/* * SWIOTLB-based DMA API implementation * * Copyright (C) 2012 ARM Ltd. * Author: Catalin Marinas * Copyright (c) 2017, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mm.h" static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot, bool coherent) { if (dma_get_attr(DMA_ATTR_STRONGLY_ORDERED, attrs)) return pgprot_noncached(prot); else if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs)) return pgprot_writecombine(prot); return prot; } static bool is_dma_coherent(struct device *dev, struct dma_attrs *attrs) { bool is_coherent; if (dma_get_attr(DMA_ATTR_FORCE_COHERENT, attrs)) is_coherent = true; else if (dma_get_attr(DMA_ATTR_FORCE_NON_COHERENT, attrs)) is_coherent = false; else if (is_device_dma_coherent(dev)) is_coherent = true; else is_coherent = false; return is_coherent; } static struct gen_pool *atomic_pool; #define NO_KERNEL_MAPPING_DUMMY 0x2222 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; static int __init early_coherent_pool(char *p) { atomic_pool_size = memparse(p, &p); return 0; } early_param("coherent_pool", early_coherent_pool); static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags) { unsigned long val; void *ptr = NULL; if (!atomic_pool) { WARN(1, "coherent pool not initialised!\n"); return NULL; } val = gen_pool_alloc(atomic_pool, size); if (val) { phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); *ret_page = phys_to_page(phys); ptr = (void *)val; memset(ptr, 0, size); } return ptr; } static bool __in_atomic_pool(void *start, size_t size) { return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); } static int __free_from_pool(void *start, size_t size) { if (!__in_atomic_pool(start, size)) return 0; gen_pool_free(atomic_pool, (unsigned long)start, size); return 1; } static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, void *data) { struct page *page = virt_to_page(addr); pgprot_t prot = *(pgprot_t *)data; set_pte(pte, mk_pte(page, prot)); return 0; } static int __dma_clear_pte(pte_t *pte, pgtable_t token, unsigned long addr, void *data) { pte_clear(&init_mm, addr, pte); return 0; } static void __dma_remap(struct page *page, size_t size, pgprot_t prot, bool no_kernel_map) { unsigned long start = (unsigned long) page_address(page); unsigned end = start + size; int (*func)(pte_t *pte, pgtable_t token, unsigned long addr, void *data); if (no_kernel_map) func = __dma_clear_pte; else func = __dma_update_pte; apply_to_page_range(&init_mm, start, size, func, &prot); mb(); flush_tlb_kernel_range(start, end); } static void *__dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flags, struct dma_attrs *attrs) { void *addr; if (dev == NULL) { WARN_ONCE(1, "Use an actual device structure for DMA allocation\n"); return NULL; } if (IS_ENABLED(CONFIG_ZONE_DMA) && dev->coherent_dma_mask <= DMA_BIT_MASK(32)) flags |= GFP_DMA; if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) { struct page *page; page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, get_order(size)); if (!page) return NULL; *dma_handle = phys_to_dma(dev, page_to_phys(page)); addr = page_address(page); memset(addr, 0, size); } else { addr = swiotlb_alloc_coherent(dev, size, dma_handle, flags); } if (addr && (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs) || dma_get_attr(DMA_ATTR_STRONGLY_ORDERED, attrs))) { /* * flush the caches here because we can't later */ __dma_flush_range(addr, addr + size); __dma_remap(virt_to_page(addr), size, 0, true); } return addr; } static void __dma_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, struct dma_attrs *attrs) { bool freed; phys_addr_t paddr = dma_to_phys(dev, dma_handle); size = PAGE_ALIGN(size); if (dev == NULL) { WARN_ONCE(1, "Use an actual device structure for DMA allocation\n"); return; } if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs) || dma_get_attr(DMA_ATTR_STRONGLY_ORDERED, attrs)) __dma_remap(phys_to_page(paddr), size, PAGE_KERNEL, false); freed = dma_release_from_contiguous(dev, phys_to_page(paddr), size >> PAGE_SHIFT); if (!freed) swiotlb_free_coherent(dev, size, vaddr, dma_handle); } static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flags, struct dma_attrs *attrs) { struct page *page; void *ptr, *coherent_ptr; bool coherent = is_dma_coherent(dev, attrs); size = PAGE_ALIGN(size); if (!coherent && !gfpflags_allow_blocking(flags)) { struct page *page = NULL; void *addr = __alloc_from_pool(size, &page, flags); if (addr) *dma_handle = phys_to_dma(dev, page_to_phys(page)); return addr; } ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs); if (!ptr) goto no_mem; /* no need for non-cacheable mapping if coherent */ if (coherent) return ptr; if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) { coherent_ptr = (void *)NO_KERNEL_MAPPING_DUMMY; } else { if (!dma_get_attr(DMA_ATTR_STRONGLY_ORDERED, attrs)) /* remove any dirty cache lines on the kernel alias */ __dma_flush_range(ptr, ptr + size); /* create a coherent mapping */ page = virt_to_page(ptr); coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP, __get_dma_pgprot(attrs, __pgprot(PROT_NORMAL_NC), false), NULL); if (!coherent_ptr) goto no_map; } return coherent_ptr; no_map: __dma_free_coherent(dev, size, ptr, *dma_handle, attrs); no_mem: *dma_handle = DMA_ERROR_CODE; return NULL; } static void __dma_free(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, struct dma_attrs *attrs) { void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle)); size = PAGE_ALIGN(size); if (!is_dma_coherent(dev, attrs)) { if (__free_from_pool(vaddr, size)) return; if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) vunmap(vaddr); } __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs); } static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { dma_addr_t dev_addr; dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs); if (!is_dma_coherent(dev, attrs)) __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); return dev_addr; } static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { if (!is_dma_coherent(dev, attrs)) __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); swiotlb_unmap_page(dev, dev_addr, size, dir, attrs); } static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, struct dma_attrs *attrs) { struct scatterlist *sg; int i, ret; ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs); if (!is_dma_coherent(dev, attrs)) for_each_sg(sgl, sg, ret, i) __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), sg->length, dir); return ret; } static void __swiotlb_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, struct dma_attrs *attrs) { struct scatterlist *sg; int i; if (!is_dma_coherent(dev, attrs)) for_each_sg(sgl, sg, nelems, i) __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), sg->length, dir); swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs); } static void __swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir) { if (!is_device_dma_coherent(dev)) __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir); } static void __swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir) { swiotlb_sync_single_for_device(dev, dev_addr, size, dir); if (!is_device_dma_coherent(dev)) __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); } static void __swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir) { struct scatterlist *sg; int i; if (!is_device_dma_coherent(dev)) for_each_sg(sgl, sg, nelems, i) __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), sg->length, dir); swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir); } static void __swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir) { struct scatterlist *sg; int i; swiotlb_sync_sg_for_device(dev, sgl, nelems, dir); if (!is_device_dma_coherent(dev)) for_each_sg(sgl, sg, nelems, i) __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), sg->length, dir); } static int __swiotlb_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, struct dma_attrs *attrs) { int ret = -ENXIO; unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT; unsigned long off = vma->vm_pgoff; vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, is_dma_coherent(dev, attrs)); if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) return ret; if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { ret = remap_pfn_range(vma, vma->vm_start, pfn + off, vma->vm_end - vma->vm_start, vma->vm_page_prot); } return ret; } static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t handle, size_t size, struct dma_attrs *attrs) { int ret = sg_alloc_table(sgt, 1, GFP_KERNEL); if (!ret) sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)), PAGE_ALIGN(size), 0); return ret; } static void *arm64_dma_remap(struct device *dev, void *cpu_addr, dma_addr_t handle, size_t size, struct dma_attrs *attrs) { struct page *page = phys_to_page(dma_to_phys(dev, handle)); pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false); unsigned long offset = handle & ~PAGE_MASK; struct vm_struct *area; unsigned long addr; size = PAGE_ALIGN(size + offset); /* * DMA allocation can be mapped to user space, so lets * set VM_USERMAP flags too. */ area = get_vm_area(size, VM_USERMAP); if (!area) return NULL; addr = (unsigned long)area->addr; area->phys_addr = __pfn_to_phys(page_to_pfn(page)); if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) { vunmap((void *)addr); return NULL; } return (void *)addr + offset; } static void arm64_dma_unremap(struct device *dev, void *remapped_addr, size_t size) { struct vm_struct *area; size = PAGE_ALIGN(size); remapped_addr = (void *)((unsigned long)remapped_addr & PAGE_MASK); area = find_vm_area(remapped_addr); if (!area) { WARN(1, "trying to free invalid coherent area: %p\n", remapped_addr); return; } vunmap(remapped_addr); flush_tlb_kernel_range((unsigned long)remapped_addr, (unsigned long)(remapped_addr + size)); } static struct dma_map_ops swiotlb_dma_ops = { .alloc = __dma_alloc, .free = __dma_free, .mmap = __swiotlb_mmap, .get_sgtable = __swiotlb_get_sgtable, .map_page = __swiotlb_map_page, .unmap_page = __swiotlb_unmap_page, .map_sg = __swiotlb_map_sg_attrs, .unmap_sg = __swiotlb_unmap_sg_attrs, .sync_single_for_cpu = __swiotlb_sync_single_for_cpu, .sync_single_for_device = __swiotlb_sync_single_for_device, .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu, .sync_sg_for_device = __swiotlb_sync_sg_for_device, .dma_supported = swiotlb_dma_supported, .mapping_error = swiotlb_dma_mapping_error, .remap = arm64_dma_remap, .unremap = arm64_dma_unremap, }; static int __init atomic_pool_init(void) { pgprot_t prot = __pgprot(PROT_NORMAL_NC); unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT; struct page *page; void *addr; unsigned int pool_size_order = get_order(atomic_pool_size); if (dev_get_cma_area(NULL)) page = dma_alloc_from_contiguous(NULL, nr_pages, pool_size_order); else page = alloc_pages(GFP_DMA, pool_size_order); if (page) { int ret; void *page_addr = page_address(page); memset(page_addr, 0, atomic_pool_size); __dma_flush_range(page_addr, page_addr + atomic_pool_size); atomic_pool = gen_pool_create(PAGE_SHIFT, -1); if (!atomic_pool) goto free_page; addr = dma_common_contiguous_remap(page, atomic_pool_size, VM_USERMAP, prot, atomic_pool_init); if (!addr) goto destroy_genpool; ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr, page_to_phys(page), atomic_pool_size, -1); if (ret) goto remove_mapping; gen_pool_set_algo(atomic_pool, gen_pool_first_fit_order_align, (void *)PAGE_SHIFT); pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n", atomic_pool_size / 1024); return 0; } goto out; remove_mapping: dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP, true); destroy_genpool: gen_pool_destroy(atomic_pool); atomic_pool = NULL; free_page: if (!dma_release_from_contiguous(NULL, page, nr_pages)) __free_pages(page, pool_size_order); out: pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", atomic_pool_size / 1024); return -ENOMEM; } /******************************************** * The following APIs are for dummy DMA ops * ********************************************/ static void *__dummy_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flags, struct dma_attrs *attrs) { WARN(1, "dma alloc failure, device may be missing a call to arch_setup_dma_ops"); return NULL; } static void __dummy_free(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, struct dma_attrs *attrs) { } static int __dummy_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, struct dma_attrs *attrs) { return -ENXIO; } static dma_addr_t __dummy_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { return DMA_ERROR_CODE; } static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { } static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, struct dma_attrs *attrs) { return 0; } static void __dummy_unmap_sg(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, struct dma_attrs *attrs) { } static void __dummy_sync_single(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir) { } static void __dummy_sync_sg(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir) { } static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr) { return 1; } static int __dummy_dma_supported(struct device *hwdev, u64 mask) { return 0; } struct dma_map_ops dummy_dma_ops = { .alloc = __dummy_alloc, .free = __dummy_free, .mmap = __dummy_mmap, .map_page = __dummy_map_page, .unmap_page = __dummy_unmap_page, .map_sg = __dummy_map_sg, .unmap_sg = __dummy_unmap_sg, .sync_single_for_cpu = __dummy_sync_single, .sync_single_for_device = __dummy_sync_single, .sync_sg_for_cpu = __dummy_sync_sg, .sync_sg_for_device = __dummy_sync_sg, .mapping_error = __dummy_mapping_error, .dma_supported = __dummy_dma_supported, }; EXPORT_SYMBOL(dummy_dma_ops); static int __init arm64_dma_init(void) { return atomic_pool_init(); } arch_initcall(arm64_dma_init); #define PREALLOC_DMA_DEBUG_ENTRIES 4096 static int __init dma_debug_do_init(void) { dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); return 0; } fs_initcall(dma_debug_do_init); #ifdef CONFIG_IOMMU_DMA #include #include #include /* Thankfully, all cache ops are by VA so we can ignore phys here */ static void flush_page(struct device *dev, const void *virt, phys_addr_t phys) { __dma_flush_range(virt, virt + PAGE_SIZE); } static void *__iommu_alloc_attrs(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) { bool coherent = is_dma_coherent(dev, attrs); int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent); size_t iosize = size; void *addr; if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n")) return NULL; size = PAGE_ALIGN(size); /* * Some drivers rely on this, and we probably don't want the * possibility of stale kernel data being read by devices anyway. */ gfp |= __GFP_ZERO; if (gfpflags_allow_blocking(gfp)) { struct page **pages; pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent); pages = iommu_dma_alloc(dev, iosize, gfp, ioprot, handle, flush_page); if (!pages) return NULL; addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot, __builtin_return_address(0)); if (!addr) iommu_dma_free(dev, pages, iosize, handle); } else { struct page *page; /* * In atomic context we can't remap anything, so we'll only * get the virtually contiguous buffer we need by way of a * physically contiguous allocation. */ if (coherent) { page = alloc_pages(gfp, get_order(size)); addr = page ? page_address(page) : NULL; } else { addr = __alloc_from_pool(size, &page, gfp); } if (!addr) return NULL; *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); if (iommu_dma_mapping_error(dev, *handle)) { if (coherent) __free_pages(page, get_order(size)); else __free_from_pool(addr, size); addr = NULL; } } return addr; } static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle, struct dma_attrs *attrs) { size_t iosize = size; size = PAGE_ALIGN(size); /* * @cpu_addr will be one of 3 things depending on how it was allocated: * - A remapped array of pages from iommu_dma_alloc(), for all * non-atomic allocations. * - A non-cacheable alias from the atomic pool, for atomic * allocations by non-coherent devices. * - A normal lowmem address, for atomic allocations by * coherent devices. * Hence how dodgy the below logic looks... */ if (__in_atomic_pool(cpu_addr, size)) { iommu_dma_unmap_page(dev, handle, iosize, 0, NULL); __free_from_pool(cpu_addr, size); } else if (is_vmalloc_addr(cpu_addr)){ struct vm_struct *area = find_vm_area(cpu_addr); if (WARN_ON(!area || !area->pages)) return; iommu_dma_free(dev, area->pages, iosize, &handle); dma_common_free_remap(cpu_addr, size, VM_USERMAP, true); } else { iommu_dma_unmap_page(dev, handle, iosize, 0, NULL); __free_pages(virt_to_page(cpu_addr), get_order(size)); } } static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, struct dma_attrs *attrs) { struct vm_struct *area; int ret; vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, is_dma_coherent(dev, attrs)); if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) return ret; area = find_vm_area(cpu_addr); if (WARN_ON(!area || !area->pages)) return -ENXIO; return iommu_dma_mmap(area->pages, size, vma); } static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, struct dma_attrs *attrs) { unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; struct vm_struct *area = find_vm_area(cpu_addr); if (WARN_ON(!area || !area->pages)) return -ENXIO; return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size, GFP_KERNEL); } static void __iommu_sync_single_for_cpu(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir) { phys_addr_t phys; if (is_device_dma_coherent(dev)) return; phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); __dma_unmap_area(phys_to_virt(phys), size, dir); } static void __iommu_sync_single_for_device(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir) { phys_addr_t phys; if (is_device_dma_coherent(dev)) return; phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); __dma_map_area(phys_to_virt(phys), size, dir); } static dma_addr_t __iommu_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { bool coherent = is_dma_coherent(dev, attrs); int prot = dma_direction_to_prot(dir, coherent); dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot); if (!iommu_dma_mapping_error(dev, dev_addr) && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) __iommu_sync_single_for_device(dev, dev_addr, size, dir); return dev_addr; } static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) __iommu_sync_single_for_cpu(dev, dev_addr, size, dir); iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs); } static void __iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir) { struct scatterlist *sg; int i; if (is_device_dma_coherent(dev)) return; for_each_sg(sgl, sg, nelems, i) __dma_unmap_area(sg_virt(sg), sg->length, dir); } static void __iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir) { struct scatterlist *sg; int i; if (is_device_dma_coherent(dev)) return; for_each_sg(sgl, sg, nelems, i) __dma_map_area(sg_virt(sg), sg->length, dir); } static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, struct dma_attrs *attrs) { bool coherent = is_dma_coherent(dev, attrs); if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) __iommu_sync_sg_for_device(dev, sgl, nelems, dir); return iommu_dma_map_sg(dev, sgl, nelems, dma_direction_to_prot(dir, coherent)); } static void __iommu_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, struct dma_attrs *attrs) { if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir); iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs); } static struct dma_map_ops iommu_dma_ops = { .alloc = __iommu_alloc_attrs, .free = __iommu_free_attrs, .mmap = __iommu_mmap_attrs, .get_sgtable = __iommu_get_sgtable, .map_page = __iommu_map_page, .unmap_page = __iommu_unmap_page, .map_sg = __iommu_map_sg_attrs, .unmap_sg = __iommu_unmap_sg_attrs, .sync_single_for_cpu = __iommu_sync_single_for_cpu, .sync_single_for_device = __iommu_sync_single_for_device, .sync_sg_for_cpu = __iommu_sync_sg_for_cpu, .sync_sg_for_device = __iommu_sync_sg_for_device, .mapping_error = iommu_dma_mapping_error, }; /* * TODO: Right now __iommu_setup_dma_ops() gets called too early to do * everything it needs to - the device is only partially created and the * IOMMU driver hasn't seen it yet, so it can't have a group. Thus we * need this delayed attachment dance. Once IOMMU probe ordering is sorted * to move the arch_setup_dma_ops() call later, all the notifier bits below * become unnecessary, and will go away. */ struct iommu_dma_notifier_data { struct list_head list; struct device *dev; const struct iommu_ops *ops; u64 dma_base; u64 size; }; static LIST_HEAD(iommu_dma_masters); static DEFINE_MUTEX(iommu_dma_notifier_lock); /* * Temporarily "borrow" a domain feature flag to to tell if we had to resort * to creating our own domain here, in case we need to clean it up again. */ #define __IOMMU_DOMAIN_FAKE_DEFAULT (1U << 31) static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops, u64 dma_base, u64 size) { struct iommu_domain *domain = iommu_get_domain_for_dev(dev); /* * Best case: The device is either part of a group which was * already attached to a domain in a previous call, or it's * been put in a default DMA domain by the IOMMU core. */ if (!domain) { /* * Urgh. The IOMMU core isn't going to do default domains * for non-PCI devices anyway, until it has some means of * abstracting the entirely implementation-specific * sideband data/SoC topology/unicorn dust that may or * may not differentiate upstream masters. * So until then, HORRIBLE HACKS! */ domain = ops->domain_alloc(IOMMU_DOMAIN_DMA); if (!domain) goto out_no_domain; domain->ops = ops; domain->type = IOMMU_DOMAIN_DMA | __IOMMU_DOMAIN_FAKE_DEFAULT; if (iommu_attach_device(domain, dev)) goto out_put_domain; } if (iommu_dma_init_domain(domain, dma_base, size)) goto out_detach; dev->archdata.dma_ops = &iommu_dma_ops; return true; out_detach: iommu_detach_device(domain, dev); out_put_domain: if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT) iommu_domain_free(domain); out_no_domain: pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", dev_name(dev)); return false; } static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops, u64 dma_base, u64 size) { struct iommu_dma_notifier_data *iommudata; iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL); if (!iommudata) return; iommudata->dev = dev; iommudata->ops = ops; iommudata->dma_base = dma_base; iommudata->size = size; mutex_lock(&iommu_dma_notifier_lock); list_add(&iommudata->list, &iommu_dma_masters); mutex_unlock(&iommu_dma_notifier_lock); } static int __iommu_attach_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct iommu_dma_notifier_data *master, *tmp; if (action != BUS_NOTIFY_ADD_DEVICE) return 0; mutex_lock(&iommu_dma_notifier_lock); list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) { if (do_iommu_attach(master->dev, master->ops, master->dma_base, master->size)) { list_del(&master->list); kfree(master); } } mutex_unlock(&iommu_dma_notifier_lock); return 0; } static int __init register_iommu_dma_ops_notifier(struct bus_type *bus) { struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL); int ret; if (!nb) return -ENOMEM; /* * The device must be attached to a domain before the driver probe * routine gets a chance to start allocating DMA buffers. However, * the IOMMU driver also needs a chance to configure the iommu_group * via its add_device callback first, so we need to make the attach * happen between those two points. Since the IOMMU core uses a bus * notifier with default priority for add_device, do the same but * with a lower priority to ensure the appropriate ordering. */ nb->notifier_call = __iommu_attach_notifier; nb->priority = -100; ret = bus_register_notifier(bus, nb); if (ret) { pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n", bus->name); kfree(nb); } return ret; } static int __init __iommu_dma_init(void) { int ret; ret = iommu_dma_init(); if (!ret) ret = register_iommu_dma_ops_notifier(&platform_bus_type); if (!ret) ret = register_iommu_dma_ops_notifier(&amba_bustype); /* handle devices queued before this arch_initcall */ if (!ret) __iommu_attach_notifier(NULL, BUS_NOTIFY_ADD_DEVICE, NULL); return ret; } arch_initcall(__iommu_dma_init); static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, const struct iommu_ops *ops) { struct iommu_group *group; if (!ops) return; /* * TODO: As a concession to the future, we're ready to handle being * called both early and late (i.e. after bus_add_device). Once all * the platform bus code is reworked to call us late and the notifier * junk above goes away, move the body of do_iommu_attach here. */ group = iommu_group_get(dev); if (group) { do_iommu_attach(dev, ops, dma_base, size); iommu_group_put(group); } else { queue_iommu_attach(dev, ops, dma_base, size); } } void arch_teardown_dma_ops(struct device *dev) { struct iommu_domain *domain = iommu_get_domain_for_dev(dev); if (domain) { iommu_detach_device(domain, dev); if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT) iommu_domain_free(domain); } dev->archdata.dma_ops = NULL; } #else static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, struct iommu_ops *iommu) { } #endif /* CONFIG_IOMMU_DMA */ void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, struct iommu_ops *iommu, bool coherent) { if (!dev->archdata.dma_ops) dev->archdata.dma_ops = &swiotlb_dma_ops; dev->archdata.dma_coherent = coherent; __iommu_setup_dma_ops(dev, dma_base, size, iommu); } EXPORT_SYMBOL(arch_setup_dma_ops); #ifdef CONFIG_ARM64_DMA_USE_IOMMU static int __get_iommu_pgprot(struct dma_attrs *attrs, int prot, bool coherent) { if (!dma_get_attr(DMA_ATTR_EXEC_MAPPING, attrs)) prot |= IOMMU_NOEXEC; if (coherent) prot |= IOMMU_CACHE; return prot; } /* * Make an area consistent for devices. * Note: Drivers should NOT use this function directly, as it will break * platforms with CONFIG_DMABOUNCE. * Use the driver DMA support - see dma-mapping.h (dma_sync_*) */ static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, size_t size, enum dma_data_direction dir) { __dma_map_area(page_address(page) + off, size, dir); } static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, size_t size, enum dma_data_direction dir) { __dma_unmap_area(page_address(page) + off, size, dir); /* * Mark the D-cache clean for this page to avoid extra flushing. */ if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE) set_bit(PG_dcache_clean, &page->flags); } static int arm_dma_set_mask(struct device *dev, u64 dma_mask) { if (!dev->dma_mask || !dma_supported(dev, dma_mask)) return -EIO; *dev->dma_mask = dma_mask; return 0; } /* IOMMU */ static void __dma_clear_buffer(struct page *page, size_t size, struct dma_attrs *attrs, bool is_coherent) { /* * Ensure that the allocated pages are zeroed, and that any data * lurking in the kernel direct-mapped region is invalidated. */ void *ptr = page_address(page); if (!dma_get_attr(DMA_ATTR_SKIP_ZEROING, attrs)) memset(ptr, 0, size); if (!is_coherent) dmac_flush_range(ptr, ptr + size); } static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, size_t size) { unsigned int order = get_order(size); unsigned int align = 0; unsigned int count, start; unsigned long flags; if (order > CONFIG_ARM64_DMA_IOMMU_ALIGNMENT) order = CONFIG_ARM64_DMA_IOMMU_ALIGNMENT; count = PAGE_ALIGN(size) >> PAGE_SHIFT; align = (1 << order) - 1; spin_lock_irqsave(&mapping->lock, flags); start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0, count, align); if (start > mapping->bits) { spin_unlock_irqrestore(&mapping->lock, flags); return DMA_ERROR_CODE; } bitmap_set(mapping->bitmap, start, count); spin_unlock_irqrestore(&mapping->lock, flags); return mapping->base + (start << PAGE_SHIFT); } static inline void __free_iova(struct dma_iommu_mapping *mapping, dma_addr_t addr, size_t size) { unsigned int start = (addr - mapping->base) >> PAGE_SHIFT; unsigned int count = size >> PAGE_SHIFT; unsigned long flags; spin_lock_irqsave(&mapping->lock, flags); bitmap_clear(mapping->bitmap, start, count); spin_unlock_irqrestore(&mapping->lock, flags); } static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp, struct dma_attrs *attrs) { struct page **pages; size_t count = size >> PAGE_SHIFT; size_t array_size = count * sizeof(struct page *); int i = 0; bool is_coherent = is_dma_coherent(dev, attrs); if (array_size <= PAGE_SIZE) pages = kzalloc(array_size, gfp); else pages = vzalloc(array_size); if (!pages) return NULL; if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) { unsigned long order = get_order(size); struct page *page; page = dma_alloc_from_contiguous(dev, count, order); if (!page) goto error; __dma_clear_buffer(page, size, attrs, is_coherent); for (i = 0; i < count; i++) pages[i] = page + i; return pages; } /* * IOMMU can map any pages, so himem can also be used here */ gfp |= __GFP_NOWARN | __GFP_HIGHMEM; while (count) { int j, order = __fls(count); pages[i] = alloc_pages(gfp, order); while (!pages[i] && order) pages[i] = alloc_pages(gfp, --order); if (!pages[i]) goto error; if (order) { split_page(pages[i], order); j = 1 << order; while (--j) pages[i + j] = pages[i] + j; } __dma_clear_buffer(pages[i], PAGE_SIZE << order, attrs, is_coherent); i += 1 << order; count -= 1 << order; } return pages; error: while (i--) if (pages[i]) __free_pages(pages[i], 0); if (array_size <= PAGE_SIZE) kfree(pages); else vfree(pages); return NULL; } static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size, struct dma_attrs *attrs) { int count = size >> PAGE_SHIFT; int array_size = count * sizeof(struct page *); int i; if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) { dma_release_from_contiguous(dev, pages[0], count); } else { for (i = 0; i < count; i++) if (pages[i]) __free_pages(pages[i], 0); } if (array_size <= PAGE_SIZE) kfree(pages); else vfree(pages); return 0; } /* * Create a CPU mapping for a specified pages */ static void * __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, const void *caller) { return dma_common_pages_remap(pages, size, VM_USERMAP, prot, caller); } /* * Create a mapping in device IO address space for specified pages */ static dma_addr_t __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, struct dma_attrs *attrs) { struct dma_iommu_mapping *mapping = dev->archdata.mapping; unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; dma_addr_t dma_addr, iova; int i, ret; int prot = IOMMU_READ | IOMMU_WRITE; dma_addr = __alloc_iova(mapping, size); if (dma_addr == DMA_ERROR_CODE) return dma_addr; prot = __get_iommu_pgprot(attrs, prot, is_dma_coherent(dev, attrs)); iova = dma_addr; for (i = 0; i < count; ) { unsigned int next_pfn = page_to_pfn(pages[i]) + 1; phys_addr_t phys = page_to_phys(pages[i]); unsigned int len, j; for (j = i + 1; j < count; j++, next_pfn++) if (page_to_pfn(pages[j]) != next_pfn) break; len = (j - i) << PAGE_SHIFT; ret = iommu_map(mapping->domain, iova, phys, len, prot); if (ret < 0) goto fail; iova += len; i = j; } return dma_addr; fail: iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); __free_iova(mapping, dma_addr, size); return DMA_ERROR_CODE; } static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) { struct dma_iommu_mapping *mapping = dev->archdata.mapping; /* * add optional in-page offset from iova to size and align * result to page size */ size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); iova &= PAGE_MASK; iommu_unmap(mapping->domain, iova, size); __free_iova(mapping, iova, size); return 0; } static struct page **__atomic_get_pages(void *addr) { struct page *page; phys_addr_t phys; phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); page = phys_to_page(phys); return (struct page **)page; } static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs) { struct vm_struct *area; if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) return __atomic_get_pages(cpu_addr); if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) return cpu_addr; area = find_vm_area(cpu_addr); if (area) return area->pages; return NULL; } static void *__iommu_alloc_atomic(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) { struct page *page; struct page **pages; size_t count = size >> PAGE_SHIFT; size_t array_size = count * sizeof(struct page *); int i; void *addr; bool coherent = is_dma_coherent(dev, attrs); if (array_size <= PAGE_SIZE) pages = kzalloc(array_size, gfp); else pages = vzalloc(array_size); if (!pages) return NULL; if (coherent) { page = alloc_pages(gfp, get_order(size)); addr = page ? page_address(page) : NULL; } else { addr = __alloc_from_pool(size, &page, gfp); } if (!addr) goto err_free; for (i = 0; i < count ; i++) pages[i] = page + i; *handle = __iommu_create_mapping(dev, pages, size, attrs); if (*handle == DMA_ERROR_CODE) goto err_mapping; kvfree(pages); return addr; err_mapping: if (coherent) __free_pages(page, get_order(size)); else __free_from_pool(addr, size); err_free: kvfree(pages); return NULL; } static void __iommu_free_atomic(struct device *dev, void *cpu_addr, dma_addr_t handle, size_t size) { __iommu_remove_mapping(dev, handle, size); __free_from_pool(cpu_addr, size); } static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) { bool coherent = is_dma_coherent(dev, attrs); pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent); struct page **pages; void *addr = NULL; *handle = DMA_ERROR_CODE; size = PAGE_ALIGN(size); if (!gfpflags_allow_blocking(gfp)) return __iommu_alloc_atomic(dev, size, handle, gfp, attrs); /* * Following is a work-around (a.k.a. hack) to prevent pages * with __GFP_COMP being passed to split_page() which cannot * handle them. The real problem is that this flag probably * should be 0 on ARM as it is not supported on this * platform; see CONFIG_HUGETLBFS. */ gfp &= ~(__GFP_COMP); pages = __iommu_alloc_buffer(dev, size, gfp, attrs); if (!pages) return NULL; *handle = __iommu_create_mapping(dev, pages, size, attrs); if (*handle == DMA_ERROR_CODE) goto err_buffer; if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) return pages; addr = __iommu_alloc_remap(pages, size, gfp, prot, __builtin_return_address(0)); if (!addr) goto err_mapping; return addr; err_mapping: __iommu_remove_mapping(dev, *handle, size); err_buffer: __iommu_free_buffer(dev, pages, size, attrs); return NULL; } static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, struct dma_attrs *attrs) { unsigned long uaddr = vma->vm_start; unsigned long usize = vma->vm_end - vma->vm_start; struct page **pages = __iommu_get_pages(cpu_addr, attrs); bool coherent = is_dma_coherent(dev, attrs); vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, coherent); if (!pages) return -ENXIO; do { int ret = vm_insert_page(vma, uaddr, *pages++); if (ret) { pr_err("Remapping memory failed: %d\n", ret); return ret; } uaddr += PAGE_SIZE; usize -= PAGE_SIZE; } while (usize > 0); return 0; } /* * free a page as defined by the above mapping. * Must not be called with IRQs disabled. */ void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle, struct dma_attrs *attrs) { struct page **pages; size = PAGE_ALIGN(size); if (__in_atomic_pool(cpu_addr, size)) { __iommu_free_atomic(dev, cpu_addr, handle, size); return; } pages = __iommu_get_pages(cpu_addr, attrs); if (!pages) { WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); return; } if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) dma_common_free_remap(cpu_addr, size, VM_USERMAP, true); __iommu_remove_mapping(dev, handle, size); __iommu_free_buffer(dev, pages, size, attrs); } int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, struct dma_attrs *attrs) { unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; struct page **pages = __iommu_get_pages(cpu_addr, attrs); if (!pages) return -ENXIO; return sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL); } static int __dma_direction_to_prot(enum dma_data_direction dir) { int prot; switch (dir) { case DMA_BIDIRECTIONAL: prot = IOMMU_READ | IOMMU_WRITE; break; case DMA_TO_DEVICE: prot = IOMMU_READ; break; case DMA_FROM_DEVICE: prot = IOMMU_WRITE; break; default: prot = 0; } return prot; } /** * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA * @dev: valid struct device pointer * @sg: list of buffers * @nents: number of buffers to map * @dir: DMA transfer direction * * Map a set of buffers described by scatterlist in streaming mode for DMA. * The scatter gather list elements are merged together (if possible) and * tagged with the appropriate dma address and length. They are obtained via * sg_dma_{address,length}. */ int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, struct dma_attrs *attrs) { struct scatterlist *s; int ret, i; struct dma_iommu_mapping *mapping = dev->archdata.mapping; unsigned int total_length = 0, current_offset = 0; dma_addr_t iova; int prot = __dma_direction_to_prot(dir); for_each_sg(sg, s, nents, i) total_length += s->length; iova = __alloc_iova(mapping, total_length); if (iova == DMA_ERROR_CODE) { dev_err(dev, "Couldn't allocate iova for sg %p\n", sg); return 0; } prot = __get_iommu_pgprot(attrs, prot, is_dma_coherent(dev, attrs)); ret = iommu_map_sg(mapping->domain, iova, sg, nents, prot); if (ret != total_length) { __free_iova(mapping, iova, total_length); return 0; } for_each_sg(sg, s, nents, i) { s->dma_address = iova + current_offset; s->dma_length = total_length - current_offset; current_offset += s->length; } return nents; } /** * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg * @dev: valid struct device pointer * @sg: list of buffers * @nents: number of buffers to unmap (same as was passed to dma_map_sg) * @dir: DMA transfer direction (same as was passed to dma_map_sg) * * Unmap a set of streaming mode DMA translations. Again, CPU access * rules concerning calls here are the same as for dma_unmap_single(). */ void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, struct dma_attrs *attrs) { struct dma_iommu_mapping *mapping = dev->archdata.mapping; unsigned int total_length = sg_dma_len(sg); dma_addr_t iova = sg_dma_address(sg); total_length = PAGE_ALIGN((iova & ~PAGE_MASK) + total_length); iova &= PAGE_MASK; iommu_unmap(mapping->domain, iova, total_length); __free_iova(mapping, iova, total_length); } /** * arm_iommu_sync_sg_for_cpu * @dev: valid struct device pointer * @sg: list of buffers * @nents: number of buffers to map (returned from dma_map_sg) * @dir: DMA transfer direction (same as was passed to dma_map_sg) */ void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { struct scatterlist *s; int i; struct dma_iommu_mapping *mapping = dev->archdata.mapping; dma_addr_t iova = sg_dma_address(sg); bool iova_coherent = iommu_is_iova_coherent(mapping->domain, iova); if (iova_coherent) return; for_each_sg(sg, s, nents, i) __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); } /** * arm_iommu_sync_sg_for_device * @dev: valid struct device pointer * @sg: list of buffers * @nents: number of buffers to map (returned from dma_map_sg) * @dir: DMA transfer direction (same as was passed to dma_map_sg) */ void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { struct scatterlist *s; int i; struct dma_iommu_mapping *mapping = dev->archdata.mapping; dma_addr_t iova = sg_dma_address(sg); bool iova_coherent = iommu_is_iova_coherent(mapping->domain, iova); if (iova_coherent) return; for_each_sg(sg, s, nents, i) __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); } /** * arm_coherent_iommu_map_page * @dev: valid struct device pointer * @page: page that buffer resides in * @offset: offset into page for start of buffer * @size: size of buffer to map * @dir: DMA transfer direction * * Coherent IOMMU aware version of arm_dma_map_page() */ static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { struct dma_iommu_mapping *mapping = dev->archdata.mapping; dma_addr_t dma_addr; int ret, prot, len, start_offset, map_offset; map_offset = offset & ~PAGE_MASK; start_offset = offset & PAGE_MASK; len = PAGE_ALIGN(map_offset + size); dma_addr = __alloc_iova(mapping, len); if (dma_addr == DMA_ERROR_CODE) return dma_addr; prot = __dma_direction_to_prot(dir); prot = __get_iommu_pgprot(attrs, prot, is_dma_coherent(dev, attrs)); ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page) + start_offset, len, prot); if (ret < 0) goto fail; return dma_addr + map_offset; fail: __free_iova(mapping, dma_addr, len); return DMA_ERROR_CODE; } /** * arm_iommu_map_page * @dev: valid struct device pointer * @page: page that buffer resides in * @offset: offset into page for start of buffer * @size: size of buffer to map * @dir: DMA transfer direction * * IOMMU aware version of arm_dma_map_page() */ static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { if (!is_dma_coherent(dev, attrs) && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) __dma_page_cpu_to_dev(page, offset, size, dir); return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); } /** * arm_iommu_unmap_page * @dev: valid struct device pointer * @handle: DMA address of buffer * @size: size of buffer (same as passed to dma_map_page) * @dir: DMA transfer direction (same as passed to dma_map_page) * * IOMMU aware version of arm_dma_unmap_page() */ static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { struct dma_iommu_mapping *mapping = dev->archdata.mapping; dma_addr_t iova = handle & PAGE_MASK; struct page *page = phys_to_page(iommu_iova_to_phys( mapping->domain, iova)); int offset = handle & ~PAGE_MASK; int len = PAGE_ALIGN(size + offset); if (!(is_dma_coherent(dev, attrs) || dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))) __dma_page_dev_to_cpu(page, offset, size, dir); iommu_unmap(mapping->domain, iova, len); __free_iova(mapping, iova, len); } static void arm_iommu_sync_single_for_cpu(struct device *dev, dma_addr_t handle, size_t size, enum dma_data_direction dir) { struct dma_iommu_mapping *mapping = dev->archdata.mapping; dma_addr_t iova = handle & PAGE_MASK; struct page *page = phys_to_page(iommu_iova_to_phys( mapping->domain, iova)); unsigned int offset = handle & ~PAGE_MASK; bool iova_coherent = iommu_is_iova_coherent(mapping->domain, handle); if (!iova_coherent) __dma_page_dev_to_cpu(page, offset, size, dir); } static void arm_iommu_sync_single_for_device(struct device *dev, dma_addr_t handle, size_t size, enum dma_data_direction dir) { struct dma_iommu_mapping *mapping = dev->archdata.mapping; dma_addr_t iova = handle & PAGE_MASK; struct page *page = phys_to_page(iommu_iova_to_phys( mapping->domain, iova)); unsigned int offset = handle & ~PAGE_MASK; bool iova_coherent = iommu_is_iova_coherent(mapping->domain, handle); if (!iova_coherent) __dma_page_cpu_to_dev(page, offset, size, dir); } static int arm_iommu_dma_supported(struct device *dev, u64 mask) { struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); if (!mapping) { dev_warn(dev, "No IOMMU mapping for device\n"); return 0; } return iommu_dma_supported(mapping->domain, dev, mask); } static int arm_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr) { return dma_addr == DMA_ERROR_CODE; } const struct dma_map_ops iommu_ops = { .alloc = arm_iommu_alloc_attrs, .free = arm_iommu_free_attrs, .mmap = arm_iommu_mmap_attrs, .get_sgtable = arm_iommu_get_sgtable, .map_page = arm_iommu_map_page, .unmap_page = arm_iommu_unmap_page, .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, .sync_single_for_device = arm_iommu_sync_single_for_device, .map_sg = arm_iommu_map_sg, .unmap_sg = arm_iommu_unmap_sg, .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, .sync_sg_for_device = arm_iommu_sync_sg_for_device, .set_dma_mask = arm_dma_set_mask, .dma_supported = arm_iommu_dma_supported, .mapping_error = arm_iommu_mapping_error, }; /** * arm_iommu_create_mapping * @bus: pointer to the bus holding the client device (for IOMMU calls) * @base: start address of the valid IO address space * @size: maximum size of the valid IO address space * * Creates a mapping structure which holds information about used/unused * IO address ranges, which is required to perform memory allocation and * mapping with IOMMU aware functions. * * The client device need to be attached to the mapping with * arm_iommu_attach_device function. */ struct dma_iommu_mapping * arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size) { unsigned int bits = size >> PAGE_SHIFT; unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); struct dma_iommu_mapping *mapping; int err = -ENOMEM; if (!bitmap_size) return ERR_PTR(-EINVAL); mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); if (!mapping) goto err; mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY); if (!mapping->bitmap) mapping->bitmap = vzalloc(bitmap_size); if (!mapping->bitmap) goto err2; mapping->base = base; mapping->bits = bits; spin_lock_init(&mapping->lock); mapping->domain = iommu_domain_alloc(bus); if (!mapping->domain) goto err3; kref_init(&mapping->kref); return mapping; err3: kvfree(mapping->bitmap); err2: kfree(mapping); err: return ERR_PTR(err); } EXPORT_SYMBOL(arm_iommu_create_mapping); static void release_iommu_mapping(struct kref *kref) { struct dma_iommu_mapping *mapping = container_of(kref, struct dma_iommu_mapping, kref); iommu_domain_free(mapping->domain); kvfree(mapping->bitmap); kfree(mapping); } void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) { if (mapping) kref_put(&mapping->kref, release_iommu_mapping); } EXPORT_SYMBOL(arm_iommu_release_mapping); /** * arm_iommu_attach_device * @dev: valid struct device pointer * @mapping: io address space mapping structure (returned from * arm_iommu_create_mapping) * * Attaches specified io address space mapping to the provided device, * this replaces the dma operations (dma_map_ops pointer) with the * IOMMU aware version. More than one client might be attached to * the same io address space mapping. */ int arm_iommu_attach_device(struct device *dev, struct dma_iommu_mapping *mapping) { int err; int s1_bypass = 0, is_fast = 0; iommu_domain_get_attr(mapping->domain, DOMAIN_ATTR_FAST, &is_fast); if (is_fast) return fast_smmu_attach_device(dev, mapping); err = iommu_attach_device(mapping->domain, dev); if (err) return err; iommu_domain_get_attr(mapping->domain, DOMAIN_ATTR_S1_BYPASS, &s1_bypass); kref_get(&mapping->kref); dev->archdata.mapping = mapping; if (!s1_bypass) set_dma_ops(dev, &iommu_ops); pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); return 0; } EXPORT_SYMBOL(arm_iommu_attach_device); /** * arm_iommu_detach_device * @dev: valid struct device pointer * * Detaches the provided device from a previously attached map. * This voids the dma operations (dma_map_ops pointer) */ void arm_iommu_detach_device(struct device *dev) { struct dma_iommu_mapping *mapping; int is_fast, s1_bypass = 0; mapping = to_dma_iommu_mapping(dev); if (!mapping) { dev_warn(dev, "Not attached\n"); return; } iommu_domain_get_attr(mapping->domain, DOMAIN_ATTR_FAST, &is_fast); if (is_fast) { fast_smmu_detach_device(dev, mapping); return; } iommu_domain_get_attr(mapping->domain, DOMAIN_ATTR_S1_BYPASS, &s1_bypass); if (msm_dma_unmap_all_for_dev(dev)) dev_warn(dev, "IOMMU detach with outstanding mappings\n"); iommu_detach_device(mapping->domain, dev); kref_put(&mapping->kref, release_iommu_mapping); dev->archdata.mapping = NULL; if (!s1_bypass) set_dma_ops(dev, NULL); pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); } EXPORT_SYMBOL(arm_iommu_detach_device); #endif