/* Copyright (c) 2015-2017, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sdm660-cdc-registers.h" #include "msm-digital-cdc.h" #include "msm-cdc-common.h" #include "../../msm/sdm660-common.h" #define DRV_NAME "msm_digital_codec" #define MCLK_RATE_9P6MHZ 9600000 #define MCLK_RATE_12P288MHZ 12288000 #define TX_MUX_CTL_CUT_OFF_FREQ_MASK 0x30 #define CF_MIN_3DB_4HZ 0x0 #define CF_MIN_3DB_75HZ 0x1 #define CF_MIN_3DB_150HZ 0x2 #define MSM_DIG_CDC_VERSION_ENTRY_SIZE 32 static unsigned long rx_digital_gain_reg[] = { MSM89XX_CDC_CORE_RX1_VOL_CTL_B2_CTL, MSM89XX_CDC_CORE_RX2_VOL_CTL_B2_CTL, MSM89XX_CDC_CORE_RX3_VOL_CTL_B2_CTL, }; static unsigned long tx_digital_gain_reg[] = { MSM89XX_CDC_CORE_TX1_VOL_CTL_GAIN, MSM89XX_CDC_CORE_TX2_VOL_CTL_GAIN, MSM89XX_CDC_CORE_TX3_VOL_CTL_GAIN, MSM89XX_CDC_CORE_TX4_VOL_CTL_GAIN, MSM89XX_CDC_CORE_TX5_VOL_CTL_GAIN, }; static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0); struct snd_soc_codec *registered_digcodec; struct hpf_work tx_hpf_work[NUM_DECIMATORS]; /* Codec supports 2 IIR filters */ enum { IIR1 = 0, IIR2, IIR_MAX, }; static int msm_digcdc_clock_control(bool flag) { int ret = -EINVAL; struct msm_asoc_mach_data *pdata = NULL; pdata = snd_soc_card_get_drvdata(registered_digcodec->component.card); if (flag) { if (atomic_read(&pdata->int_mclk0_enabled) == false) { pdata->digital_cdc_core_clk.enable = 1; ret = afe_set_lpass_clock_v2( AFE_PORT_ID_PRIMARY_MI2S_RX, &pdata->digital_cdc_core_clk); if (ret < 0) { pr_err("%s:failed to enable the MCLK\n", __func__); return ret; } pr_debug("enabled digital codec core clk\n"); atomic_set(&pdata->int_mclk0_enabled, true); schedule_delayed_work(&pdata->disable_int_mclk0_work, 50); } } else { dev_dbg(registered_digcodec->dev, "disable MCLK, workq to disable set already\n"); } return 0; } static void enable_digital_callback(void *flag) { msm_digcdc_clock_control(true); } static void disable_digital_callback(void *flag) { pr_debug("disable mclk happens in workq\n"); } static int msm_dig_cdc_put_dec_enum(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = dapm_kcontrol_get_wlist(kcontrol); struct snd_soc_dapm_widget *w = wlist->widgets[0]; struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; unsigned int dec_mux, decimator; char *dec_name = NULL; char *widget_name = NULL; char *temp; u16 tx_mux_ctl_reg; u8 adc_dmic_sel = 0x0; int ret = 0; char *dec_num; if (ucontrol->value.enumerated.item[0] > e->items) { dev_err(codec->dev, "%s: Invalid enum value: %d\n", __func__, ucontrol->value.enumerated.item[0]); return -EINVAL; } dec_mux = ucontrol->value.enumerated.item[0]; widget_name = kstrndup(w->name, 15, GFP_KERNEL); if (!widget_name) { dev_err(codec->dev, "%s: failed to copy string\n", __func__); return -ENOMEM; } temp = widget_name; dec_name = strsep(&widget_name, " "); widget_name = temp; if (!dec_name) { dev_err(codec->dev, "%s: Invalid decimator = %s\n", __func__, w->name); ret = -EINVAL; goto out; } dec_num = strpbrk(dec_name, "12345"); if (dec_num == NULL) { dev_err(codec->dev, "%s: Invalid DEC selected\n", __func__); ret = -EINVAL; goto out; } ret = kstrtouint(dec_num, 10, &decimator); if (ret < 0) { dev_err(codec->dev, "%s: Invalid decimator = %s\n", __func__, dec_name); ret = -EINVAL; goto out; } dev_dbg(w->dapm->dev, "%s(): widget = %s decimator = %u dec_mux = %u\n" , __func__, w->name, decimator, dec_mux); switch (decimator) { case 1: case 2: case 3: case 4: case 5: if ((dec_mux == 4) || (dec_mux == 5) || (dec_mux == 6) || (dec_mux == 7)) adc_dmic_sel = 0x1; else adc_dmic_sel = 0x0; break; default: dev_err(codec->dev, "%s: Invalid Decimator = %u\n", __func__, decimator); ret = -EINVAL; goto out; } tx_mux_ctl_reg = MSM89XX_CDC_CORE_TX1_MUX_CTL + 32 * (decimator - 1); snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x1, adc_dmic_sel); ret = snd_soc_dapm_put_enum_double(kcontrol, ucontrol); out: kfree(widget_name); return ret; } static int msm_dig_cdc_codec_config_compander(struct snd_soc_codec *codec, int interp_n, int event) { struct msm_dig_priv *dig_cdc = snd_soc_codec_get_drvdata(codec); dev_dbg(codec->dev, "%s: event %d shift %d, enabled %d\n", __func__, event, interp_n, dig_cdc->comp_enabled[interp_n]); /* compander is not enabled */ if (!dig_cdc->comp_enabled[interp_n]) return 0; switch (dig_cdc->comp_enabled[interp_n]) { case COMPANDER_1: if (SND_SOC_DAPM_EVENT_ON(event)) { /* Enable Compander Clock */ snd_soc_update_bits(codec, MSM89XX_CDC_CORE_COMP0_B2_CTL, 0x0F, 0x09); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_CLK_RX_B2_CTL, 0x01, 0x01); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_COMP0_B1_CTL, 1 << interp_n, 1 << interp_n); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_COMP0_B3_CTL, 0xFF, 0x01); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_COMP0_B2_CTL, 0xF0, 0x50); /* add sleep for compander to settle */ usleep_range(1000, 1100); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_COMP0_B3_CTL, 0xFF, 0x28); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_COMP0_B2_CTL, 0xF0, 0xB0); /* Enable Compander GPIO */ if (dig_cdc->codec_hph_comp_gpio) dig_cdc->codec_hph_comp_gpio(1, codec); } else if (SND_SOC_DAPM_EVENT_OFF(event)) { /* Disable Compander GPIO */ if (dig_cdc->codec_hph_comp_gpio) dig_cdc->codec_hph_comp_gpio(0, codec); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_COMP0_B2_CTL, 0x0F, 0x05); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_COMP0_B1_CTL, 1 << interp_n, 0); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_CLK_RX_B2_CTL, 0x01, 0x00); } break; default: dev_dbg(codec->dev, "%s: Invalid compander %d\n", __func__, dig_cdc->comp_enabled[interp_n]); break; }; return 0; } /** * msm_dig_cdc_hph_comp_cb - registers callback to codec by machine driver. * * @codec_hph_comp_gpio: function pointer to set comp gpio at machine driver * @codec: codec pointer * */ void msm_dig_cdc_hph_comp_cb( int (*codec_hph_comp_gpio)(bool enable, struct snd_soc_codec *codec), struct snd_soc_codec *codec) { struct msm_dig_priv *dig_cdc = snd_soc_codec_get_drvdata(codec); pr_debug("%s: Enter\n", __func__); dig_cdc->codec_hph_comp_gpio = codec_hph_comp_gpio; } EXPORT_SYMBOL(msm_dig_cdc_hph_comp_cb); static int msm_dig_cdc_codec_enable_interpolator(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm); struct msm_dig *msm_dig_cdc = dev_get_drvdata(codec->dev); dev_dbg(codec->dev, "%s %d %s\n", __func__, event, w->name); if (w->shift >= MSM89XX_RX_MAX || w->shift < 0) { dev_err(codec->dev, "%s: wrong RX index: %d\n", __func__, w->shift); return -EINVAL; } switch (event) { case SND_SOC_DAPM_POST_PMU: msm_dig_cdc_codec_config_compander(codec, w->shift, event); /* apply the digital gain after the interpolator is enabled*/ if ((w->shift) < ARRAY_SIZE(rx_digital_gain_reg)) snd_soc_write(codec, rx_digital_gain_reg[w->shift], snd_soc_read(codec, rx_digital_gain_reg[w->shift]) ); break; case SND_SOC_DAPM_POST_PMD: msm_dig_cdc_codec_config_compander(codec, w->shift, event); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_CLK_RX_RESET_CTL, 1 << w->shift, 1 << w->shift); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_CLK_RX_RESET_CTL, 1 << w->shift, 0x0); /* * disable the mute enabled during the PMD of this device */ if ((w->shift == 0) && (msm_dig_cdc->mute_mask & HPHL_PA_DISABLE)) { pr_debug("disabling HPHL mute\n"); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX1_B6_CTL, 0x01, 0x00); msm_dig_cdc->mute_mask &= ~(HPHL_PA_DISABLE); } else if ((w->shift == 1) && (msm_dig_cdc->mute_mask & HPHR_PA_DISABLE)) { pr_debug("disabling HPHR mute\n"); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX2_B6_CTL, 0x01, 0x00); msm_dig_cdc->mute_mask &= ~(HPHR_PA_DISABLE); } else if ((w->shift == 2) && (msm_dig_cdc->mute_mask & SPKR_PA_DISABLE)) { pr_debug("disabling SPKR mute\n"); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX3_B6_CTL, 0x01, 0x00); msm_dig_cdc->mute_mask &= ~(SPKR_PA_DISABLE); } } return 0; } static int msm_dig_cdc_get_iir_enable_audio_mixer( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); int iir_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->reg; int band_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; ucontrol->value.integer.value[0] = (snd_soc_read(codec, (MSM89XX_CDC_CORE_IIR1_CTL + 64 * iir_idx)) & (1 << band_idx)) != 0; dev_dbg(codec->dev, "%s: IIR #%d band #%d enable %d\n", __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[0]); return 0; } static int msm_dig_cdc_put_iir_enable_audio_mixer( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); int iir_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->reg; int band_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; int value = ucontrol->value.integer.value[0]; /* Mask first 5 bits, 6-8 are reserved */ snd_soc_update_bits(codec, (MSM89XX_CDC_CORE_IIR1_CTL + 64 * iir_idx), (1 << band_idx), (value << band_idx)); dev_dbg(codec->dev, "%s: IIR #%d band #%d enable %d\n", __func__, iir_idx, band_idx, ((snd_soc_read(codec, (MSM89XX_CDC_CORE_IIR1_CTL + 64 * iir_idx)) & (1 << band_idx)) != 0)); return 0; } static uint32_t get_iir_band_coeff(struct snd_soc_codec *codec, int iir_idx, int band_idx, int coeff_idx) { uint32_t value = 0; /* Address does not automatically update if reading */ snd_soc_write(codec, (MSM89XX_CDC_CORE_IIR1_COEF_B1_CTL + 64 * iir_idx), ((band_idx * BAND_MAX + coeff_idx) * sizeof(uint32_t)) & 0x7F); value |= snd_soc_read(codec, (MSM89XX_CDC_CORE_IIR1_COEF_B2_CTL + 64 * iir_idx)); snd_soc_write(codec, (MSM89XX_CDC_CORE_IIR1_COEF_B1_CTL + 64 * iir_idx), ((band_idx * BAND_MAX + coeff_idx) * sizeof(uint32_t) + 1) & 0x7F); value |= (snd_soc_read(codec, (MSM89XX_CDC_CORE_IIR1_COEF_B2_CTL + 64 * iir_idx)) << 8); snd_soc_write(codec, (MSM89XX_CDC_CORE_IIR1_COEF_B1_CTL + 64 * iir_idx), ((band_idx * BAND_MAX + coeff_idx) * sizeof(uint32_t) + 2) & 0x7F); value |= (snd_soc_read(codec, (MSM89XX_CDC_CORE_IIR1_COEF_B2_CTL + 64 * iir_idx)) << 16); snd_soc_write(codec, (MSM89XX_CDC_CORE_IIR1_COEF_B1_CTL + 64 * iir_idx), ((band_idx * BAND_MAX + coeff_idx) * sizeof(uint32_t) + 3) & 0x7F); /* Mask bits top 2 bits since they are reserved */ value |= ((snd_soc_read(codec, (MSM89XX_CDC_CORE_IIR1_COEF_B2_CTL + 64 * iir_idx)) & 0x3f) << 24); return value; } static void set_iir_band_coeff(struct snd_soc_codec *codec, int iir_idx, int band_idx, uint32_t value) { snd_soc_write(codec, (MSM89XX_CDC_CORE_IIR1_COEF_B2_CTL + 64 * iir_idx), (value & 0xFF)); snd_soc_write(codec, (MSM89XX_CDC_CORE_IIR1_COEF_B2_CTL + 64 * iir_idx), (value >> 8) & 0xFF); snd_soc_write(codec, (MSM89XX_CDC_CORE_IIR1_COEF_B2_CTL + 64 * iir_idx), (value >> 16) & 0xFF); /* Mask top 2 bits, 7-8 are reserved */ snd_soc_write(codec, (MSM89XX_CDC_CORE_IIR1_COEF_B2_CTL + 64 * iir_idx), (value >> 24) & 0x3F); } static int msm_dig_cdc_get_iir_band_audio_mixer( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); int iir_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->reg; int band_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; ucontrol->value.integer.value[0] = get_iir_band_coeff(codec, iir_idx, band_idx, 0); ucontrol->value.integer.value[1] = get_iir_band_coeff(codec, iir_idx, band_idx, 1); ucontrol->value.integer.value[2] = get_iir_band_coeff(codec, iir_idx, band_idx, 2); ucontrol->value.integer.value[3] = get_iir_band_coeff(codec, iir_idx, band_idx, 3); ucontrol->value.integer.value[4] = get_iir_band_coeff(codec, iir_idx, band_idx, 4); dev_dbg(codec->dev, "%s: IIR #%d band #%d b0 = 0x%x\n" "%s: IIR #%d band #%d b1 = 0x%x\n" "%s: IIR #%d band #%d b2 = 0x%x\n" "%s: IIR #%d band #%d a1 = 0x%x\n" "%s: IIR #%d band #%d a2 = 0x%x\n", __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[0], __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[1], __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[2], __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[3], __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[4]); return 0; } static int msm_dig_cdc_put_iir_band_audio_mixer( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); int iir_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->reg; int band_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; /* Mask top bit it is reserved */ /* Updates addr automatically for each B2 write */ snd_soc_write(codec, (MSM89XX_CDC_CORE_IIR1_COEF_B1_CTL + 64 * iir_idx), (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F); set_iir_band_coeff(codec, iir_idx, band_idx, ucontrol->value.integer.value[0]); set_iir_band_coeff(codec, iir_idx, band_idx, ucontrol->value.integer.value[1]); set_iir_band_coeff(codec, iir_idx, band_idx, ucontrol->value.integer.value[2]); set_iir_band_coeff(codec, iir_idx, band_idx, ucontrol->value.integer.value[3]); set_iir_band_coeff(codec, iir_idx, band_idx, ucontrol->value.integer.value[4]); dev_dbg(codec->dev, "%s: IIR #%d band #%d b0 = 0x%x\n" "%s: IIR #%d band #%d b1 = 0x%x\n" "%s: IIR #%d band #%d b2 = 0x%x\n" "%s: IIR #%d band #%d a1 = 0x%x\n" "%s: IIR #%d band #%d a2 = 0x%x\n", __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 0), __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 1), __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 2), __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 3), __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 4)); return 0; } static void tx_hpf_corner_freq_callback(struct work_struct *work) { struct delayed_work *hpf_delayed_work; struct hpf_work *hpf_work; struct snd_soc_codec *codec; struct msm_dig *msm_dig_cdc; u16 tx_mux_ctl_reg; u8 hpf_cut_of_freq; hpf_delayed_work = to_delayed_work(work); hpf_work = container_of(hpf_delayed_work, struct hpf_work, dwork); codec = hpf_work->dig_cdc->codec; msm_dig_cdc = codec->control_data; hpf_cut_of_freq = hpf_work->tx_hpf_cut_of_freq; tx_mux_ctl_reg = MSM89XX_CDC_CORE_TX1_MUX_CTL + (hpf_work->decimator - 1) * 32; dev_dbg(codec->dev, "%s(): decimator %u hpf_cut_of_freq 0x%x\n", __func__, hpf_work->decimator, (unsigned int)hpf_cut_of_freq); msm_dig_cdc->update_clkdiv(msm_dig_cdc->handle, 0x51); snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x30, hpf_cut_of_freq << 4); } static int msm_dig_cdc_codec_set_iir_gain(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm); int value = 0, reg; switch (event) { case SND_SOC_DAPM_POST_PMU: if (w->shift == 0) reg = MSM89XX_CDC_CORE_IIR1_GAIN_B1_CTL; else if (w->shift == 1) reg = MSM89XX_CDC_CORE_IIR2_GAIN_B1_CTL; else goto ret; value = snd_soc_read(codec, reg); snd_soc_write(codec, reg, value); break; default: pr_err("%s: event = %d not expected\n", __func__, event); } ret: return 0; } static int msm_dig_cdc_compander_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); struct msm_dig_priv *dig_cdc = snd_soc_codec_get_drvdata(codec); int comp_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->reg; int rx_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; dev_dbg(codec->dev, "%s: msm_dig_cdc->comp[%d]_enabled[%d] = %d\n", __func__, comp_idx, rx_idx, dig_cdc->comp_enabled[rx_idx]); ucontrol->value.integer.value[0] = dig_cdc->comp_enabled[rx_idx]; dev_dbg(codec->dev, "%s: ucontrol->value.integer.value[0] = %ld\n", __func__, ucontrol->value.integer.value[0]); return 0; } static int msm_dig_cdc_compander_set(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); struct msm_dig_priv *dig_cdc = snd_soc_codec_get_drvdata(codec); int comp_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->reg; int rx_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; int value = ucontrol->value.integer.value[0]; dev_dbg(codec->dev, "%s: ucontrol->value.integer.value[0] = %ld\n", __func__, ucontrol->value.integer.value[0]); if (dig_cdc->version >= DIANGU) { if (!value) dig_cdc->comp_enabled[rx_idx] = 0; else dig_cdc->comp_enabled[rx_idx] = comp_idx; } dev_dbg(codec->dev, "%s: msm_dig_cdc->comp[%d]_enabled[%d] = %d\n", __func__, comp_idx, rx_idx, dig_cdc->comp_enabled[rx_idx]); return 0; } static const struct snd_kcontrol_new compander_kcontrols[] = { SOC_SINGLE_EXT("COMP0 RX1", COMPANDER_1, MSM89XX_RX1, 1, 0, msm_dig_cdc_compander_get, msm_dig_cdc_compander_set), SOC_SINGLE_EXT("COMP0 RX2", COMPANDER_1, MSM89XX_RX2, 1, 0, msm_dig_cdc_compander_get, msm_dig_cdc_compander_set), }; static int msm_dig_cdc_set_interpolator_rate(struct snd_soc_dai *dai, u8 rx_fs_rate_reg_val, u32 sample_rate) { snd_soc_update_bits(dai->codec, MSM89XX_CDC_CORE_RX1_B5_CTL, 0xF0, rx_fs_rate_reg_val); snd_soc_update_bits(dai->codec, MSM89XX_CDC_CORE_RX2_B5_CTL, 0xF0, rx_fs_rate_reg_val); return 0; } static int msm_dig_cdc_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { u8 tx_fs_rate, rx_fs_rate, rx_clk_fs_rate; int ret; dev_dbg(dai->codec->dev, "%s: dai_name = %s DAI-ID %x rate %d num_ch %d format %d\n", __func__, dai->name, dai->id, params_rate(params), params_channels(params), params_format(params)); switch (params_rate(params)) { case 8000: tx_fs_rate = 0x00; rx_fs_rate = 0x00; rx_clk_fs_rate = 0x00; break; case 16000: tx_fs_rate = 0x20; rx_fs_rate = 0x20; rx_clk_fs_rate = 0x01; break; case 32000: tx_fs_rate = 0x40; rx_fs_rate = 0x40; rx_clk_fs_rate = 0x02; break; case 44100: case 48000: tx_fs_rate = 0x60; rx_fs_rate = 0x60; rx_clk_fs_rate = 0x03; break; case 96000: tx_fs_rate = 0x80; rx_fs_rate = 0x80; rx_clk_fs_rate = 0x04; break; case 192000: tx_fs_rate = 0xA0; rx_fs_rate = 0xA0; rx_clk_fs_rate = 0x05; break; default: dev_err(dai->codec->dev, "%s: Invalid sampling rate %d\n", __func__, params_rate(params)); return -EINVAL; } snd_soc_update_bits(dai->codec, MSM89XX_CDC_CORE_CLK_RX_I2S_CTL, 0x0F, rx_clk_fs_rate); switch (substream->stream) { case SNDRV_PCM_STREAM_CAPTURE: break; case SNDRV_PCM_STREAM_PLAYBACK: ret = msm_dig_cdc_set_interpolator_rate(dai, rx_fs_rate, params_rate(params)); if (ret < 0) { dev_err(dai->codec->dev, "%s: set decimator rate failed %d\n", __func__, ret); return ret; } break; default: dev_err(dai->codec->dev, "%s: Invalid stream type %d\n", __func__, substream->stream); return -EINVAL; } switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: snd_soc_update_bits(dai->codec, MSM89XX_CDC_CORE_CLK_RX_I2S_CTL, 0x20, 0x20); break; case SNDRV_PCM_FORMAT_S24_LE: case SNDRV_PCM_FORMAT_S24_3LE: snd_soc_update_bits(dai->codec, MSM89XX_CDC_CORE_CLK_RX_I2S_CTL, 0x20, 0x00); break; default: dev_err(dai->codec->dev, "%s: wrong format selected\n", __func__); return -EINVAL; } return 0; } static int msm_dig_cdc_codec_enable_dmic(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm); struct msm_dig_priv *dig_cdc = snd_soc_codec_get_drvdata(codec); u8 dmic_clk_en; u16 dmic_clk_reg; s32 *dmic_clk_cnt; unsigned int dmic; int ret; char *dmic_num = strpbrk(w->name, "1234"); if (dmic_num == NULL) { dev_err(codec->dev, "%s: Invalid DMIC\n", __func__); return -EINVAL; } ret = kstrtouint(dmic_num, 10, &dmic); if (ret < 0) { dev_err(codec->dev, "%s: Invalid DMIC line on the codec\n", __func__); return -EINVAL; } switch (dmic) { case 1: case 2: dmic_clk_en = 0x01; dmic_clk_cnt = &(dig_cdc->dmic_1_2_clk_cnt); dmic_clk_reg = MSM89XX_CDC_CORE_CLK_DMIC_B1_CTL; dev_dbg(codec->dev, "%s() event %d DMIC%d dmic_1_2_clk_cnt %d\n", __func__, event, dmic, *dmic_clk_cnt); break; case 3: case 4: dmic_clk_en = 0x01; dmic_clk_cnt = &(dig_cdc->dmic_3_4_clk_cnt); dmic_clk_reg = MSM89XX_CDC_CORE_CLK_DMIC_B2_CTL; dev_dbg(codec->dev, "%s() event %d DMIC%d dmic_3_4_clk_cnt %d\n", __func__, event, dmic, *dmic_clk_cnt); break; default: dev_err(codec->dev, "%s: Invalid DMIC Selection\n", __func__); return -EINVAL; } switch (event) { case SND_SOC_DAPM_PRE_PMU: (*dmic_clk_cnt)++; if (*dmic_clk_cnt == 1) { snd_soc_update_bits(codec, dmic_clk_reg, 0x0E, 0x04); snd_soc_update_bits(codec, dmic_clk_reg, dmic_clk_en, dmic_clk_en); } snd_soc_update_bits(codec, MSM89XX_CDC_CORE_TX1_DMIC_CTL + (dmic - 1) * 0x20, 0x07, 0x02); break; case SND_SOC_DAPM_POST_PMD: (*dmic_clk_cnt)--; if (*dmic_clk_cnt == 0) snd_soc_update_bits(codec, dmic_clk_reg, dmic_clk_en, 0); break; } return 0; } static int msm_dig_cdc_codec_enable_dec(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm); struct msm_asoc_mach_data *pdata = NULL; unsigned int decimator; struct msm_dig_priv *dig_cdc = snd_soc_codec_get_drvdata(codec); struct msm_dig *msm_dig_cdc = codec->control_data; char *dec_name = NULL; char *widget_name = NULL; char *temp; int ret = 0, i; u16 dec_reset_reg, tx_vol_ctl_reg, tx_mux_ctl_reg; u8 dec_hpf_cut_of_freq; int offset; char *dec_num; pdata = snd_soc_card_get_drvdata(codec->component.card); dev_dbg(codec->dev, "%s %d\n", __func__, event); widget_name = kstrndup(w->name, 15, GFP_KERNEL); if (!widget_name) return -ENOMEM; temp = widget_name; dec_name = strsep(&widget_name, " "); widget_name = temp; if (!dec_name) { dev_err(codec->dev, "%s: Invalid decimator = %s\n", __func__, w->name); ret = -EINVAL; goto out; } dec_num = strpbrk(dec_name, "12345"); if (dec_num == NULL) { dev_err(codec->dev, "%s: Invalid Decimator\n", __func__); ret = -EINVAL; goto out; } ret = kstrtouint(dec_num, 10, &decimator); if (ret < 0) { dev_err(codec->dev, "%s: Invalid decimator = %s\n", __func__, dec_name); ret = -EINVAL; goto out; } dev_dbg(codec->dev, "%s(): widget = %s dec_name = %s decimator = %u\n", __func__, w->name, dec_name, decimator); if (w->reg == MSM89XX_CDC_CORE_CLK_TX_CLK_EN_B1_CTL) { dec_reset_reg = MSM89XX_CDC_CORE_CLK_TX_RESET_B1_CTL; offset = 0; } else { dev_err(codec->dev, "%s: Error, incorrect dec\n", __func__); ret = -EINVAL; goto out; } tx_vol_ctl_reg = MSM89XX_CDC_CORE_TX1_VOL_CTL_CFG + 32 * (decimator - 1); tx_mux_ctl_reg = MSM89XX_CDC_CORE_TX1_MUX_CTL + 32 * (decimator - 1); if (decimator == 5) { tx_vol_ctl_reg = MSM89XX_CDC_CORE_TX5_VOL_CTL_CFG; tx_mux_ctl_reg = MSM89XX_CDC_CORE_TX5_MUX_CTL; } switch (event) { case SND_SOC_DAPM_PRE_PMU: /* Enableable TX digital mute */ snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x01); for (i = 0; i < NUM_DECIMATORS; i++) { if (decimator == i + 1) dig_cdc->dec_active[i] = true; } dec_hpf_cut_of_freq = snd_soc_read(codec, tx_mux_ctl_reg); dec_hpf_cut_of_freq = (dec_hpf_cut_of_freq & 0x30) >> 4; tx_hpf_work[decimator - 1].tx_hpf_cut_of_freq = dec_hpf_cut_of_freq; if (dec_hpf_cut_of_freq != CF_MIN_3DB_150HZ) { /* set cut of freq to CF_MIN_3DB_150HZ (0x1); */ snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x30, CF_MIN_3DB_150HZ << 4); } msm_dig_cdc->update_clkdiv(msm_dig_cdc->handle, 0x42); break; case SND_SOC_DAPM_POST_PMU: /* enable HPF */ snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x08, 0x00); if (tx_hpf_work[decimator - 1].tx_hpf_cut_of_freq != CF_MIN_3DB_150HZ) { schedule_delayed_work(&tx_hpf_work[decimator - 1].dwork, msecs_to_jiffies(300)); } /* apply the digital gain after the decimator is enabled*/ if ((w->shift) < ARRAY_SIZE(tx_digital_gain_reg)) snd_soc_write(codec, tx_digital_gain_reg[w->shift + offset], snd_soc_read(codec, tx_digital_gain_reg[w->shift + offset]) ); if (pdata->lb_mode) { pr_debug("%s: loopback mode unmute the DEC\n", __func__); snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x00); } snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x00); break; case SND_SOC_DAPM_PRE_PMD: snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x01); msleep(20); snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x08, 0x08); cancel_delayed_work_sync(&tx_hpf_work[decimator - 1].dwork); break; case SND_SOC_DAPM_POST_PMD: snd_soc_update_bits(codec, dec_reset_reg, 1 << w->shift, 1 << w->shift); snd_soc_update_bits(codec, dec_reset_reg, 1 << w->shift, 0x0); snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x08, 0x08); snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x30, (tx_hpf_work[decimator - 1].tx_hpf_cut_of_freq) << 4); snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x00); for (i = 0; i < NUM_DECIMATORS; i++) { if (decimator == i + 1) dig_cdc->dec_active[i] = false; } break; } out: kfree(widget_name); return ret; } static int msm_dig_cdc_event_notify(struct notifier_block *block, unsigned long val, void *data) { enum dig_cdc_notify_event event = (enum dig_cdc_notify_event)val; struct snd_soc_codec *codec = registered_digcodec; struct msm_dig *msm_dig_cdc = codec->control_data; struct msm_asoc_mach_data *pdata = NULL; pdata = snd_soc_card_get_drvdata(codec->component.card); switch (event) { case DIG_CDC_EVENT_CLK_ON: snd_soc_update_bits(codec, MSM89XX_CDC_CORE_CLK_PDM_CTL, 0x03, 0x03); if (pdata->mclk_freq == MCLK_RATE_12P288MHZ || pdata->native_clk_set) snd_soc_update_bits(codec, MSM89XX_CDC_CORE_TOP_CTL, 0x01, 0x00); else if (pdata->mclk_freq == MCLK_RATE_9P6MHZ) snd_soc_update_bits(codec, MSM89XX_CDC_CORE_TOP_CTL, 0x01, 0x01); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_CLK_MCLK_CTL, 0x01, 0x01); break; case DIG_CDC_EVENT_CLK_OFF: snd_soc_update_bits(codec, MSM89XX_CDC_CORE_CLK_PDM_CTL, 0x03, 0x00); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_CLK_MCLK_CTL, 0x01, 0x00); break; case DIG_CDC_EVENT_RX1_MUTE_ON: snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX1_B6_CTL, 0x01, 0x01); msm_dig_cdc->mute_mask |= HPHL_PA_DISABLE; break; case DIG_CDC_EVENT_RX1_MUTE_OFF: snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX1_B6_CTL, 0x01, 0x00); msm_dig_cdc->mute_mask &= (~HPHL_PA_DISABLE); break; case DIG_CDC_EVENT_RX2_MUTE_ON: snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX2_B6_CTL, 0x01, 0x01); msm_dig_cdc->mute_mask |= HPHR_PA_DISABLE; break; case DIG_CDC_EVENT_RX2_MUTE_OFF: snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX2_B6_CTL, 0x01, 0x00); msm_dig_cdc->mute_mask &= (~HPHR_PA_DISABLE); break; case DIG_CDC_EVENT_RX3_MUTE_ON: snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX3_B6_CTL, 0x01, 0x01); msm_dig_cdc->mute_mask |= SPKR_PA_DISABLE; break; case DIG_CDC_EVENT_RX3_MUTE_OFF: snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX3_B6_CTL, 0x01, 0x00); msm_dig_cdc->mute_mask &= (~SPKR_PA_DISABLE); break; case DIG_CDC_EVENT_PRE_RX1_INT_ON: snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX1_B3_CTL, 0x1C, 0x14); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX1_B4_CTL, 0x18, 0x10); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX1_B3_CTL, 0x80, 0x80); break; case DIG_CDC_EVENT_PRE_RX2_INT_ON: snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX2_B3_CTL, 0x1C, 0x14); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX2_B4_CTL, 0x18, 0x10); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX2_B3_CTL, 0x80, 0x80); break; case DIG_CDC_EVENT_POST_RX1_INT_OFF: snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX1_B3_CTL, 0x1C, 0x00); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX1_B4_CTL, 0x18, 0xFF); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX1_B3_CTL, 0x80, 0x00); break; case DIG_CDC_EVENT_POST_RX2_INT_OFF: snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX2_B3_CTL, 0x1C, 0x00); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX2_B4_CTL, 0x18, 0xFF); snd_soc_update_bits(codec, MSM89XX_CDC_CORE_RX2_B3_CTL, 0x80, 0x00); break; case DIG_CDC_EVENT_SSR_DOWN: regcache_cache_only(msm_dig_cdc->regmap, true); break; case DIG_CDC_EVENT_SSR_UP: regcache_cache_only(msm_dig_cdc->regmap, false); regcache_mark_dirty(msm_dig_cdc->regmap); regcache_sync(msm_dig_cdc->regmap); break; case DIG_CDC_EVENT_INVALID: default: break; } return 0; } static ssize_t msm_dig_codec_version_read(struct snd_info_entry *entry, void *file_private_data, struct file *file, char __user *buf, size_t count, loff_t pos) { struct msm_dig_priv *msm_dig; char buffer[MSM_DIG_CDC_VERSION_ENTRY_SIZE]; int len = 0; msm_dig = (struct msm_dig_priv *) entry->private_data; if (!msm_dig) { pr_err("%s: msm_dig priv is null\n", __func__); return -EINVAL; } switch (msm_dig->version) { case DRAX_CDC: len = snprintf(buffer, sizeof(buffer), "SDM660-CDC_1_0\n"); break; default: len = snprintf(buffer, sizeof(buffer), "VER_UNDEFINED\n"); } return simple_read_from_buffer(buf, count, &pos, buffer, len); } static struct snd_info_entry_ops msm_dig_codec_info_ops = { .read = msm_dig_codec_version_read, }; /* * msm_dig_codec_info_create_codec_entry - creates msm_dig module * @codec_root: The parent directory * @codec: Codec instance * * Creates msm_dig module and version entry under the given * parent directory. * * Return: 0 on success or negative error code on failure. */ int msm_dig_codec_info_create_codec_entry(struct snd_info_entry *codec_root, struct snd_soc_codec *codec) { struct snd_info_entry *version_entry; struct msm_dig_priv *msm_dig; struct snd_soc_card *card; if (!codec_root || !codec) return -EINVAL; msm_dig = snd_soc_codec_get_drvdata(codec); card = codec->component.card; msm_dig->entry = snd_register_module_info(codec_root->module, "msm_digital_codec", codec_root); if (!msm_dig->entry) { dev_dbg(codec->dev, "%s: failed to create msm_digital entry\n", __func__); return -ENOMEM; } version_entry = snd_info_create_card_entry(card->snd_card, "version", msm_dig->entry); if (!version_entry) { dev_dbg(codec->dev, "%s: failed to create msm_digital version entry\n", __func__); return -ENOMEM; } version_entry->private_data = msm_dig; version_entry->size = MSM_DIG_CDC_VERSION_ENTRY_SIZE; version_entry->content = SNDRV_INFO_CONTENT_DATA; version_entry->c.ops = &msm_dig_codec_info_ops; if (snd_info_register(version_entry) < 0) { snd_info_free_entry(version_entry); return -ENOMEM; } msm_dig->version_entry = version_entry; return 0; } EXPORT_SYMBOL(msm_dig_codec_info_create_codec_entry); static int msm_dig_cdc_soc_probe(struct snd_soc_codec *codec) { struct msm_dig_priv *dig_cdc = NULL; struct msm_dig *msm_dig_cdc = dev_get_drvdata(codec->dev); int i, ret; dig_cdc = devm_kzalloc(codec->dev, sizeof(struct msm_dig_priv), GFP_KERNEL); if (!dig_cdc) return -ENOMEM; snd_soc_codec_set_drvdata(codec, dig_cdc); dig_cdc->codec = codec; codec->control_data = msm_dig_cdc; snd_soc_add_codec_controls(codec, compander_kcontrols, ARRAY_SIZE(compander_kcontrols)); for (i = 0; i < NUM_DECIMATORS; i++) { tx_hpf_work[i].dig_cdc = dig_cdc; tx_hpf_work[i].decimator = i + 1; INIT_DELAYED_WORK(&tx_hpf_work[i].dwork, tx_hpf_corner_freq_callback); } for (i = 0; i < MSM89XX_RX_MAX; i++) dig_cdc->comp_enabled[i] = COMPANDER_NONE; /* Register event notifier */ msm_dig_cdc->nblock.notifier_call = msm_dig_cdc_event_notify; if (msm_dig_cdc->register_notifier) { ret = msm_dig_cdc->register_notifier(msm_dig_cdc->handle, &msm_dig_cdc->nblock, true); if (ret) { pr_err("%s: Failed to register notifier %d\n", __func__, ret); return ret; } } /* Assign to DRAX_CDC for initial version */ dig_cdc->version = DRAX_CDC; registered_digcodec = codec; return 0; } static int msm_dig_cdc_soc_remove(struct snd_soc_codec *codec) { struct msm_dig *msm_dig_cdc = dev_get_drvdata(codec->dev); if (msm_dig_cdc->register_notifier) msm_dig_cdc->register_notifier(msm_dig_cdc->handle, &msm_dig_cdc->nblock, false); iounmap(msm_dig_cdc->dig_base); return 0; } static const struct snd_soc_dapm_route audio_dig_map[] = { {"RX_I2S_CLK", NULL, "CDC_CONN"}, {"I2S RX1", NULL, "RX_I2S_CLK"}, {"I2S RX2", NULL, "RX_I2S_CLK"}, {"I2S RX3", NULL, "RX_I2S_CLK"}, {"I2S TX1", NULL, "TX_I2S_CLK"}, {"I2S TX2", NULL, "TX_I2S_CLK"}, {"I2S TX3", NULL, "TX_I2S_CLK"}, {"I2S TX4", NULL, "TX_I2S_CLK"}, {"I2S TX5", NULL, "TX_I2S_CLK"}, {"I2S TX6", NULL, "TX_I2S_CLK"}, {"I2S TX1", NULL, "DEC1 MUX"}, {"I2S TX2", NULL, "DEC2 MUX"}, {"I2S TX3", NULL, "I2S TX2 INP1"}, {"I2S TX4", NULL, "I2S TX2 INP2"}, {"I2S TX5", NULL, "DEC3 MUX"}, {"I2S TX6", NULL, "I2S TX3 INP2"}, {"I2S TX2 INP1", "RX_MIX1", "RX1 MIX2"}, {"I2S TX2 INP1", "DEC3", "DEC3 MUX"}, {"I2S TX2 INP2", "RX_MIX2", "RX2 MIX2"}, {"I2S TX2 INP2", "RX_MIX3", "RX3 MIX1"}, {"I2S TX2 INP2", "DEC4", "DEC4 MUX"}, {"I2S TX3 INP2", "DEC4", "DEC4 MUX"}, {"I2S TX3 INP2", "DEC5", "DEC5 MUX"}, {"PDM_OUT_RX1", NULL, "RX1 CHAIN"}, {"PDM_OUT_RX2", NULL, "RX2 CHAIN"}, {"PDM_OUT_RX3", NULL, "RX3 CHAIN"}, {"RX1 CHAIN", NULL, "RX1 MIX2"}, {"RX2 CHAIN", NULL, "RX2 MIX2"}, {"RX3 CHAIN", NULL, "RX3 MIX1"}, {"RX1 MIX1", NULL, "RX1 MIX1 INP1"}, {"RX1 MIX1", NULL, "RX1 MIX1 INP2"}, {"RX1 MIX1", NULL, "RX1 MIX1 INP3"}, {"RX2 MIX1", NULL, "RX2 MIX1 INP1"}, {"RX2 MIX1", NULL, "RX2 MIX1 INP2"}, {"RX3 MIX1", NULL, "RX3 MIX1 INP1"}, {"RX3 MIX1", NULL, "RX3 MIX1 INP2"}, {"RX1 MIX2", NULL, "RX1 MIX1"}, {"RX1 MIX2", NULL, "RX1 MIX2 INP1"}, {"RX2 MIX2", NULL, "RX2 MIX1"}, {"RX2 MIX2", NULL, "RX2 MIX2 INP1"}, {"RX1 MIX1 INP1", "RX1", "I2S RX1"}, {"RX1 MIX1 INP1", "RX2", "I2S RX2"}, {"RX1 MIX1 INP1", "RX3", "I2S RX3"}, {"RX1 MIX1 INP1", "IIR1", "IIR1"}, {"RX1 MIX1 INP1", "IIR2", "IIR2"}, {"RX1 MIX1 INP2", "RX1", "I2S RX1"}, {"RX1 MIX1 INP2", "RX2", "I2S RX2"}, {"RX1 MIX1 INP2", "RX3", "I2S RX3"}, {"RX1 MIX1 INP2", "IIR1", "IIR1"}, {"RX1 MIX1 INP2", "IIR2", "IIR2"}, {"RX1 MIX1 INP3", "RX1", "I2S RX1"}, {"RX1 MIX1 INP3", "RX2", "I2S RX2"}, {"RX1 MIX1 INP3", "RX3", "I2S RX3"}, {"RX2 MIX1 INP1", "RX1", "I2S RX1"}, {"RX2 MIX1 INP1", "RX2", "I2S RX2"}, {"RX2 MIX1 INP1", "RX3", "I2S RX3"}, {"RX2 MIX1 INP1", "IIR1", "IIR1"}, {"RX2 MIX1 INP1", "IIR2", "IIR2"}, {"RX2 MIX1 INP2", "RX1", "I2S RX1"}, {"RX2 MIX1 INP2", "RX2", "I2S RX2"}, {"RX2 MIX1 INP2", "RX3", "I2S RX3"}, {"RX2 MIX1 INP2", "IIR1", "IIR1"}, {"RX2 MIX1 INP2", "IIR2", "IIR2"}, {"RX3 MIX1 INP1", "RX1", "I2S RX1"}, {"RX3 MIX1 INP1", "RX2", "I2S RX2"}, {"RX3 MIX1 INP1", "RX3", "I2S RX3"}, {"RX3 MIX1 INP1", "IIR1", "IIR1"}, {"RX3 MIX1 INP1", "IIR2", "IIR2"}, {"RX3 MIX1 INP2", "RX1", "I2S RX1"}, {"RX3 MIX1 INP2", "RX2", "I2S RX2"}, {"RX3 MIX1 INP2", "RX3", "I2S RX3"}, {"RX3 MIX1 INP2", "IIR1", "IIR1"}, {"RX3 MIX1 INP2", "IIR2", "IIR2"}, {"RX1 MIX2 INP1", "IIR1", "IIR1"}, {"RX2 MIX2 INP1", "IIR1", "IIR1"}, {"RX1 MIX2 INP1", "IIR2", "IIR2"}, {"RX2 MIX2 INP1", "IIR2", "IIR2"}, /* Decimator Inputs */ {"DEC1 MUX", "DMIC1", "DMIC1"}, {"DEC1 MUX", "DMIC2", "DMIC2"}, {"DEC1 MUX", "DMIC3", "DMIC3"}, {"DEC1 MUX", "DMIC4", "DMIC4"}, {"DEC1 MUX", "ADC1", "ADC1_IN"}, {"DEC1 MUX", "ADC2", "ADC2_IN"}, {"DEC1 MUX", "ADC3", "ADC3_IN"}, {"DEC1 MUX", NULL, "CDC_CONN"}, {"DEC2 MUX", "DMIC1", "DMIC1"}, {"DEC2 MUX", "DMIC2", "DMIC2"}, {"DEC2 MUX", "DMIC3", "DMIC3"}, {"DEC2 MUX", "DMIC4", "DMIC4"}, {"DEC2 MUX", "ADC1", "ADC1_IN"}, {"DEC2 MUX", "ADC2", "ADC2_IN"}, {"DEC2 MUX", "ADC3", "ADC3_IN"}, {"DEC2 MUX", NULL, "CDC_CONN"}, {"DEC3 MUX", "DMIC1", "DMIC1"}, {"DEC3 MUX", "DMIC2", "DMIC2"}, {"DEC3 MUX", "DMIC3", "DMIC3"}, {"DEC3 MUX", "DMIC4", "DMIC4"}, {"DEC3 MUX", "ADC1", "ADC1_IN"}, {"DEC3 MUX", "ADC2", "ADC2_IN"}, {"DEC3 MUX", "ADC3", "ADC3_IN"}, {"DEC3 MUX", NULL, "CDC_CONN"}, {"DEC4 MUX", "DMIC1", "DMIC1"}, {"DEC4 MUX", "DMIC2", "DMIC2"}, {"DEC4 MUX", "DMIC3", "DMIC3"}, {"DEC4 MUX", "DMIC4", "DMIC4"}, {"DEC4 MUX", "ADC1", "ADC1_IN"}, {"DEC4 MUX", "ADC2", "ADC2_IN"}, {"DEC4 MUX", "ADC3", "ADC3_IN"}, {"DEC4 MUX", NULL, "CDC_CONN"}, {"DEC5 MUX", "DMIC1", "DMIC1"}, {"DEC5 MUX", "DMIC2", "DMIC2"}, {"DEC5 MUX", "DMIC3", "DMIC3"}, {"DEC5 MUX", "DMIC4", "DMIC4"}, {"DEC5 MUX", "ADC1", "ADC1_IN"}, {"DEC5 MUX", "ADC2", "ADC2_IN"}, {"DEC5 MUX", "ADC3", "ADC3_IN"}, {"DEC5 MUX", NULL, "CDC_CONN"}, {"IIR1", NULL, "IIR1 INP1 MUX"}, {"IIR1 INP1 MUX", "DEC1", "DEC1 MUX"}, {"IIR1 INP1 MUX", "DEC2", "DEC2 MUX"}, {"IIR1 INP1 MUX", "DEC3", "DEC3 MUX"}, {"IIR1 INP1 MUX", "DEC4", "DEC4 MUX"}, {"IIR2", NULL, "IIR2 INP1 MUX"}, {"IIR2 INP1 MUX", "DEC1", "DEC1 MUX"}, {"IIR2 INP1 MUX", "DEC2", "DEC2 MUX"}, {"IIR1 INP1 MUX", "DEC3", "DEC3 MUX"}, {"IIR1 INP1 MUX", "DEC4", "DEC4 MUX"}, }; static const char * const i2s_tx2_inp1_text[] = { "ZERO", "RX_MIX1", "DEC3" }; static const char * const i2s_tx2_inp2_text[] = { "ZERO", "RX_MIX2", "RX_MIX3", "DEC4" }; static const char * const i2s_tx3_inp2_text[] = { "DEC4", "DEC5" }; static const char * const rx_mix1_text[] = { "ZERO", "IIR1", "IIR2", "RX1", "RX2", "RX3" }; static const char * const rx_mix2_text[] = { "ZERO", "IIR1", "IIR2" }; static const char * const dec_mux_text[] = { "ZERO", "ADC1", "ADC2", "ADC3", "DMIC1", "DMIC2", "DMIC3", "DMIC4" }; static const char * const iir_inp1_text[] = { "ZERO", "DEC1", "DEC2", "RX1", "RX2", "RX3", "DEC3", "DEC4" }; /* I2S TX MUXes */ static const struct soc_enum i2s_tx2_inp1_chain_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_TX_I2S_SD1_CTL, 2, 3, i2s_tx2_inp1_text); static const struct soc_enum i2s_tx2_inp2_chain_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_TX_I2S_SD1_CTL, 0, 4, i2s_tx2_inp2_text); static const struct soc_enum i2s_tx3_inp2_chain_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_TX_I2S_SD1_CTL, 4, 2, i2s_tx3_inp2_text); /* RX1 MIX1 */ static const struct soc_enum rx_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX1_B1_CTL, 0, 6, rx_mix1_text); static const struct soc_enum rx_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX1_B1_CTL, 3, 6, rx_mix1_text); static const struct soc_enum rx_mix1_inp3_chain_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX1_B2_CTL, 0, 6, rx_mix1_text); /* RX1 MIX2 */ static const struct soc_enum rx_mix2_inp1_chain_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX1_B3_CTL, 0, 3, rx_mix2_text); /* RX2 MIX1 */ static const struct soc_enum rx2_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX2_B1_CTL, 0, 6, rx_mix1_text); static const struct soc_enum rx2_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX2_B1_CTL, 3, 6, rx_mix1_text); static const struct soc_enum rx2_mix1_inp3_chain_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX2_B1_CTL, 0, 6, rx_mix1_text); /* RX2 MIX2 */ static const struct soc_enum rx2_mix2_inp1_chain_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX2_B3_CTL, 0, 3, rx_mix2_text); /* RX3 MIX1 */ static const struct soc_enum rx3_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX3_B1_CTL, 0, 6, rx_mix1_text); static const struct soc_enum rx3_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX3_B1_CTL, 3, 6, rx_mix1_text); static const struct soc_enum rx3_mix1_inp3_chain_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX3_B1_CTL, 0, 6, rx_mix1_text); /* DEC */ static const struct soc_enum dec1_mux_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_TX_B1_CTL, 0, 8, dec_mux_text); static const struct soc_enum dec2_mux_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_TX_B1_CTL, 3, 8, dec_mux_text); static const struct soc_enum dec3_mux_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_TX_B2_CTL, 0, 8, dec_mux_text); static const struct soc_enum dec4_mux_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_TX_B2_CTL, 3, 8, dec_mux_text); static const struct soc_enum decsva_mux_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_TX_B3_CTL, 0, 8, dec_mux_text); static const struct soc_enum iir1_inp1_mux_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_EQ1_B1_CTL, 0, 8, iir_inp1_text); static const struct soc_enum iir2_inp1_mux_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_EQ2_B1_CTL, 0, 8, iir_inp1_text); /*cut of frequency for high pass filter*/ static const char * const cf_text[] = { "MIN_3DB_4Hz", "MIN_3DB_75Hz", "MIN_3DB_150Hz" }; static const struct soc_enum cf_rxmix1_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_RX1_B4_CTL, 0, 3, cf_text); static const struct soc_enum cf_rxmix2_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_RX2_B4_CTL, 0, 3, cf_text); static const struct soc_enum cf_rxmix3_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_RX3_B4_CTL, 0, 3, cf_text); static const struct snd_kcontrol_new rx3_mix1_inp1_mux = SOC_DAPM_ENUM("RX3 MIX1 INP1 Mux", rx3_mix1_inp1_chain_enum); #define MSM89XX_DEC_ENUM(xname, xenum) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_soc_info_enum_double, \ .get = snd_soc_dapm_get_enum_double, \ .put = msm_dig_cdc_put_dec_enum, \ .private_value = (unsigned long)&xenum } static const struct snd_kcontrol_new dec1_mux = MSM89XX_DEC_ENUM("DEC1 MUX Mux", dec1_mux_enum); static const struct snd_kcontrol_new dec2_mux = MSM89XX_DEC_ENUM("DEC2 MUX Mux", dec2_mux_enum); static const struct snd_kcontrol_new dec3_mux = MSM89XX_DEC_ENUM("DEC3 MUX Mux", dec3_mux_enum); static const struct snd_kcontrol_new dec4_mux = MSM89XX_DEC_ENUM("DEC4 MUX Mux", dec4_mux_enum); static const struct snd_kcontrol_new decsva_mux = MSM89XX_DEC_ENUM("DEC5 MUX Mux", decsva_mux_enum); static const struct snd_kcontrol_new i2s_tx2_inp1_mux = SOC_DAPM_ENUM("I2S TX2 INP1 Mux", i2s_tx2_inp1_chain_enum); static const struct snd_kcontrol_new i2s_tx2_inp2_mux = SOC_DAPM_ENUM("I2S TX2 INP2 Mux", i2s_tx2_inp2_chain_enum); static const struct snd_kcontrol_new i2s_tx3_inp2_mux = SOC_DAPM_ENUM("I2S TX3 INP2 Mux", i2s_tx3_inp2_chain_enum); static const struct snd_kcontrol_new iir1_inp1_mux = SOC_DAPM_ENUM("IIR1 INP1 Mux", iir1_inp1_mux_enum); static const struct snd_kcontrol_new iir2_inp1_mux = SOC_DAPM_ENUM("IIR2 INP1 Mux", iir2_inp1_mux_enum); static const struct snd_kcontrol_new rx_mix1_inp1_mux = SOC_DAPM_ENUM("RX1 MIX1 INP1 Mux", rx_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx_mix1_inp2_mux = SOC_DAPM_ENUM("RX1 MIX1 INP2 Mux", rx_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx_mix1_inp3_mux = SOC_DAPM_ENUM("RX1 MIX1 INP3 Mux", rx_mix1_inp3_chain_enum); static const struct snd_kcontrol_new rx2_mix1_inp1_mux = SOC_DAPM_ENUM("RX2 MIX1 INP1 Mux", rx2_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx2_mix1_inp2_mux = SOC_DAPM_ENUM("RX2 MIX1 INP2 Mux", rx2_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx2_mix1_inp3_mux = SOC_DAPM_ENUM("RX2 MIX1 INP3 Mux", rx2_mix1_inp3_chain_enum); static const struct snd_kcontrol_new rx3_mix1_inp2_mux = SOC_DAPM_ENUM("RX3 MIX1 INP2 Mux", rx3_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx3_mix1_inp3_mux = SOC_DAPM_ENUM("RX3 MIX1 INP3 Mux", rx3_mix1_inp3_chain_enum); static const struct snd_kcontrol_new rx1_mix2_inp1_mux = SOC_DAPM_ENUM("RX1 MIX2 INP1 Mux", rx_mix2_inp1_chain_enum); static const struct snd_kcontrol_new rx2_mix2_inp1_mux = SOC_DAPM_ENUM("RX2 MIX2 INP1 Mux", rx2_mix2_inp1_chain_enum); static const struct snd_soc_dapm_widget msm_dig_dapm_widgets[] = { SND_SOC_DAPM_AIF_IN("I2S RX1", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("I2S RX2", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("I2S RX3", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("I2S TX1", "AIF1 Capture", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("I2S TX2", "AIF1 Capture", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("I2S TX3", "AIF1 Capture", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("I2S TX4", "AIF1 Capture", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("I2S TX5", "AIF1 Capture", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("I2S TX6", "AIF2 Capture", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_MIXER_E("RX1 MIX2", MSM89XX_CDC_CORE_CLK_RX_B1_CTL, MSM89XX_RX1, 0, NULL, 0, msm_dig_cdc_codec_enable_interpolator, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MIXER_E("RX2 MIX2", MSM89XX_CDC_CORE_CLK_RX_B1_CTL, MSM89XX_RX2, 0, NULL, 0, msm_dig_cdc_codec_enable_interpolator, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MIXER_E("RX3 MIX1", MSM89XX_CDC_CORE_CLK_RX_B1_CTL, MSM89XX_RX3, 0, NULL, 0, msm_dig_cdc_codec_enable_interpolator, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MIXER("RX1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("RX2 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("RX1 CHAIN", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("RX2 CHAIN", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("RX3 CHAIN", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MUX("RX1 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX1 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX1 MIX1 INP3", SND_SOC_NOPM, 0, 0, &rx_mix1_inp3_mux), SND_SOC_DAPM_MUX("RX2 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx2_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX2 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx2_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX2 MIX1 INP3", SND_SOC_NOPM, 0, 0, &rx2_mix1_inp3_mux), SND_SOC_DAPM_MUX("RX3 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx3_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX3 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx3_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX3 MIX1 INP3", SND_SOC_NOPM, 0, 0, &rx3_mix1_inp3_mux), SND_SOC_DAPM_MUX("RX1 MIX2 INP1", SND_SOC_NOPM, 0, 0, &rx1_mix2_inp1_mux), SND_SOC_DAPM_MUX("RX2 MIX2 INP1", SND_SOC_NOPM, 0, 0, &rx2_mix2_inp1_mux), SND_SOC_DAPM_SUPPLY_S("CDC_CONN", -2, MSM89XX_CDC_CORE_CLK_OTHR_CTL, 2, 0, NULL, 0), SND_SOC_DAPM_MUX_E("DEC1 MUX", MSM89XX_CDC_CORE_CLK_TX_CLK_EN_B1_CTL, 0, 0, &dec1_mux, msm_dig_cdc_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX_E("DEC2 MUX", MSM89XX_CDC_CORE_CLK_TX_CLK_EN_B1_CTL, 1, 0, &dec2_mux, msm_dig_cdc_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX_E("DEC3 MUX", MSM89XX_CDC_CORE_CLK_TX_CLK_EN_B1_CTL, 2, 0, &dec3_mux, msm_dig_cdc_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX_E("DEC4 MUX", MSM89XX_CDC_CORE_CLK_TX_CLK_EN_B1_CTL, 3, 0, &dec4_mux, msm_dig_cdc_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX_E("DEC5 MUX", MSM89XX_CDC_CORE_CLK_TX_CLK_EN_B1_CTL, 4, 0, &decsva_mux, msm_dig_cdc_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), /* Sidetone */ SND_SOC_DAPM_MUX("IIR1 INP1 MUX", SND_SOC_NOPM, 0, 0, &iir1_inp1_mux), SND_SOC_DAPM_PGA_E("IIR1", MSM89XX_CDC_CORE_CLK_SD_CTL, 0, 0, NULL, 0, msm_dig_cdc_codec_set_iir_gain, SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_MUX("IIR2 INP1 MUX", SND_SOC_NOPM, 0, 0, &iir2_inp1_mux), SND_SOC_DAPM_PGA_E("IIR2", MSM89XX_CDC_CORE_CLK_SD_CTL, 1, 0, NULL, 0, msm_dig_cdc_codec_set_iir_gain, SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_SUPPLY("RX_I2S_CLK", MSM89XX_CDC_CORE_CLK_RX_I2S_CTL, 4, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("TX_I2S_CLK", MSM89XX_CDC_CORE_CLK_TX_I2S_CTL, 4, 0, NULL, 0), SND_SOC_DAPM_MUX("I2S TX2 INP1", SND_SOC_NOPM, 0, 0, &i2s_tx2_inp1_mux), SND_SOC_DAPM_MUX("I2S TX2 INP2", SND_SOC_NOPM, 0, 0, &i2s_tx2_inp2_mux), SND_SOC_DAPM_MUX("I2S TX3 INP2", SND_SOC_NOPM, 0, 0, &i2s_tx3_inp2_mux), /* Digital Mic Inputs */ SND_SOC_DAPM_ADC_E("DMIC1", NULL, SND_SOC_NOPM, 0, 0, msm_dig_cdc_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("DMIC2", NULL, SND_SOC_NOPM, 0, 0, msm_dig_cdc_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("DMIC3", NULL, SND_SOC_NOPM, 0, 0, msm_dig_cdc_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("DMIC4", NULL, SND_SOC_NOPM, 0, 0, msm_dig_cdc_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_INPUT("ADC1_IN"), SND_SOC_DAPM_INPUT("ADC2_IN"), SND_SOC_DAPM_INPUT("ADC3_IN"), SND_SOC_DAPM_OUTPUT("PDM_OUT_RX1"), SND_SOC_DAPM_OUTPUT("PDM_OUT_RX2"), SND_SOC_DAPM_OUTPUT("PDM_OUT_RX3"), }; static const struct soc_enum cf_dec1_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_TX1_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec2_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_TX2_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec3_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_TX3_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec4_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_TX4_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_decsva_enum = SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_TX5_MUX_CTL, 4, 3, cf_text); static const struct snd_kcontrol_new msm_dig_snd_controls[] = { SOC_SINGLE_SX_TLV("DEC1 Volume", MSM89XX_CDC_CORE_TX1_VOL_CTL_GAIN, 0, -84, 40, digital_gain), SOC_SINGLE_SX_TLV("DEC2 Volume", MSM89XX_CDC_CORE_TX2_VOL_CTL_GAIN, 0, -84, 40, digital_gain), SOC_SINGLE_SX_TLV("DEC3 Volume", MSM89XX_CDC_CORE_TX3_VOL_CTL_GAIN, 0, -84, 40, digital_gain), SOC_SINGLE_SX_TLV("DEC4 Volume", MSM89XX_CDC_CORE_TX4_VOL_CTL_GAIN, 0, -84, 40, digital_gain), SOC_SINGLE_SX_TLV("DEC5 Volume", MSM89XX_CDC_CORE_TX5_VOL_CTL_GAIN, 0, -84, 40, digital_gain), SOC_SINGLE_SX_TLV("IIR1 INP1 Volume", MSM89XX_CDC_CORE_IIR1_GAIN_B1_CTL, 0, -84, 40, digital_gain), SOC_SINGLE_SX_TLV("IIR1 INP2 Volume", MSM89XX_CDC_CORE_IIR1_GAIN_B2_CTL, 0, -84, 40, digital_gain), SOC_SINGLE_SX_TLV("IIR1 INP3 Volume", MSM89XX_CDC_CORE_IIR1_GAIN_B3_CTL, 0, -84, 40, digital_gain), SOC_SINGLE_SX_TLV("IIR1 INP4 Volume", MSM89XX_CDC_CORE_IIR1_GAIN_B4_CTL, 0, -84, 40, digital_gain), SOC_SINGLE_SX_TLV("IIR2 INP1 Volume", MSM89XX_CDC_CORE_IIR2_GAIN_B1_CTL, 0, -84, 40, digital_gain), SOC_SINGLE_SX_TLV("RX1 Digital Volume", MSM89XX_CDC_CORE_RX1_VOL_CTL_B2_CTL, 0, -84, 40, digital_gain), SOC_SINGLE_SX_TLV("RX2 Digital Volume", MSM89XX_CDC_CORE_RX2_VOL_CTL_B2_CTL, 0, -84, 40, digital_gain), SOC_SINGLE_SX_TLV("RX3 Digital Volume", MSM89XX_CDC_CORE_RX3_VOL_CTL_B2_CTL, 0, -84, 40, digital_gain), SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0, msm_dig_cdc_get_iir_enable_audio_mixer, msm_dig_cdc_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0, msm_dig_cdc_get_iir_enable_audio_mixer, msm_dig_cdc_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0, msm_dig_cdc_get_iir_enable_audio_mixer, msm_dig_cdc_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0, msm_dig_cdc_get_iir_enable_audio_mixer, msm_dig_cdc_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0, msm_dig_cdc_get_iir_enable_audio_mixer, msm_dig_cdc_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band1", IIR2, BAND1, 1, 0, msm_dig_cdc_get_iir_enable_audio_mixer, msm_dig_cdc_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band2", IIR2, BAND2, 1, 0, msm_dig_cdc_get_iir_enable_audio_mixer, msm_dig_cdc_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band3", IIR2, BAND3, 1, 0, msm_dig_cdc_get_iir_enable_audio_mixer, msm_dig_cdc_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band4", IIR2, BAND4, 1, 0, msm_dig_cdc_get_iir_enable_audio_mixer, msm_dig_cdc_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band5", IIR2, BAND5, 1, 0, msm_dig_cdc_get_iir_enable_audio_mixer, msm_dig_cdc_put_iir_enable_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band1", IIR1, BAND1, 255, 0, 5, msm_dig_cdc_get_iir_band_audio_mixer, msm_dig_cdc_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band2", IIR1, BAND2, 255, 0, 5, msm_dig_cdc_get_iir_band_audio_mixer, msm_dig_cdc_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band3", IIR1, BAND3, 255, 0, 5, msm_dig_cdc_get_iir_band_audio_mixer, msm_dig_cdc_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band4", IIR1, BAND4, 255, 0, 5, msm_dig_cdc_get_iir_band_audio_mixer, msm_dig_cdc_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band5", IIR1, BAND5, 255, 0, 5, msm_dig_cdc_get_iir_band_audio_mixer, msm_dig_cdc_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band1", IIR2, BAND1, 255, 0, 5, msm_dig_cdc_get_iir_band_audio_mixer, msm_dig_cdc_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band2", IIR2, BAND2, 255, 0, 5, msm_dig_cdc_get_iir_band_audio_mixer, msm_dig_cdc_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band3", IIR2, BAND3, 255, 0, 5, msm_dig_cdc_get_iir_band_audio_mixer, msm_dig_cdc_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band4", IIR2, BAND4, 255, 0, 5, msm_dig_cdc_get_iir_band_audio_mixer, msm_dig_cdc_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band5", IIR2, BAND5, 255, 0, 5, msm_dig_cdc_get_iir_band_audio_mixer, msm_dig_cdc_put_iir_band_audio_mixer), SOC_SINGLE("RX1 HPF Switch", MSM89XX_CDC_CORE_RX1_B5_CTL, 2, 1, 0), SOC_SINGLE("RX2 HPF Switch", MSM89XX_CDC_CORE_RX2_B5_CTL, 2, 1, 0), SOC_SINGLE("RX3 HPF Switch", MSM89XX_CDC_CORE_RX3_B5_CTL, 2, 1, 0), SOC_ENUM("RX1 HPF cut off", cf_rxmix1_enum), SOC_ENUM("RX2 HPF cut off", cf_rxmix2_enum), SOC_ENUM("RX3 HPF cut off", cf_rxmix3_enum), SOC_ENUM("TX1 HPF cut off", cf_dec1_enum), SOC_ENUM("TX2 HPF cut off", cf_dec2_enum), SOC_ENUM("TX3 HPF cut off", cf_dec3_enum), SOC_ENUM("TX4 HPF cut off", cf_dec4_enum), SOC_ENUM("TX5 HPF cut off", cf_decsva_enum), SOC_SINGLE("TX1 HPF Switch", MSM89XX_CDC_CORE_TX1_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX2 HPF Switch", MSM89XX_CDC_CORE_TX2_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX3 HPF Switch", MSM89XX_CDC_CORE_TX3_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX4 HPF Switch", MSM89XX_CDC_CORE_TX4_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX5 HPF Switch", MSM89XX_CDC_CORE_TX5_MUX_CTL, 3, 1, 0), }; static int msm_dig_cdc_digital_mute(struct snd_soc_dai *dai, int mute) { struct snd_soc_codec *codec = NULL; u16 tx_vol_ctl_reg = 0; u8 decimator = 0, i; struct msm_dig_priv *dig_cdc; pr_debug("%s: Digital Mute val = %d\n", __func__, mute); if (!dai || !dai->codec) { pr_err("%s: Invalid params\n", __func__); return -EINVAL; } codec = dai->codec; dig_cdc = snd_soc_codec_get_drvdata(codec); if (dai->id == AIF1_PB) { dev_dbg(codec->dev, "%s: Not capture use case skip\n", __func__); return 0; } mute = (mute) ? 1 : 0; if (!mute) { /* * 15 ms is an emperical value for the mute time * that was arrived by checking the pop level * to be inaudible */ usleep_range(15000, 15010); } if (dai->id == AIF3_SVA) { snd_soc_update_bits(codec, MSM89XX_CDC_CORE_TX5_VOL_CTL_CFG, 0x01, mute); goto ret; } for (i = 0; i < (NUM_DECIMATORS - 1); i++) { if (dig_cdc->dec_active[i]) decimator = i + 1; if (decimator && decimator < NUM_DECIMATORS) { /* mute/unmute decimators corresponding to Tx DAI's */ tx_vol_ctl_reg = MSM89XX_CDC_CORE_TX1_VOL_CTL_CFG + 32 * (decimator - 1); snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, mute); } decimator = 0; } ret: return 0; } static struct snd_soc_dai_ops msm_dig_dai_ops = { .hw_params = msm_dig_cdc_hw_params, .digital_mute = msm_dig_cdc_digital_mute, }; static struct snd_soc_dai_driver msm_codec_dais[] = { { .name = "msm_dig_cdc_dai_rx1", .id = AIF1_PB, .playback = { /* Support maximum range */ .stream_name = "AIF1 Playback", .channels_min = 1, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, .ops = &msm_dig_dai_ops, }, { .name = "msm_dig_cdc_dai_tx1", .id = AIF1_CAP, .capture = { /* Support maximum range */ .stream_name = "AIF1 Capture", .channels_min = 1, .channels_max = 4, .rates = SNDRV_PCM_RATE_8000_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, .ops = &msm_dig_dai_ops, }, { .name = "msm_dig_cdc_dai_tx2", .id = AIF3_SVA, .capture = { /* Support maximum range */ .stream_name = "AIF2 Capture", .channels_min = 1, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, .ops = &msm_dig_dai_ops, }, { .name = "msm_dig_cdc_dai_vifeed", .id = AIF2_VIFEED, .capture = { /* Support maximum range */ .stream_name = "AIF2 Capture", .channels_min = 1, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, .ops = &msm_dig_dai_ops, }, }; static struct regmap *msm_digital_get_regmap(struct device *dev) { struct msm_dig *msm_dig_cdc = dev_get_drvdata(dev); return msm_dig_cdc->regmap; } static struct snd_soc_codec_driver soc_msm_dig_codec = { .probe = msm_dig_cdc_soc_probe, .remove = msm_dig_cdc_soc_remove, .controls = msm_dig_snd_controls, .num_controls = ARRAY_SIZE(msm_dig_snd_controls), .dapm_widgets = msm_dig_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(msm_dig_dapm_widgets), .dapm_routes = audio_dig_map, .num_dapm_routes = ARRAY_SIZE(audio_dig_map), .get_regmap = msm_digital_get_regmap, }; const struct regmap_config msm_digital_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .lock = enable_digital_callback, .unlock = disable_digital_callback, .cache_type = REGCACHE_FLAT, .reg_defaults = msm89xx_cdc_core_defaults, .num_reg_defaults = MSM89XX_CDC_CORE_MAX_REGISTER, .readable_reg = msm89xx_cdc_core_readable_reg, .volatile_reg = msm89xx_cdc_core_volatile_reg, .reg_format_endian = REGMAP_ENDIAN_NATIVE, .val_format_endian = REGMAP_ENDIAN_NATIVE, .max_register = MSM89XX_CDC_CORE_MAX_REGISTER, }; static int msm_dig_cdc_probe(struct platform_device *pdev) { int ret; u32 dig_cdc_addr; struct msm_dig *msm_dig_cdc; struct dig_ctrl_platform_data *pdata; msm_dig_cdc = devm_kzalloc(&pdev->dev, sizeof(struct msm_dig), GFP_KERNEL); if (!msm_dig_cdc) return -ENOMEM; pdata = dev_get_platdata(&pdev->dev); if (!pdata) { dev_err(&pdev->dev, "%s: pdata from parent is NULL\n", __func__); ret = -EINVAL; goto rtn; } dev_set_drvdata(&pdev->dev, msm_dig_cdc); ret = of_property_read_u32(pdev->dev.of_node, "reg", &dig_cdc_addr); if (ret) { dev_err(&pdev->dev, "%s: could not find %s entry in dt\n", __func__, "reg"); return ret; } msm_dig_cdc->dig_base = ioremap(dig_cdc_addr, MSM89XX_CDC_CORE_MAX_REGISTER); if (msm_dig_cdc->dig_base == NULL) { dev_err(&pdev->dev, "%s ioremap failed\n", __func__); return -ENOMEM; } msm_dig_cdc->regmap = devm_regmap_init_mmio_clk(&pdev->dev, NULL, msm_dig_cdc->dig_base, &msm_digital_regmap_config); msm_dig_cdc->update_clkdiv = pdata->update_clkdiv; msm_dig_cdc->get_cdc_version = pdata->get_cdc_version; msm_dig_cdc->handle = pdata->handle; msm_dig_cdc->register_notifier = pdata->register_notifier; snd_soc_register_codec(&pdev->dev, &soc_msm_dig_codec, msm_codec_dais, ARRAY_SIZE(msm_codec_dais)); dev_dbg(&pdev->dev, "%s: registered DIG CODEC 0x%x\n", __func__, dig_cdc_addr); rtn: return ret; } static int msm_dig_cdc_remove(struct platform_device *pdev) { snd_soc_unregister_codec(&pdev->dev); return 0; } static const struct of_device_id msm_dig_cdc_of_match[] = { {.compatible = "qcom,msm-digital-codec"}, {}, }; static struct platform_driver msm_digcodec_driver = { .driver = { .owner = THIS_MODULE, .name = DRV_NAME, .of_match_table = msm_dig_cdc_of_match, }, .probe = msm_dig_cdc_probe, .remove = msm_dig_cdc_remove, }; module_platform_driver(msm_digcodec_driver); MODULE_DESCRIPTION("MSM Audio Digital codec driver"); MODULE_LICENSE("GPL v2");