resource groups, since you knew that it was only
called when there were no resource groups. Attempting to clear out the
resource groups when there are none takes almost no time, and rarely happens,
so I simply removed gfs2_ri_update_special().
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
There are a number of duplicated #defines in glock.h
plus one which is unused. This removes the extra
definitions.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
A recurring complaint from CFS users is that parallel kbuild has
a negative impact on desktop interactivity. This patch
implements an idea from Linus, to automatically create task
groups. Currently, only per session autogroups are implemented,
but the patch leaves the way open for enhancement.
Implementation: each task's signal struct contains an inherited
pointer to a refcounted autogroup struct containing a task group
pointer, the default for all tasks pointing to the
init_task_group. When a task calls setsid(), a new task group
is created, the process is moved into the new task group, and a
reference to the preveious task group is dropped. Child
processes inherit this task group thereafter, and increase it's
refcount. When the last thread of a process exits, the
process's reference is dropped, such that when the last process
referencing an autogroup exits, the autogroup is destroyed.
At runqueue selection time, IFF a task has no cgroup assignment,
its current autogroup is used.
Autogroup bandwidth is controllable via setting it's nice level
through the proc filesystem:
cat /proc/<pid>/autogroup
Displays the task's group and the group's nice level.
echo <nice level> > /proc/<pid>/autogroup
Sets the task group's shares to the weight of nice <level> task.
Setting nice level is rate limited for !admin users due to the
abuse risk of task group locking.
The feature is enabled from boot by default if
CONFIG_SCHED_AUTOGROUP=y is selected, but can be disabled via
the boot option noautogroup, and can also be turned on/off on
the fly via:
echo [01] > /proc/sys/kernel/sched_autogroup_enabled
... which will automatically move tasks to/from the root task group.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Markus Trippelsdorf <markus@trippelsdorf.de>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
[ Removed the task_group_path() debug code, and fixed !EVENTFD build failure. ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
LKML-Reference: <1290281700.28711.9.camel@maggy.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Allow architectures to redefine this macro if needed. This is useful for
example in architectures where 64-bit ELF vmcores are not supported.
Specifying zero vmcore_elf64_check_arch() allows compiler to optimize
away unnecessary parts of parse_crash_elf64_headers().
We also rename the macro to vmcore_elf64_check_arch() to reflect that it
is used for 64-bit vmcores only.
Signed-off-by: Mika Westerberg <mika.westerberg@iki.fi>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The DLM never returns -EAGAIN in response to dlm_lock(), and even
if it did, the test in gdlm_lock() was wrong anyway. Once that
test is removed, it is possible to greatly simplify this code
by simply using a "normal" error return code (0 for success).
We then no longer need the LM_OUT_ASYNC return code which can
be removed.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
With this patch the gfs2_set_dqblk() function will be able to update the
quota usage block count (FS_DQ_BCOUNT) in addition to the already supported
FS_DQ_BHARD (limit) and FS_DQ_BSOFT (warn) fields of the dquot structure.
Signed-off-by: Abhi Das <adas@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Functions that use printf formatting, especially
those that use %pV, should have their uses of
printf format and arguments checked by the compiler.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Using %pV reduces the number of printk calls and
eliminates any possible message interleaving from
other printk calls.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
While preparing the last patch I noticed that the gfs2_setattr_simple
code had been duplicated into two other places. This patch updates
those to call gfs2_setattr_simple rather than open coding it.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
The WQ_RESCUER flag should only be used internally to the
workqueue implementation.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Before we introduce per-buftarg LRU lists, split the shrinker
implementation into per-buftarg shrinker callbacks. At the moment
we wake all the xfsbufds to run the delayed write queues to free
the dirty buffers and make their pages available for reclaim.
However, with an LRU, we want to be able to free clean, unused
buffers as well, so we need to separate the xfsbufd from the
shrinker callbacks.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
now that we are using RCU protection for the inode cache lookups,
the lock is only needed on the modification side. Hence it is not
necessary for the lock to be a rwlock as there are no read side
holders anymore. Convert it to a spin lock to reflect it's exclusive
nature.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
With delayed logging greatly increasing the sustained parallelism of inode
operations, the inode cache locking is showing significant read vs write
contention when inode reclaim runs at the same time as lookups. There is
also a lot more write lock acquistions than there are read locks (4:1 ratio)
so the read locking is not really buying us much in the way of parallelism.
To avoid the read vs write contention, change the cache to use RCU locking on
the read side. To avoid needing to RCU free every single inode, use the built
in slab RCU freeing mechanism. This requires us to be able to detect lookups of
freed inodes, so enѕure that ever freed inode has an inode number of zero and
the XFS_IRECLAIM flag set. We already check the XFS_IRECLAIM flag in cache hit
lookup path, but also add a check for a zero inode number as well.
We canthen convert all the read locking lockups to use RCU read side locking
and hence remove all read side locking.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Introduce RCU freeing of XFS inodes so that we can convert lookup
traversals to use rcu_read_lock() protection. This patch only
introduces the RCU freeing to minimise the potential conflicts with
mainline if this is merged into mainline via a VFS patchset. It
abuses the i_dentry list for the RCU callback structure because the
VFS patches make this a union so it is safe to use like this and
simplifies and merge issues.
This patch uses basic RCU freeing rather than SLAB_DESTROY_BY_RCU.
The later lookup patches need the same "found free inode" protection
regardless of the RCU freeing method used, so once again the RCU
freeing method can be dealt with apprpriately at merge time without
affecting any other code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
A long standing problem for streaming writeѕ through the NFS server
has been that the NFS server opens and closes file descriptors on an
inode for every write. The result of this behaviour is that the
->release() function is called on every close and that results in
XFS truncating speculative preallocation beyond the EOF. This has
an adverse effect on file layout when multiple files are being
written at the same time - they interleave their extents and can
result in severe fragmentation.
To avoid this problem, keep track of ->release calls made on a dirty
inode. For most cases, an inode is only going to be opened once for
writing and then closed again during it's lifetime in cache. Hence
if there are multiple ->release calls when the inode is dirty, there
is a good chance that the inode is being accessed by the NFS server.
Hence set a flag the first time ->release is called while there are
delalloc blocks still outstanding on the inode.
If this flag is set when ->release is next called, then do no
truncate away the speculative preallocation - leave it there so that
subsequent writes do not need to reallocate the delalloc space. This
will prevent interleaving of extents of different inodes written
concurrently to the same AG.
If we get this wrong, it is not a big deal as we truncate
speculative allocation beyond EOF anyway in xfs_inactive() when the
inode is thrown out of the cache.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Currently the size of the speculative preallocation during delayed
allocation is fixed by either the allocsize mount option of a
default size. We are seeing a lot of cases where we need to
recommend using the allocsize mount option to prevent fragmentation
when buffered writes land in the same AG.
Rather than using a fixed preallocation size by default (up to 64k),
make it dynamic by basing it on the current inode size. That way the
EOF preallocation will increase as the file size increases. Hence
for streaming writes we are much more likely to get large
preallocations exactly when we need it to reduce fragementation.
For default settings, the size of the initial extents is determined
by the number of parallel writers and the amount of memory in the
machine. For 4GB RAM and 4 concurrent 32GB file writes:
EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL
0: [0..1048575]: 1048672..2097247 0 (1048672..2097247) 1048576
1: [1048576..2097151]: 5242976..6291551 0 (5242976..6291551) 1048576
2: [2097152..4194303]: 12583008..14680159 0 (12583008..14680159) 2097152
3: [4194304..8388607]: 25165920..29360223 0 (25165920..29360223) 4194304
4: [8388608..16777215]: 58720352..67108959 0 (58720352..67108959) 8388608
5: [16777216..33554423]: 117440584..134217791 0 (117440584..134217791) 16777208
6: [33554424..50331511]: 184549056..201326143 0 (184549056..201326143) 16777088
7: [50331512..67108599]: 251657408..268434495 0 (251657408..268434495) 16777088
and for 16 concurrent 16GB file writes:
EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL
0: [0..262143]: 2490472..2752615 0 (2490472..2752615) 262144
1: [262144..524287]: 6291560..6553703 0 (6291560..6553703) 262144
2: [524288..1048575]: 13631592..14155879 0 (13631592..14155879) 524288
3: [1048576..2097151]: 30408808..31457383 0 (30408808..31457383) 1048576
4: [2097152..4194303]: 52428904..54526055 0 (52428904..54526055) 2097152
5: [4194304..8388607]: 104857704..109052007 0 (104857704..109052007) 4194304
6: [8388608..16777215]: 209715304..218103911 0 (209715304..218103911) 8388608
7: [16777216..33554423]: 452984848..469762055 0 (452984848..469762055) 16777208
Because it is hard to take back specualtive preallocation, cases
where there are large slow growing log files on a nearly full
filesystem may cause premature ENOSPC. Hence as the filesystem nears
full, the maximum dynamic prealloc size іs reduced according to this
table (based on 4k block size):
freespace max prealloc size
>5% full extent (8GB)
4-5% 2GB (8GB >> 2)
3-4% 1GB (8GB >> 3)
2-3% 512MB (8GB >> 4)
1-2% 256MB (8GB >> 5)
<1% 128MB (8GB >> 6)
This should reduce the amount of space held in speculative
preallocation for such cases.
The allocsize mount option turns off the dynamic behaviour and fixes
the prealloc size to whatever the mount option specifies. i.e. the
behaviour is unchanged.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
When listing attributes, we are doiing memory allocations under the
inode ilock using only KM_SLEEP. This allows memory allocation to
recurse back into the filesystem and do writeback, which may the
ilock we already hold on the current inode. THis will deadlock.
Hence use KM_NOFS for such allocations outside of transaction
context to ensure that reclaim recursion does not occur.
Reported-by: Nick Piggin <npiggin@gmail.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The XFS iolock needs to be re-initialised to a new lock class before
it enters reclaim to prevent lockdep false positives. Unfortunately,
this is not sufficient protection as inodes in the XFS_IRECLAIMABLE
state can be recycled and not re-initialised before being reused.
We need to re-initialise the lock state when transfering out of
XFS_IRECLAIMABLE state to XFS_INEW, but we need to keep the same
class as if the inode was just allocated. Hence we need a specific
lockdep class variable for the iolock so that both initialisations
use the same class.
While there, add a specific class for inodes in the reclaim state so
that it is easy to tell from lockdep reports what state the inode
was in that generated the report.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add a new xfs_alloc_find_best_extent that does a forward/backward
search in the allocation btree. That code previously was existed
two times in xfs_alloc_ag_vextent_near, once for each search
direction.
Based on an earlier patch from Dave Chinner.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Use a goto label to consolidate all block not found cases, and add a
tracepoint for them. Also clean up a few whitespace issues.
Based on an earlier patch from Dave Chinner.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>