android_kernel_oneplus_msm8998/kernel/sched/hmp.c
Pavankumar Kondeti 97fe3984e9 sched/walt: Fix the memory leak of idle task load pointers
The memory for task load pointers are allocated twice for each
idle thread except for the boot CPU. This happens during boot
from idle_threads_init()->idle_init() in the following 2 paths.

1. idle_init()->fork_idle()->copy_process()->
		sched_fork()->init_new_task_load()

2. idle_init()->fork_idle()-> init_idle()->init_new_task_load()

The memory allocation for all tasks happens through the 1st path,
so use the same for idle tasks and kill the 2nd path. Since
the idle thread of boot CPU does not go through fork_idle(),
allocate the memory for it separately.

Change-Id: I4696a414ffe07d4114b56d326463026019e278f1
Signed-off-by: Pavankumar Kondeti <pkondeti@codeaurora.org>
[schikk@codeaurora.org: resolved merge conflicts]
Signed-off-by: Swetha Chikkaboraiah <schikk@codeaurora.org>
2019-08-30 09:21:10 +02:00

4404 lines
112 KiB
C

/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Implementation credits: Srivatsa Vaddagiri, Steve Muckle
* Syed Rameez Mustafa, Olav haugan, Joonwoo Park, Pavan Kumar Kondeti
* and Vikram Mulukutla
*/
#include <linux/cpufreq.h>
#include <linux/list_sort.h>
#include <linux/syscore_ops.h>
#include "sched.h"
#include <trace/events/sched.h>
#define CSTATE_LATENCY_GRANULARITY_SHIFT (6)
const char *task_event_names[] = {"PUT_PREV_TASK", "PICK_NEXT_TASK",
"TASK_WAKE", "TASK_MIGRATE", "TASK_UPDATE",
"IRQ_UPDATE"};
const char *migrate_type_names[] = {"GROUP_TO_RQ", "RQ_TO_GROUP"};
static ktime_t ktime_last;
static bool sched_ktime_suspended;
static bool use_cycle_counter;
static struct cpu_cycle_counter_cb cpu_cycle_counter_cb;
u64 sched_ktime_clock(void)
{
if (unlikely(sched_ktime_suspended))
return ktime_to_ns(ktime_last);
return ktime_get_ns();
}
static void sched_resume(void)
{
sched_ktime_suspended = false;
}
static int sched_suspend(void)
{
ktime_last = ktime_get();
sched_ktime_suspended = true;
return 0;
}
static struct syscore_ops sched_syscore_ops = {
.resume = sched_resume,
.suspend = sched_suspend
};
static int __init sched_init_ops(void)
{
register_syscore_ops(&sched_syscore_ops);
return 0;
}
late_initcall(sched_init_ops);
inline void clear_ed_task(struct task_struct *p, struct rq *rq)
{
if (p == rq->ed_task)
rq->ed_task = NULL;
}
inline void set_task_last_switch_out(struct task_struct *p, u64 wallclock)
{
p->last_switch_out_ts = wallclock;
}
/*
* Note C-state for (idle) cpus.
*
* @cstate = cstate index, 0 -> active state
* @wakeup_energy = energy spent in waking up cpu
* @wakeup_latency = latency to wakeup from cstate
*
*/
void
sched_set_cpu_cstate(int cpu, int cstate, int wakeup_energy, int wakeup_latency)
{
struct rq *rq = cpu_rq(cpu);
rq->cstate = cstate; /* C1, C2 etc */
rq->wakeup_energy = wakeup_energy;
/* disregard small latency delta (64 us). */
rq->wakeup_latency = ((wakeup_latency >>
CSTATE_LATENCY_GRANULARITY_SHIFT) <<
CSTATE_LATENCY_GRANULARITY_SHIFT);
}
/*
* Note D-state for (idle) cluster.
*
* @dstate = dstate index, 0 -> active state
* @wakeup_energy = energy spent in waking up cluster
* @wakeup_latency = latency to wakeup from cluster
*
*/
void sched_set_cluster_dstate(const cpumask_t *cluster_cpus, int dstate,
int wakeup_energy, int wakeup_latency)
{
struct sched_cluster *cluster =
cpu_rq(cpumask_first(cluster_cpus))->cluster;
cluster->dstate = dstate;
cluster->dstate_wakeup_energy = wakeup_energy;
cluster->dstate_wakeup_latency = wakeup_latency;
}
u32 __weak get_freq_max_load(int cpu, u32 freq)
{
/* 100% by default */
return 100;
}
struct freq_max_load_entry {
/* The maximum load which has accounted governor's headroom. */
u64 hdemand;
};
struct freq_max_load {
struct rcu_head rcu;
int length;
struct freq_max_load_entry freqs[0];
};
static DEFINE_PER_CPU(struct freq_max_load *, freq_max_load);
static DEFINE_SPINLOCK(freq_max_load_lock);
struct cpu_pwr_stats __weak *get_cpu_pwr_stats(void)
{
return NULL;
}
int sched_update_freq_max_load(const cpumask_t *cpumask)
{
int i, cpu, ret;
unsigned int freq;
struct cpu_pstate_pwr *costs;
struct cpu_pwr_stats *per_cpu_info = get_cpu_pwr_stats();
struct freq_max_load *max_load, *old_max_load;
struct freq_max_load_entry *entry;
u64 max_demand_capacity, max_demand;
unsigned long flags;
u32 hfreq;
int hpct;
if (!per_cpu_info)
return 0;
spin_lock_irqsave(&freq_max_load_lock, flags);
max_demand_capacity = div64_u64(max_task_load(), max_possible_capacity);
for_each_cpu(cpu, cpumask) {
if (!per_cpu_info[cpu].ptable) {
ret = -EINVAL;
goto fail;
}
old_max_load = rcu_dereference(per_cpu(freq_max_load, cpu));
/*
* allocate len + 1 and leave the last power cost as 0 for
* power_cost() can stop iterating index when
* per_cpu_info[cpu].len > len of max_load due to race between
* cpu power stats update and get_cpu_pwr_stats().
*/
max_load = kzalloc(sizeof(struct freq_max_load) +
sizeof(struct freq_max_load_entry) *
(per_cpu_info[cpu].len + 1), GFP_ATOMIC);
if (unlikely(!max_load)) {
ret = -ENOMEM;
goto fail;
}
max_load->length = per_cpu_info[cpu].len;
max_demand = max_demand_capacity *
cpu_max_possible_capacity(cpu);
i = 0;
costs = per_cpu_info[cpu].ptable;
while (costs[i].freq) {
entry = &max_load->freqs[i];
freq = costs[i].freq;
hpct = get_freq_max_load(cpu, freq);
if (hpct <= 0 || hpct > 100)
hpct = 100;
hfreq = div64_u64((u64)freq * hpct, 100);
entry->hdemand =
div64_u64(max_demand * hfreq,
cpu_max_possible_freq(cpu));
i++;
}
rcu_assign_pointer(per_cpu(freq_max_load, cpu), max_load);
if (old_max_load)
kfree_rcu(old_max_load, rcu);
}
spin_unlock_irqrestore(&freq_max_load_lock, flags);
return 0;
fail:
for_each_cpu(cpu, cpumask) {
max_load = rcu_dereference(per_cpu(freq_max_load, cpu));
if (max_load) {
rcu_assign_pointer(per_cpu(freq_max_load, cpu), NULL);
kfree_rcu(max_load, rcu);
}
}
spin_unlock_irqrestore(&freq_max_load_lock, flags);
return ret;
}
unsigned int max_possible_efficiency = 1;
unsigned int min_possible_efficiency = UINT_MAX;
unsigned long __weak arch_get_cpu_efficiency(int cpu)
{
return SCHED_LOAD_SCALE;
}
/* Keep track of max/min capacity possible across CPUs "currently" */
static void __update_min_max_capacity(void)
{
int i;
int max_cap = 0, min_cap = INT_MAX;
for_each_online_cpu(i) {
max_cap = max(max_cap, cpu_capacity(i));
min_cap = min(min_cap, cpu_capacity(i));
}
max_capacity = max_cap;
min_capacity = min_cap;
}
static void update_min_max_capacity(void)
{
unsigned long flags;
int i;
local_irq_save(flags);
for_each_possible_cpu(i)
raw_spin_lock(&cpu_rq(i)->lock);
__update_min_max_capacity();
for_each_possible_cpu(i)
raw_spin_unlock(&cpu_rq(i)->lock);
local_irq_restore(flags);
}
/*
* Return 'capacity' of a cpu in reference to "least" efficient cpu, such that
* least efficient cpu gets capacity of 1024
*/
static unsigned long
capacity_scale_cpu_efficiency(struct sched_cluster *cluster)
{
return (1024 * cluster->efficiency) / min_possible_efficiency;
}
/*
* Return 'capacity' of a cpu in reference to cpu with lowest max_freq
* (min_max_freq), such that one with lowest max_freq gets capacity of 1024.
*/
static unsigned long capacity_scale_cpu_freq(struct sched_cluster *cluster)
{
return (1024 * cluster_max_freq(cluster)) / min_max_freq;
}
/*
* Return load_scale_factor of a cpu in reference to "most" efficient cpu, so
* that "most" efficient cpu gets a load_scale_factor of 1
*/
static inline unsigned long
load_scale_cpu_efficiency(struct sched_cluster *cluster)
{
return DIV_ROUND_UP(1024 * max_possible_efficiency,
cluster->efficiency);
}
/*
* Return load_scale_factor of a cpu in reference to cpu with best max_freq
* (max_possible_freq), so that one with best max_freq gets a load_scale_factor
* of 1.
*/
static inline unsigned long load_scale_cpu_freq(struct sched_cluster *cluster)
{
return DIV_ROUND_UP(1024 * max_possible_freq,
cluster_max_freq(cluster));
}
static int compute_capacity(struct sched_cluster *cluster)
{
int capacity = 1024;
capacity *= capacity_scale_cpu_efficiency(cluster);
capacity >>= 10;
capacity *= capacity_scale_cpu_freq(cluster);
capacity >>= 10;
return capacity;
}
static int compute_max_possible_capacity(struct sched_cluster *cluster)
{
int capacity = 1024;
capacity *= capacity_scale_cpu_efficiency(cluster);
capacity >>= 10;
capacity *= (1024 * cluster->max_possible_freq) / min_max_freq;
capacity >>= 10;
return capacity;
}
static int compute_load_scale_factor(struct sched_cluster *cluster)
{
int load_scale = 1024;
/*
* load_scale_factor accounts for the fact that task load
* is in reference to "best" performing cpu. Task's load will need to be
* scaled (up) by a factor to determine suitability to be placed on a
* (little) cpu.
*/
load_scale *= load_scale_cpu_efficiency(cluster);
load_scale >>= 10;
load_scale *= load_scale_cpu_freq(cluster);
load_scale >>= 10;
return load_scale;
}
struct list_head cluster_head;
static DEFINE_MUTEX(cluster_lock);
static cpumask_t all_cluster_cpus = CPU_MASK_NONE;
DECLARE_BITMAP(all_cluster_ids, NR_CPUS);
struct sched_cluster *sched_cluster[NR_CPUS];
int num_clusters;
unsigned int max_power_cost = 1;
struct sched_cluster init_cluster = {
.list = LIST_HEAD_INIT(init_cluster.list),
.id = 0,
.max_power_cost = 1,
.min_power_cost = 1,
.capacity = 1024,
.max_possible_capacity = 1024,
.efficiency = 1,
.load_scale_factor = 1024,
.cur_freq = 1,
.max_freq = 1,
.max_mitigated_freq = UINT_MAX,
.min_freq = 1,
.max_possible_freq = 1,
.dstate = 0,
.dstate_wakeup_energy = 0,
.dstate_wakeup_latency = 0,
.exec_scale_factor = 1024,
.notifier_sent = 0,
.wake_up_idle = 0,
};
static void update_all_clusters_stats(void)
{
struct sched_cluster *cluster;
u64 highest_mpc = 0, lowest_mpc = U64_MAX;
pre_big_task_count_change(cpu_possible_mask);
for_each_sched_cluster(cluster) {
u64 mpc;
cluster->capacity = compute_capacity(cluster);
mpc = cluster->max_possible_capacity =
compute_max_possible_capacity(cluster);
cluster->load_scale_factor = compute_load_scale_factor(cluster);
cluster->exec_scale_factor =
DIV_ROUND_UP(cluster->efficiency * 1024,
max_possible_efficiency);
if (mpc > highest_mpc)
highest_mpc = mpc;
if (mpc < lowest_mpc)
lowest_mpc = mpc;
}
max_possible_capacity = highest_mpc;
min_max_possible_capacity = lowest_mpc;
__update_min_max_capacity();
sched_update_freq_max_load(cpu_possible_mask);
post_big_task_count_change(cpu_possible_mask);
}
static void assign_cluster_ids(struct list_head *head)
{
struct sched_cluster *cluster;
int pos = 0;
list_for_each_entry(cluster, head, list) {
cluster->id = pos;
sched_cluster[pos++] = cluster;
}
}
static void
move_list(struct list_head *dst, struct list_head *src, bool sync_rcu)
{
struct list_head *first, *last;
first = src->next;
last = src->prev;
if (sync_rcu) {
INIT_LIST_HEAD_RCU(src);
synchronize_rcu();
}
first->prev = dst;
dst->prev = last;
last->next = dst;
/* Ensure list sanity before making the head visible to all CPUs. */
smp_mb();
dst->next = first;
}
static int
compare_clusters(void *priv, struct list_head *a, struct list_head *b)
{
struct sched_cluster *cluster1, *cluster2;
int ret;
cluster1 = container_of(a, struct sched_cluster, list);
cluster2 = container_of(b, struct sched_cluster, list);
/*
* Don't assume higher capacity means higher power. If the
* power cost is same, sort the higher capacity cluster before
* the lower capacity cluster to start placing the tasks
* on the higher capacity cluster.
*/
ret = cluster1->max_power_cost > cluster2->max_power_cost ||
(cluster1->max_power_cost == cluster2->max_power_cost &&
cluster1->max_possible_capacity <
cluster2->max_possible_capacity);
return ret;
}
static void sort_clusters(void)
{
struct sched_cluster *cluster;
struct list_head new_head;
unsigned int tmp_max = 1;
INIT_LIST_HEAD(&new_head);
for_each_sched_cluster(cluster) {
cluster->max_power_cost = power_cost(cluster_first_cpu(cluster),
max_task_load());
cluster->min_power_cost = power_cost(cluster_first_cpu(cluster),
0);
if (cluster->max_power_cost > tmp_max)
tmp_max = cluster->max_power_cost;
}
max_power_cost = tmp_max;
move_list(&new_head, &cluster_head, true);
list_sort(NULL, &new_head, compare_clusters);
assign_cluster_ids(&new_head);
/*
* Ensure cluster ids are visible to all CPUs before making
* cluster_head visible.
*/
move_list(&cluster_head, &new_head, false);
}
static void
insert_cluster(struct sched_cluster *cluster, struct list_head *head)
{
struct sched_cluster *tmp;
struct list_head *iter = head;
list_for_each_entry(tmp, head, list) {
if (cluster->max_power_cost < tmp->max_power_cost)
break;
iter = &tmp->list;
}
list_add(&cluster->list, iter);
}
static struct sched_cluster *alloc_new_cluster(const struct cpumask *cpus)
{
struct sched_cluster *cluster = NULL;
cluster = kzalloc(sizeof(struct sched_cluster), GFP_ATOMIC);
if (!cluster) {
__WARN_printf("Cluster allocation failed. \
Possible bad scheduling\n");
return NULL;
}
INIT_LIST_HEAD(&cluster->list);
cluster->max_power_cost = 1;
cluster->min_power_cost = 1;
cluster->capacity = 1024;
cluster->max_possible_capacity = 1024;
cluster->efficiency = 1;
cluster->load_scale_factor = 1024;
cluster->cur_freq = 1;
cluster->max_freq = 1;
cluster->max_mitigated_freq = UINT_MAX;
cluster->min_freq = 1;
cluster->max_possible_freq = 1;
cluster->dstate = 0;
cluster->dstate_wakeup_energy = 0;
cluster->dstate_wakeup_latency = 0;
cluster->freq_init_done = false;
raw_spin_lock_init(&cluster->load_lock);
cluster->cpus = *cpus;
cluster->efficiency = arch_get_cpu_efficiency(cpumask_first(cpus));
if (cluster->efficiency > max_possible_efficiency)
max_possible_efficiency = cluster->efficiency;
if (cluster->efficiency < min_possible_efficiency)
min_possible_efficiency = cluster->efficiency;
cluster->notifier_sent = 0;
return cluster;
}
static void add_cluster(const struct cpumask *cpus, struct list_head *head)
{
struct sched_cluster *cluster = alloc_new_cluster(cpus);
int i;
if (!cluster)
return;
for_each_cpu(i, cpus)
cpu_rq(i)->cluster = cluster;
insert_cluster(cluster, head);
set_bit(num_clusters, all_cluster_ids);
num_clusters++;
}
void update_cluster_topology(void)
{
struct cpumask cpus = *cpu_possible_mask;
const struct cpumask *cluster_cpus;
struct list_head new_head;
int i;
INIT_LIST_HEAD(&new_head);
for_each_cpu(i, &cpus) {
cluster_cpus = cpu_coregroup_mask(i);
cpumask_or(&all_cluster_cpus, &all_cluster_cpus, cluster_cpus);
cpumask_andnot(&cpus, &cpus, cluster_cpus);
add_cluster(cluster_cpus, &new_head);
}
assign_cluster_ids(&new_head);
/*
* Ensure cluster ids are visible to all CPUs before making
* cluster_head visible.
*/
move_list(&cluster_head, &new_head, false);
update_all_clusters_stats();
}
void init_clusters(void)
{
bitmap_clear(all_cluster_ids, 0, NR_CPUS);
init_cluster.cpus = *cpu_possible_mask;
raw_spin_lock_init(&init_cluster.load_lock);
INIT_LIST_HEAD(&cluster_head);
}
int register_cpu_cycle_counter_cb(struct cpu_cycle_counter_cb *cb)
{
mutex_lock(&cluster_lock);
if (!cb->get_cpu_cycle_counter) {
mutex_unlock(&cluster_lock);
return -EINVAL;
}
cpu_cycle_counter_cb = *cb;
use_cycle_counter = true;
mutex_unlock(&cluster_lock);
return 0;
}
/* Clear any HMP scheduler related requests pending from or on cpu */
void clear_hmp_request(int cpu)
{
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
clear_boost_kick(cpu);
clear_reserved(cpu);
if (rq->push_task) {
struct task_struct *push_task = NULL;
raw_spin_lock_irqsave(&rq->lock, flags);
if (rq->push_task) {
clear_reserved(rq->push_cpu);
push_task = rq->push_task;
rq->push_task = NULL;
}
rq->active_balance = 0;
raw_spin_unlock_irqrestore(&rq->lock, flags);
if (push_task)
put_task_struct(push_task);
}
}
int sched_set_static_cpu_pwr_cost(int cpu, unsigned int cost)
{
struct rq *rq = cpu_rq(cpu);
rq->static_cpu_pwr_cost = cost;
return 0;
}
unsigned int sched_get_static_cpu_pwr_cost(int cpu)
{
return cpu_rq(cpu)->static_cpu_pwr_cost;
}
int sched_set_static_cluster_pwr_cost(int cpu, unsigned int cost)
{
struct sched_cluster *cluster = cpu_rq(cpu)->cluster;
cluster->static_cluster_pwr_cost = cost;
return 0;
}
unsigned int sched_get_static_cluster_pwr_cost(int cpu)
{
return cpu_rq(cpu)->cluster->static_cluster_pwr_cost;
}
int sched_set_cluster_wake_idle(int cpu, unsigned int wake_idle)
{
struct sched_cluster *cluster = cpu_rq(cpu)->cluster;
cluster->wake_up_idle = !!wake_idle;
return 0;
}
unsigned int sched_get_cluster_wake_idle(int cpu)
{
return cpu_rq(cpu)->cluster->wake_up_idle;
}
/*
* sched_window_stats_policy and sched_ravg_hist_size have a 'sysctl' copy
* associated with them. This is required for atomic update of those variables
* when being modifed via sysctl interface.
*
* IMPORTANT: Initialize both copies to same value!!
*/
/*
* Tasks that are runnable continuously for a period greather than
* EARLY_DETECTION_DURATION can be flagged early as potential
* high load tasks.
*/
#define EARLY_DETECTION_DURATION 9500000
static __read_mostly unsigned int sched_ravg_hist_size = 5;
__read_mostly unsigned int sysctl_sched_ravg_hist_size = 5;
static __read_mostly unsigned int sched_window_stats_policy =
WINDOW_STATS_MAX_RECENT_AVG;
__read_mostly unsigned int sysctl_sched_window_stats_policy =
WINDOW_STATS_MAX_RECENT_AVG;
#define SCHED_ACCOUNT_WAIT_TIME 1
__read_mostly unsigned int sysctl_sched_cpu_high_irqload = (10 * NSEC_PER_MSEC);
/*
* Enable colocation and frequency aggregation for all threads in a process.
* The children inherits the group id from the parent.
*/
unsigned int __read_mostly sysctl_sched_enable_thread_grouping;
#define SCHED_NEW_TASK_WINDOWS 5
#define SCHED_FREQ_ACCOUNT_WAIT_TIME 0
/*
* This governs what load needs to be used when reporting CPU busy time
* to the cpufreq governor.
*/
__read_mostly unsigned int sysctl_sched_freq_reporting_policy;
/*
* For increase, send notification if
* freq_required - cur_freq > sysctl_sched_freq_inc_notify
*/
__read_mostly int sysctl_sched_freq_inc_notify = 10 * 1024 * 1024; /* + 10GHz */
/*
* For decrease, send notification if
* cur_freq - freq_required > sysctl_sched_freq_dec_notify
*/
__read_mostly int sysctl_sched_freq_dec_notify = 10 * 1024 * 1024; /* - 10GHz */
static __read_mostly unsigned int sched_io_is_busy;
__read_mostly unsigned int sysctl_sched_pred_alert_freq = 10 * 1024 * 1024;
/*
* Maximum possible frequency across all cpus. Task demand and cpu
* capacity (cpu_power) metrics are scaled in reference to it.
*/
unsigned int max_possible_freq = 1;
/*
* Minimum possible max_freq across all cpus. This will be same as
* max_possible_freq on homogeneous systems and could be different from
* max_possible_freq on heterogenous systems. min_max_freq is used to derive
* capacity (cpu_power) of cpus.
*/
unsigned int min_max_freq = 1;
unsigned int max_capacity = 1024; /* max(rq->capacity) */
unsigned int min_capacity = 1024; /* min(rq->capacity) */
unsigned int max_possible_capacity = 1024; /* max(rq->max_possible_capacity) */
unsigned int
min_max_possible_capacity = 1024; /* min(rq->max_possible_capacity) */
/* Min window size (in ns) = 10ms */
#define MIN_SCHED_RAVG_WINDOW 10000000
/* Max window size (in ns) = 1s */
#define MAX_SCHED_RAVG_WINDOW 1000000000
/* Window size (in ns) */
__read_mostly unsigned int sched_ravg_window = MIN_SCHED_RAVG_WINDOW;
/* Maximum allowed threshold before freq aggregation must be enabled */
#define MAX_FREQ_AGGR_THRESH 1000
/* Temporarily disable window-stats activity on all cpus */
unsigned int __read_mostly sched_disable_window_stats;
struct related_thread_group *related_thread_groups[MAX_NUM_CGROUP_COLOC_ID];
static LIST_HEAD(active_related_thread_groups);
static DEFINE_RWLOCK(related_thread_group_lock);
#define for_each_related_thread_group(grp) \
list_for_each_entry(grp, &active_related_thread_groups, list)
/*
* Task load is categorized into buckets for the purpose of top task tracking.
* The entire range of load from 0 to sched_ravg_window needs to be covered
* in NUM_LOAD_INDICES number of buckets. Therefore the size of each bucket
* is given by sched_ravg_window / NUM_LOAD_INDICES. Since the default value
* of sched_ravg_window is MIN_SCHED_RAVG_WINDOW, use that to compute
* sched_load_granule.
*/
__read_mostly unsigned int sched_load_granule =
MIN_SCHED_RAVG_WINDOW / NUM_LOAD_INDICES;
/* Size of bitmaps maintained to track top tasks */
static const unsigned int top_tasks_bitmap_size =
BITS_TO_LONGS(NUM_LOAD_INDICES + 1) * sizeof(unsigned long);
/*
* Demand aggregation for frequency purpose:
*
* 'sched_freq_aggregate' controls aggregation of cpu demand of related threads
* for frequency determination purpose. This aggregation is done per-cluster.
*
* CPU demand of tasks from various related groups is aggregated per-cluster and
* added to the "max_busy_cpu" in that cluster, where max_busy_cpu is determined
* by just rq->prev_runnable_sum.
*
* Some examples follow, which assume:
* Cluster0 = CPU0-3, Cluster1 = CPU4-7
* One related thread group A that has tasks A0, A1, A2
*
* A->cpu_time[X].curr/prev_sum = counters in which cpu execution stats of
* tasks belonging to group A are accumulated when they run on cpu X.
*
* CX->curr/prev_sum = counters in which cpu execution stats of all tasks
* not belonging to group A are accumulated when they run on cpu X
*
* Lets say the stats for window M was as below:
*
* C0->prev_sum = 1ms, A->cpu_time[0].prev_sum = 5ms
* Task A0 ran 5ms on CPU0
* Task B0 ran 1ms on CPU0
*
* C1->prev_sum = 5ms, A->cpu_time[1].prev_sum = 6ms
* Task A1 ran 4ms on CPU1
* Task A2 ran 2ms on CPU1
* Task B1 ran 5ms on CPU1
*
* C2->prev_sum = 0ms, A->cpu_time[2].prev_sum = 0
* CPU2 idle
*
* C3->prev_sum = 0ms, A->cpu_time[3].prev_sum = 0
* CPU3 idle
*
* In this case, CPU1 was most busy going by just its prev_sum counter. Demand
* from all group A tasks are added to CPU1. IOW, at end of window M, cpu busy
* time reported to governor will be:
*
*
* C0 busy time = 1ms
* C1 busy time = 5 + 5 + 6 = 16ms
*
*/
static __read_mostly unsigned int sched_freq_aggregate = 1;
__read_mostly unsigned int sysctl_sched_freq_aggregate = 1;
unsigned int __read_mostly sysctl_sched_freq_aggregate_threshold_pct;
static unsigned int __read_mostly sched_freq_aggregate_threshold;
/* Initial task load. Newly created tasks are assigned this load. */
unsigned int __read_mostly sched_init_task_load_windows;
unsigned int __read_mostly sysctl_sched_init_task_load_pct = 15;
unsigned int max_task_load(void)
{
return sched_ravg_window;
}
/* A cpu can no longer accommodate more tasks if:
*
* rq->nr_running > sysctl_sched_spill_nr_run ||
* rq->hmp_stats.cumulative_runnable_avg > sched_spill_load
*/
unsigned int __read_mostly sysctl_sched_spill_nr_run = 10;
/*
* Place sync wakee tasks those have less than configured demand to the waker's
* cluster.
*/
unsigned int __read_mostly sched_small_wakee_task_load;
unsigned int __read_mostly sysctl_sched_small_wakee_task_load_pct = 10;
unsigned int __read_mostly sched_big_waker_task_load;
unsigned int __read_mostly sysctl_sched_big_waker_task_load_pct = 25;
/*
* CPUs with load greater than the sched_spill_load_threshold are not
* eligible for task placement. When all CPUs in a cluster achieve a
* load higher than this level, tasks becomes eligible for inter
* cluster migration.
*/
unsigned int __read_mostly sched_spill_load;
unsigned int __read_mostly sysctl_sched_spill_load_pct = 100;
/*
* Prefer the waker CPU for sync wakee task, if the CPU has only 1 runnable
* task. This eliminates the LPM exit latency associated with the idle
* CPUs in the waker cluster.
*/
unsigned int __read_mostly sysctl_sched_prefer_sync_wakee_to_waker;
/*
* Tasks whose bandwidth consumption on a cpu is more than
* sched_upmigrate are considered "big" tasks. Big tasks will be
* considered for "up" migration, i.e migrating to a cpu with better
* capacity.
*/
unsigned int __read_mostly sched_upmigrate;
unsigned int __read_mostly sysctl_sched_upmigrate_pct = 80;
/*
* Big tasks, once migrated, will need to drop their bandwidth
* consumption to less than sched_downmigrate before they are "down"
* migrated.
*/
unsigned int __read_mostly sched_downmigrate;
unsigned int __read_mostly sysctl_sched_downmigrate_pct = 60;
/*
* Task groups whose aggregate demand on a cpu is more than
* sched_group_upmigrate need to be up-migrated if possible.
*/
unsigned int __read_mostly sched_group_upmigrate;
unsigned int __read_mostly sysctl_sched_group_upmigrate_pct = 100;
/*
* Task groups, once up-migrated, will need to drop their aggregate
* demand to less than sched_group_downmigrate before they are "down"
* migrated.
*/
unsigned int __read_mostly sched_group_downmigrate;
unsigned int __read_mostly sysctl_sched_group_downmigrate_pct = 95;
/*
* The load scale factor of a CPU gets boosted when its max frequency
* is restricted due to which the tasks are migrating to higher capacity
* CPUs early. The sched_upmigrate threshold is auto-upgraded by
* rq->max_possible_freq/rq->max_freq of a lower capacity CPU.
*/
unsigned int up_down_migrate_scale_factor = 1024;
/*
* Scheduler selects and places task to its previous CPU if sleep time is
* less than sysctl_sched_select_prev_cpu_us.
*/
unsigned int __read_mostly
sched_short_sleep_task_threshold = 2000 * NSEC_PER_USEC;
unsigned int __read_mostly sysctl_sched_select_prev_cpu_us = 2000;
unsigned int __read_mostly
sched_long_cpu_selection_threshold = 100 * NSEC_PER_MSEC;
unsigned int __read_mostly sysctl_sched_restrict_cluster_spill;
/*
* Scheduler tries to avoid waking up idle CPUs for tasks running
* in short bursts. If the task average burst is less than
* sysctl_sched_short_burst nanoseconds and it sleeps on an average
* for more than sysctl_sched_short_sleep nanoseconds, then the
* task is eligible for packing.
*/
unsigned int __read_mostly sysctl_sched_short_burst;
unsigned int __read_mostly sysctl_sched_short_sleep = 1 * NSEC_PER_MSEC;
static void _update_up_down_migrate(unsigned int *up_migrate,
unsigned int *down_migrate, bool is_group)
{
unsigned int delta;
if (up_down_migrate_scale_factor == 1024)
return;
delta = *up_migrate - *down_migrate;
*up_migrate /= NSEC_PER_USEC;
*up_migrate *= up_down_migrate_scale_factor;
*up_migrate >>= 10;
*up_migrate *= NSEC_PER_USEC;
if (!is_group)
*up_migrate = min(*up_migrate, sched_ravg_window);
*down_migrate /= NSEC_PER_USEC;
*down_migrate *= up_down_migrate_scale_factor;
*down_migrate >>= 10;
*down_migrate *= NSEC_PER_USEC;
*down_migrate = min(*down_migrate, *up_migrate - delta);
}
static void update_up_down_migrate(void)
{
unsigned int up_migrate = pct_to_real(sysctl_sched_upmigrate_pct);
unsigned int down_migrate = pct_to_real(sysctl_sched_downmigrate_pct);
_update_up_down_migrate(&up_migrate, &down_migrate, false);
sched_upmigrate = up_migrate;
sched_downmigrate = down_migrate;
up_migrate = pct_to_real(sysctl_sched_group_upmigrate_pct);
down_migrate = pct_to_real(sysctl_sched_group_downmigrate_pct);
_update_up_down_migrate(&up_migrate, &down_migrate, true);
sched_group_upmigrate = up_migrate;
sched_group_downmigrate = down_migrate;
}
void set_hmp_defaults(void)
{
sched_spill_load =
pct_to_real(sysctl_sched_spill_load_pct);
update_up_down_migrate();
sched_init_task_load_windows =
div64_u64((u64)sysctl_sched_init_task_load_pct *
(u64)sched_ravg_window, 100);
sched_short_sleep_task_threshold = sysctl_sched_select_prev_cpu_us *
NSEC_PER_USEC;
sched_small_wakee_task_load =
div64_u64((u64)sysctl_sched_small_wakee_task_load_pct *
(u64)sched_ravg_window, 100);
sched_big_waker_task_load =
div64_u64((u64)sysctl_sched_big_waker_task_load_pct *
(u64)sched_ravg_window, 100);
sched_freq_aggregate_threshold =
pct_to_real(sysctl_sched_freq_aggregate_threshold_pct);
}
u32 sched_get_init_task_load(struct task_struct *p)
{
return p->init_load_pct;
}
int sched_set_init_task_load(struct task_struct *p, int init_load_pct)
{
if (init_load_pct < 0 || init_load_pct > 100)
return -EINVAL;
p->init_load_pct = init_load_pct;
return 0;
}
#ifdef CONFIG_CGROUP_SCHED
int upmigrate_discouraged(struct task_struct *p)
{
return task_group(p)->upmigrate_discouraged;
}
#else
static inline int upmigrate_discouraged(struct task_struct *p)
{
return 0;
}
#endif
/* Is a task "big" on its current cpu */
static inline int __is_big_task(struct task_struct *p, u64 scaled_load)
{
int nice = task_nice(p);
if (nice > SCHED_UPMIGRATE_MIN_NICE || upmigrate_discouraged(p))
return 0;
return scaled_load > sched_upmigrate;
}
int is_big_task(struct task_struct *p)
{
return __is_big_task(p, scale_load_to_cpu(task_load(p), task_cpu(p)));
}
u64 cpu_load(int cpu)
{
struct rq *rq = cpu_rq(cpu);
return scale_load_to_cpu(rq->hmp_stats.cumulative_runnable_avg, cpu);
}
u64 cpu_load_sync(int cpu, int sync)
{
return scale_load_to_cpu(cpu_cravg_sync(cpu, sync), cpu);
}
/*
* Task will fit on a cpu if it's bandwidth consumption on that cpu
* will be less than sched_upmigrate. A big task that was previously
* "up" migrated will be considered fitting on "little" cpu if its
* bandwidth consumption on "little" cpu will be less than
* sched_downmigrate. This will help avoid frequenty migrations for
* tasks with load close to the upmigrate threshold
*/
int task_load_will_fit(struct task_struct *p, u64 task_load, int cpu,
enum sched_boost_policy boost_policy)
{
int upmigrate = sched_upmigrate;
if (cpu_capacity(cpu) == max_capacity)
return 1;
if (cpu_capacity(task_cpu(p)) > cpu_capacity(cpu))
upmigrate = sched_downmigrate;
if (boost_policy != SCHED_BOOST_ON_BIG) {
if (task_nice(p) > SCHED_UPMIGRATE_MIN_NICE ||
upmigrate_discouraged(p))
return 1;
if (task_load < upmigrate)
return 1;
} else {
if (task_sched_boost(p) || task_load >= upmigrate)
return 0;
return 1;
}
return 0;
}
int task_will_fit(struct task_struct *p, int cpu)
{
u64 tload = scale_load_to_cpu(task_load(p), cpu);
return task_load_will_fit(p, tload, cpu, sched_boost_policy());
}
static int
group_will_fit(struct sched_cluster *cluster, struct related_thread_group *grp,
u64 demand, bool group_boost)
{
int cpu = cluster_first_cpu(cluster);
int prev_capacity = 0;
unsigned int threshold = sched_group_upmigrate;
u64 load;
if (cluster->capacity == max_capacity)
return 1;
if (group_boost)
return 0;
if (!demand)
return 1;
if (grp->preferred_cluster)
prev_capacity = grp->preferred_cluster->capacity;
if (cluster->capacity < prev_capacity)
threshold = sched_group_downmigrate;
load = scale_load_to_cpu(demand, cpu);
if (load < threshold)
return 1;
return 0;
}
/*
* Return the cost of running task p on CPU cpu. This function
* currently assumes that task p is the only task which will run on
* the CPU.
*/
unsigned int power_cost(int cpu, u64 demand)
{
int first, mid, last;
struct cpu_pwr_stats *per_cpu_info = get_cpu_pwr_stats();
struct cpu_pstate_pwr *costs;
struct freq_max_load *max_load;
int total_static_pwr_cost = 0;
struct rq *rq = cpu_rq(cpu);
unsigned int pc;
if (!per_cpu_info || !per_cpu_info[cpu].ptable)
/*
* When power aware scheduling is not in use, or CPU
* power data is not available, just use the CPU
* capacity as a rough stand-in for real CPU power
* numbers, assuming bigger CPUs are more power
* hungry.
*/
return cpu_max_possible_capacity(cpu);
rcu_read_lock();
max_load = rcu_dereference(per_cpu(freq_max_load, cpu));
if (!max_load) {
pc = cpu_max_possible_capacity(cpu);
goto unlock;
}
costs = per_cpu_info[cpu].ptable;
if (demand <= max_load->freqs[0].hdemand) {
pc = costs[0].power;
goto unlock;
} else if (demand > max_load->freqs[max_load->length - 1].hdemand) {
pc = costs[max_load->length - 1].power;
goto unlock;
}
first = 0;
last = max_load->length - 1;
mid = (last - first) >> 1;
while (1) {
if (demand <= max_load->freqs[mid].hdemand)
last = mid;
else
first = mid;
if (last - first == 1)
break;
mid = first + ((last - first) >> 1);
}
pc = costs[last].power;
unlock:
rcu_read_unlock();
if (idle_cpu(cpu) && rq->cstate) {
total_static_pwr_cost += rq->static_cpu_pwr_cost;
if (rq->cluster->dstate)
total_static_pwr_cost +=
rq->cluster->static_cluster_pwr_cost;
}
return pc + total_static_pwr_cost;
}
void inc_nr_big_task(struct hmp_sched_stats *stats, struct task_struct *p)
{
if (sched_disable_window_stats)
return;
if (is_big_task(p))
stats->nr_big_tasks++;
}
void dec_nr_big_task(struct hmp_sched_stats *stats, struct task_struct *p)
{
if (sched_disable_window_stats)
return;
if (is_big_task(p))
stats->nr_big_tasks--;
BUG_ON(stats->nr_big_tasks < 0);
}
void inc_rq_hmp_stats(struct rq *rq, struct task_struct *p, int change_cra)
{
inc_nr_big_task(&rq->hmp_stats, p);
if (change_cra)
inc_cumulative_runnable_avg(&rq->hmp_stats, p);
}
void dec_rq_hmp_stats(struct rq *rq, struct task_struct *p, int change_cra)
{
dec_nr_big_task(&rq->hmp_stats, p);
if (change_cra)
dec_cumulative_runnable_avg(&rq->hmp_stats, p);
}
void reset_hmp_stats(struct hmp_sched_stats *stats, int reset_cra)
{
stats->nr_big_tasks = 0;
if (reset_cra) {
stats->cumulative_runnable_avg = 0;
stats->pred_demands_sum = 0;
}
}
int preferred_cluster(struct sched_cluster *cluster, struct task_struct *p)
{
struct related_thread_group *grp;
int rc = 1;
rcu_read_lock();
grp = task_related_thread_group(p);
if (grp)
rc = (grp->preferred_cluster == cluster);
rcu_read_unlock();
return rc;
}
struct sched_cluster *rq_cluster(struct rq *rq)
{
return rq->cluster;
}
/*
* reset_cpu_hmp_stats - reset HMP stats for a cpu
* nr_big_tasks
* cumulative_runnable_avg (iff reset_cra is true)
*/
void reset_cpu_hmp_stats(int cpu, int reset_cra)
{
reset_cfs_rq_hmp_stats(cpu, reset_cra);
reset_hmp_stats(&cpu_rq(cpu)->hmp_stats, reset_cra);
}
void fixup_nr_big_tasks(struct hmp_sched_stats *stats,
struct task_struct *p, s64 delta)
{
u64 new_task_load;
u64 old_task_load;
if (sched_disable_window_stats)
return;
old_task_load = scale_load_to_cpu(task_load(p), task_cpu(p));
new_task_load = scale_load_to_cpu(delta + task_load(p), task_cpu(p));
if (__is_big_task(p, old_task_load) && !__is_big_task(p, new_task_load))
stats->nr_big_tasks--;
else if (!__is_big_task(p, old_task_load) &&
__is_big_task(p, new_task_load))
stats->nr_big_tasks++;
BUG_ON(stats->nr_big_tasks < 0);
}
/*
* Walk runqueue of cpu and re-initialize 'nr_big_tasks' counters.
*/
static void update_nr_big_tasks(int cpu)
{
struct rq *rq = cpu_rq(cpu);
struct task_struct *p;
/* Do not reset cumulative_runnable_avg */
reset_cpu_hmp_stats(cpu, 0);
list_for_each_entry(p, &rq->cfs_tasks, se.group_node)
_inc_hmp_sched_stats_fair(rq, p, 0);
}
/* Disable interrupts and grab runqueue lock of all cpus listed in @cpus */
void pre_big_task_count_change(const struct cpumask *cpus)
{
int i;
local_irq_disable();
for_each_cpu(i, cpus)
raw_spin_lock(&cpu_rq(i)->lock);
}
/*
* Reinitialize 'nr_big_tasks' counters on all affected cpus
*/
void post_big_task_count_change(const struct cpumask *cpus)
{
int i;
/* Assumes local_irq_disable() keeps online cpumap stable */
for_each_cpu(i, cpus)
update_nr_big_tasks(i);
for_each_cpu(i, cpus)
raw_spin_unlock(&cpu_rq(i)->lock);
local_irq_enable();
}
DEFINE_MUTEX(policy_mutex);
unsigned int update_freq_aggregate_threshold(unsigned int threshold)
{
unsigned int old_threshold;
mutex_lock(&policy_mutex);
old_threshold = sysctl_sched_freq_aggregate_threshold_pct;
sysctl_sched_freq_aggregate_threshold_pct = threshold;
sched_freq_aggregate_threshold =
pct_to_real(sysctl_sched_freq_aggregate_threshold_pct);
mutex_unlock(&policy_mutex);
return old_threshold;
}
static inline int invalid_value_freq_input(unsigned int *data)
{
if (data == &sysctl_sched_freq_aggregate)
return !(*data == 0 || *data == 1);
return 0;
}
static inline int invalid_value(unsigned int *data)
{
unsigned int val = *data;
if (data == &sysctl_sched_ravg_hist_size)
return (val < 2 || val > RAVG_HIST_SIZE_MAX);
if (data == &sysctl_sched_window_stats_policy)
return val >= WINDOW_STATS_INVALID_POLICY;
return invalid_value_freq_input(data);
}
/*
* Handle "atomic" update of sysctl_sched_window_stats_policy,
* sysctl_sched_ravg_hist_size variables.
*/
int sched_window_update_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int ret;
unsigned int *data = (unsigned int *)table->data;
unsigned int old_val;
mutex_lock(&policy_mutex);
old_val = *data;
ret = proc_dointvec(table, write, buffer, lenp, ppos);
if (ret || !write || (write && (old_val == *data)))
goto done;
if (invalid_value(data)) {
*data = old_val;
ret = -EINVAL;
goto done;
}
reset_all_window_stats(0, 0);
done:
mutex_unlock(&policy_mutex);
return ret;
}
/*
* Convert percentage value into absolute form. This will avoid div() operation
* in fast path, to convert task load in percentage scale.
*/
int sched_hmp_proc_update_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int ret;
unsigned int old_val;
unsigned int *data = (unsigned int *)table->data;
int update_task_count = 0;
/*
* The policy mutex is acquired with cpu_hotplug.lock
* held from cpu_up()->cpufreq_governor_interactive()->
* sched_set_window(). So enforce the same order here.
*/
if (write && (data == &sysctl_sched_upmigrate_pct)) {
update_task_count = 1;
get_online_cpus();
}
mutex_lock(&policy_mutex);
old_val = *data;
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (ret || !write)
goto done;
if (write && (old_val == *data))
goto done;
if (sysctl_sched_downmigrate_pct > sysctl_sched_upmigrate_pct ||
sysctl_sched_group_downmigrate_pct >
sysctl_sched_group_upmigrate_pct) {
*data = old_val;
ret = -EINVAL;
goto done;
}
/*
* Big task tunable change will need to re-classify tasks on
* runqueue as big and set their counters appropriately.
* sysctl interface affects secondary variables (*_pct), which is then
* "atomically" carried over to the primary variables. Atomic change
* includes taking runqueue lock of all online cpus and re-initiatizing
* their big counter values based on changed criteria.
*/
if (update_task_count)
pre_big_task_count_change(cpu_online_mask);
set_hmp_defaults();
if (update_task_count)
post_big_task_count_change(cpu_online_mask);
done:
mutex_unlock(&policy_mutex);
if (update_task_count)
put_online_cpus();
return ret;
}
inline int nr_big_tasks(struct rq *rq)
{
return rq->hmp_stats.nr_big_tasks;
}
unsigned int cpu_temp(int cpu)
{
struct cpu_pwr_stats *per_cpu_info = get_cpu_pwr_stats();
if (per_cpu_info)
return per_cpu_info[cpu].temp;
else
return 0;
}
/*
* kfree() may wakeup kswapd. So this function should NOT be called
* with any CPU's rq->lock acquired.
*/
void free_task_load_ptrs(struct task_struct *p)
{
kfree(p->ravg.curr_window_cpu);
kfree(p->ravg.prev_window_cpu);
/*
* update_task_ravg() can be called for exiting tasks. While the
* function itself ensures correct behavior, the corresponding
* trace event requires that these pointers be NULL.
*/
p->ravg.curr_window_cpu = NULL;
p->ravg.prev_window_cpu = NULL;
}
void init_new_task_load(struct task_struct *p)
{
int i;
u32 init_load_windows = sched_init_task_load_windows;
u32 init_load_pct = current->init_load_pct;
p->init_load_pct = 0;
rcu_assign_pointer(p->grp, NULL);
INIT_LIST_HEAD(&p->grp_list);
memset(&p->ravg, 0, sizeof(struct ravg));
p->cpu_cycles = 0;
p->ravg.curr_burst = 0;
/*
* Initialize the avg_burst to twice the threshold, so that
* a task would not be classified as short burst right away
* after fork. It takes at least 6 sleep-wakeup cycles for
* the avg_burst to go below the threshold.
*/
p->ravg.avg_burst = 2 * (u64)sysctl_sched_short_burst;
p->ravg.avg_sleep_time = 0;
p->ravg.curr_window_cpu = kcalloc(nr_cpu_ids, sizeof(u32), GFP_KERNEL);
p->ravg.prev_window_cpu = kcalloc(nr_cpu_ids, sizeof(u32), GFP_KERNEL);
/* Don't have much choice. CPU frequency would be bogus */
BUG_ON(!p->ravg.curr_window_cpu || !p->ravg.prev_window_cpu);
if (init_load_pct)
init_load_windows = div64_u64((u64)init_load_pct *
(u64)sched_ravg_window, 100);
p->ravg.demand = init_load_windows;
p->ravg.pred_demand = 0;
for (i = 0; i < RAVG_HIST_SIZE_MAX; ++i)
p->ravg.sum_history[i] = init_load_windows;
}
/* Return task demand in percentage scale */
unsigned int pct_task_load(struct task_struct *p)
{
unsigned int load;
load = div64_u64((u64)task_load(p) * 100, (u64)max_task_load());
return load;
}
/*
* Return total number of tasks "eligible" to run on highest capacity cpu
*
* This is simply nr_big_tasks for cpus which are not of max_capacity and
* nr_running for cpus of max_capacity
*/
unsigned int nr_eligible_big_tasks(int cpu)
{
struct rq *rq = cpu_rq(cpu);
int nr_big = rq->hmp_stats.nr_big_tasks;
int nr = rq->nr_running;
if (!is_max_capacity_cpu(cpu))
return nr_big;
return nr;
}
static inline int exiting_task(struct task_struct *p)
{
return (p->ravg.sum_history[0] == EXITING_TASK_MARKER);
}
static int __init set_sched_ravg_window(char *str)
{
unsigned int window_size;
get_option(&str, &window_size);
if (window_size < MIN_SCHED_RAVG_WINDOW ||
window_size > MAX_SCHED_RAVG_WINDOW) {
WARN_ON(1);
return -EINVAL;
}
sched_ravg_window = window_size;
return 0;
}
early_param("sched_ravg_window", set_sched_ravg_window);
static inline void
update_window_start(struct rq *rq, u64 wallclock)
{
s64 delta;
int nr_windows;
delta = wallclock - rq->window_start;
BUG_ON(delta < 0);
if (delta < sched_ravg_window)
return;
nr_windows = div64_u64(delta, sched_ravg_window);
rq->window_start += (u64)nr_windows * (u64)sched_ravg_window;
}
#define DIV64_U64_ROUNDUP(X, Y) div64_u64((X) + (Y - 1), Y)
static inline u64 scale_exec_time(u64 delta, struct rq *rq)
{
u32 freq;
freq = cpu_cycles_to_freq(rq->cc.cycles, rq->cc.time);
delta = DIV64_U64_ROUNDUP(delta * freq, max_possible_freq);
delta *= rq->cluster->exec_scale_factor;
delta >>= 10;
return delta;
}
static inline int cpu_is_waiting_on_io(struct rq *rq)
{
if (!sched_io_is_busy)
return 0;
return atomic_read(&rq->nr_iowait);
}
/* Does freq_required sufficiently exceed or fall behind cur_freq? */
static inline int
nearly_same_freq(unsigned int cur_freq, unsigned int freq_required)
{
int delta = freq_required - cur_freq;
if (freq_required > cur_freq)
return delta < sysctl_sched_freq_inc_notify;
delta = -delta;
return delta < sysctl_sched_freq_dec_notify;
}
/* Convert busy time to frequency equivalent */
static inline unsigned int load_to_freq(struct rq *rq, u64 load)
{
unsigned int freq;
load = scale_load_to_cpu(load, cpu_of(rq));
load *= 128;
load = div64_u64(load, max_task_load());
freq = load * cpu_max_possible_freq(cpu_of(rq));
freq /= 128;
return freq;
}
/*
* Return load from all related groups in given frequency domain.
*/
static void group_load_in_freq_domain(struct cpumask *cpus,
u64 *grp_load, u64 *new_grp_load)
{
int j;
for_each_cpu(j, cpus) {
struct rq *rq = cpu_rq(j);
*grp_load += rq->grp_time.prev_runnable_sum;
*new_grp_load += rq->grp_time.nt_prev_runnable_sum;
}
}
static inline u64 freq_policy_load(struct rq *rq, u64 load);
/*
* Should scheduler alert governor for changing frequency?
*
* @check_pred - evaluate frequency based on the predictive demand
* @check_groups - add load from all related groups on given cpu
*
* check_groups is set to 1 if a "related" task movement/wakeup is triggering
* the notification check. To avoid "re-aggregation" of demand in such cases,
* we check whether the migrated/woken tasks demand (along with demand from
* existing tasks on the cpu) can be met on target cpu
*
*/
static int send_notification(struct rq *rq, int check_pred, int check_groups)
{
unsigned int cur_freq, freq_required;
unsigned long flags;
int rc = 0;
u64 group_load = 0, new_load = 0;
if (check_pred) {
u64 prev = rq->old_busy_time;
u64 predicted = rq->hmp_stats.pred_demands_sum;
if (rq->cluster->cur_freq == cpu_max_freq(cpu_of(rq)))
return 0;
prev = max(prev, rq->old_estimated_time);
if (prev > predicted)
return 0;
cur_freq = load_to_freq(rq, prev);
freq_required = load_to_freq(rq, predicted);
if (freq_required < cur_freq + sysctl_sched_pred_alert_freq)
return 0;
} else {
/*
* Protect from concurrent update of rq->prev_runnable_sum and
* group cpu load
*/
raw_spin_lock_irqsave(&rq->lock, flags);
if (check_groups)
group_load = rq->grp_time.prev_runnable_sum;
new_load = rq->prev_runnable_sum + group_load;
new_load = freq_policy_load(rq, new_load);
raw_spin_unlock_irqrestore(&rq->lock, flags);
cur_freq = load_to_freq(rq, rq->old_busy_time);
freq_required = load_to_freq(rq, new_load);
if (nearly_same_freq(cur_freq, freq_required))
return 0;
}
raw_spin_lock_irqsave(&rq->lock, flags);
if (!rq->cluster->notifier_sent) {
rq->cluster->notifier_sent = 1;
rc = 1;
trace_sched_freq_alert(cpu_of(rq), check_pred, check_groups, rq,
new_load);
}
raw_spin_unlock_irqrestore(&rq->lock, flags);
return rc;
}
/* Alert governor if there is a need to change frequency */
void check_for_freq_change(struct rq *rq, bool check_pred, bool check_groups)
{
int cpu = cpu_of(rq);
if (!send_notification(rq, check_pred, check_groups))
return;
atomic_notifier_call_chain(
&load_alert_notifier_head, 0,
(void *)(long)cpu);
}
void notify_migration(int src_cpu, int dest_cpu, bool src_cpu_dead,
struct task_struct *p)
{
bool check_groups;
rcu_read_lock();
check_groups = task_in_related_thread_group(p);
rcu_read_unlock();
if (!same_freq_domain(src_cpu, dest_cpu)) {
if (!src_cpu_dead)
check_for_freq_change(cpu_rq(src_cpu), false,
check_groups);
check_for_freq_change(cpu_rq(dest_cpu), false, check_groups);
} else {
check_for_freq_change(cpu_rq(dest_cpu), true, check_groups);
}
}
static int account_busy_for_cpu_time(struct rq *rq, struct task_struct *p,
u64 irqtime, int event)
{
if (is_idle_task(p)) {
/* TASK_WAKE && TASK_MIGRATE is not possible on idle task! */
if (event == PICK_NEXT_TASK)
return 0;
/* PUT_PREV_TASK, TASK_UPDATE && IRQ_UPDATE are left */
return irqtime || cpu_is_waiting_on_io(rq);
}
if (event == TASK_WAKE)
return 0;
if (event == PUT_PREV_TASK || event == IRQ_UPDATE)
return 1;
/*
* TASK_UPDATE can be called on sleeping task, when its moved between
* related groups
*/
if (event == TASK_UPDATE) {
if (rq->curr == p)
return 1;
return p->on_rq ? SCHED_FREQ_ACCOUNT_WAIT_TIME : 0;
}
/* TASK_MIGRATE, PICK_NEXT_TASK left */
return SCHED_FREQ_ACCOUNT_WAIT_TIME;
}
static inline bool is_new_task(struct task_struct *p)
{
return p->ravg.active_windows < SCHED_NEW_TASK_WINDOWS;
}
#define INC_STEP 8
#define DEC_STEP 2
#define CONSISTENT_THRES 16
#define INC_STEP_BIG 16
/*
* bucket_increase - update the count of all buckets
*
* @buckets: array of buckets tracking busy time of a task
* @idx: the index of bucket to be incremented
*
* Each time a complete window finishes, count of bucket that runtime
* falls in (@idx) is incremented. Counts of all other buckets are
* decayed. The rate of increase and decay could be different based
* on current count in the bucket.
*/
static inline void bucket_increase(u8 *buckets, int idx)
{
int i, step;
for (i = 0; i < NUM_BUSY_BUCKETS; i++) {
if (idx != i) {
if (buckets[i] > DEC_STEP)
buckets[i] -= DEC_STEP;
else
buckets[i] = 0;
} else {
step = buckets[i] >= CONSISTENT_THRES ?
INC_STEP_BIG : INC_STEP;
if (buckets[i] > U8_MAX - step)
buckets[i] = U8_MAX;
else
buckets[i] += step;
}
}
}
static inline int busy_to_bucket(u32 normalized_rt)
{
int bidx;
bidx = mult_frac(normalized_rt, NUM_BUSY_BUCKETS, max_task_load());
bidx = min(bidx, NUM_BUSY_BUCKETS - 1);
/*
* Combine lowest two buckets. The lowest frequency falls into
* 2nd bucket and thus keep predicting lowest bucket is not
* useful.
*/
if (!bidx)
bidx++;
return bidx;
}
static inline u64
scale_load_to_freq(u64 load, unsigned int src_freq, unsigned int dst_freq)
{
return div64_u64(load * (u64)src_freq, (u64)dst_freq);
}
/*
* get_pred_busy - calculate predicted demand for a task on runqueue
*
* @rq: runqueue of task p
* @p: task whose prediction is being updated
* @start: starting bucket. returned prediction should not be lower than
* this bucket.
* @runtime: runtime of the task. returned prediction should not be lower
* than this runtime.
* Note: @start can be derived from @runtime. It's passed in only to
* avoid duplicated calculation in some cases.
*
* A new predicted busy time is returned for task @p based on @runtime
* passed in. The function searches through buckets that represent busy
* time equal to or bigger than @runtime and attempts to find the bucket to
* to use for prediction. Once found, it searches through historical busy
* time and returns the latest that falls into the bucket. If no such busy
* time exists, it returns the medium of that bucket.
*/
static u32 get_pred_busy(struct rq *rq, struct task_struct *p,
int start, u32 runtime)
{
int i;
u8 *buckets = p->ravg.busy_buckets;
u32 *hist = p->ravg.sum_history;
u32 dmin, dmax;
u64 cur_freq_runtime = 0;
int first = NUM_BUSY_BUCKETS, final;
u32 ret = runtime;
/* skip prediction for new tasks due to lack of history */
if (unlikely(is_new_task(p)))
goto out;
/* find minimal bucket index to pick */
for (i = start; i < NUM_BUSY_BUCKETS; i++) {
if (buckets[i]) {
first = i;
break;
}
}
/* if no higher buckets are filled, predict runtime */
if (first >= NUM_BUSY_BUCKETS)
goto out;
/* compute the bucket for prediction */
final = first;
/* determine demand range for the predicted bucket */
if (final < 2) {
/* lowest two buckets are combined */
dmin = 0;
final = 1;
} else {
dmin = mult_frac(final, max_task_load(), NUM_BUSY_BUCKETS);
}
dmax = mult_frac(final + 1, max_task_load(), NUM_BUSY_BUCKETS);
/*
* search through runtime history and return first runtime that falls
* into the range of predicted bucket.
*/
for (i = 0; i < sched_ravg_hist_size; i++) {
if (hist[i] >= dmin && hist[i] < dmax) {
ret = hist[i];
break;
}
}
/* no historical runtime within bucket found, use average of the bin */
if (ret < dmin)
ret = (dmin + dmax) / 2;
/*
* when updating in middle of a window, runtime could be higher
* than all recorded history. Always predict at least runtime.
*/
ret = max(runtime, ret);
out:
trace_sched_update_pred_demand(rq, p, runtime,
mult_frac((unsigned int)cur_freq_runtime, 100,
sched_ravg_window), ret);
return ret;
}
static inline u32 calc_pred_demand(struct rq *rq, struct task_struct *p)
{
if (p->ravg.pred_demand >= p->ravg.curr_window)
return p->ravg.pred_demand;
return get_pred_busy(rq, p, busy_to_bucket(p->ravg.curr_window),
p->ravg.curr_window);
}
/*
* predictive demand of a task is calculated at the window roll-over.
* if the task current window busy time exceeds the predicted
* demand, update it here to reflect the task needs.
*/
void update_task_pred_demand(struct rq *rq, struct task_struct *p, int event)
{
u32 new, old;
if (is_idle_task(p) || exiting_task(p))
return;
if (event != PUT_PREV_TASK && event != TASK_UPDATE &&
(!SCHED_FREQ_ACCOUNT_WAIT_TIME ||
(event != TASK_MIGRATE &&
event != PICK_NEXT_TASK)))
return;
/*
* TASK_UPDATE can be called on sleeping task, when its moved between
* related groups
*/
if (event == TASK_UPDATE) {
if (!p->on_rq && !SCHED_FREQ_ACCOUNT_WAIT_TIME)
return;
}
new = calc_pred_demand(rq, p);
old = p->ravg.pred_demand;
if (old >= new)
return;
if (task_on_rq_queued(p) && (!task_has_dl_policy(p) ||
!p->dl.dl_throttled))
p->sched_class->fixup_hmp_sched_stats(rq, p,
p->ravg.demand,
new);
p->ravg.pred_demand = new;
}
void clear_top_tasks_bitmap(unsigned long *bitmap)
{
memset(bitmap, 0, top_tasks_bitmap_size);
__set_bit(NUM_LOAD_INDICES, bitmap);
}
/*
* Special case the last index and provide a fast path for index = 0.
* Note that sched_load_granule can change underneath us if we are not
* holding any runqueue locks while calling the two functions below.
*/
static u32 top_task_load(struct rq *rq)
{
int index = rq->prev_top;
u8 prev = 1 - rq->curr_table;
if (!index) {
int msb = NUM_LOAD_INDICES - 1;
if (!test_bit(msb, rq->top_tasks_bitmap[prev]))
return 0;
else
return sched_load_granule;
} else if (index == NUM_LOAD_INDICES - 1) {
return sched_ravg_window;
} else {
return (index + 1) * sched_load_granule;
}
}
static u32 load_to_index(u32 load)
{
u32 index = load / sched_load_granule;
return min(index, (u32)(NUM_LOAD_INDICES - 1));
}
static void update_top_tasks(struct task_struct *p, struct rq *rq,
u32 old_curr_window, int new_window, bool full_window)
{
u8 curr = rq->curr_table;
u8 prev = 1 - curr;
u8 *curr_table = rq->top_tasks[curr];
u8 *prev_table = rq->top_tasks[prev];
int old_index, new_index, update_index;
u32 curr_window = p->ravg.curr_window;
u32 prev_window = p->ravg.prev_window;
bool zero_index_update;
if (old_curr_window == curr_window && !new_window)
return;
old_index = load_to_index(old_curr_window);
new_index = load_to_index(curr_window);
if (!new_window) {
zero_index_update = !old_curr_window && curr_window;
if (old_index != new_index || zero_index_update) {
if (old_curr_window)
curr_table[old_index] -= 1;
if (curr_window)
curr_table[new_index] += 1;
if (new_index > rq->curr_top)
rq->curr_top = new_index;
}
if (!curr_table[old_index])
__clear_bit(NUM_LOAD_INDICES - old_index - 1,
rq->top_tasks_bitmap[curr]);
if (curr_table[new_index] == 1)
__set_bit(NUM_LOAD_INDICES - new_index - 1,
rq->top_tasks_bitmap[curr]);
return;
}
/*
* The window has rolled over for this task. By the time we get
* here, curr/prev swaps would has already occurred. So we need
* to use prev_window for the new index.
*/
update_index = load_to_index(prev_window);
if (full_window) {
/*
* Two cases here. Either 'p' ran for the entire window or
* it didn't run at all. In either case there is no entry
* in the prev table. If 'p' ran the entire window, we just
* need to create a new entry in the prev table. In this case
* update_index will be correspond to sched_ravg_window
* so we can unconditionally update the top index.
*/
if (prev_window) {
prev_table[update_index] += 1;
rq->prev_top = update_index;
}
if (prev_table[update_index] == 1)
__set_bit(NUM_LOAD_INDICES - update_index - 1,
rq->top_tasks_bitmap[prev]);
} else {
zero_index_update = !old_curr_window && prev_window;
if (old_index != update_index || zero_index_update) {
if (old_curr_window)
prev_table[old_index] -= 1;
prev_table[update_index] += 1;
if (update_index > rq->prev_top)
rq->prev_top = update_index;
if (!prev_table[old_index])
__clear_bit(NUM_LOAD_INDICES - old_index - 1,
rq->top_tasks_bitmap[prev]);
if (prev_table[update_index] == 1)
__set_bit(NUM_LOAD_INDICES - update_index - 1,
rq->top_tasks_bitmap[prev]);
}
}
if (curr_window) {
curr_table[new_index] += 1;
if (new_index > rq->curr_top)
rq->curr_top = new_index;
if (curr_table[new_index] == 1)
__set_bit(NUM_LOAD_INDICES - new_index - 1,
rq->top_tasks_bitmap[curr]);
}
}
static inline void clear_top_tasks_table(u8 *table)
{
memset(table, 0, NUM_LOAD_INDICES * sizeof(u8));
}
static void rollover_top_tasks(struct rq *rq, bool full_window)
{
u8 curr_table = rq->curr_table;
u8 prev_table = 1 - curr_table;
int curr_top = rq->curr_top;
clear_top_tasks_table(rq->top_tasks[prev_table]);
clear_top_tasks_bitmap(rq->top_tasks_bitmap[prev_table]);
if (full_window) {
curr_top = 0;
clear_top_tasks_table(rq->top_tasks[curr_table]);
clear_top_tasks_bitmap(
rq->top_tasks_bitmap[curr_table]);
}
rq->curr_table = prev_table;
rq->prev_top = curr_top;
rq->curr_top = 0;
}
static u32 empty_windows[NR_CPUS];
static void rollover_task_window(struct task_struct *p, bool full_window)
{
u32 *curr_cpu_windows = empty_windows;
u32 curr_window;
int i;
/* Rollover the sum */
curr_window = 0;
if (!full_window) {
curr_window = p->ravg.curr_window;
curr_cpu_windows = p->ravg.curr_window_cpu;
}
p->ravg.prev_window = curr_window;
p->ravg.curr_window = 0;
/* Roll over individual CPU contributions */
for (i = 0; i < nr_cpu_ids; i++) {
p->ravg.prev_window_cpu[i] = curr_cpu_windows[i];
p->ravg.curr_window_cpu[i] = 0;
}
}
static void rollover_cpu_window(struct rq *rq, bool full_window)
{
u64 curr_sum = rq->curr_runnable_sum;
u64 nt_curr_sum = rq->nt_curr_runnable_sum;
u64 grp_curr_sum = rq->grp_time.curr_runnable_sum;
u64 grp_nt_curr_sum = rq->grp_time.nt_curr_runnable_sum;
if (unlikely(full_window)) {
curr_sum = 0;
nt_curr_sum = 0;
grp_curr_sum = 0;
grp_nt_curr_sum = 0;
}
rq->prev_runnable_sum = curr_sum;
rq->nt_prev_runnable_sum = nt_curr_sum;
rq->grp_time.prev_runnable_sum = grp_curr_sum;
rq->grp_time.nt_prev_runnable_sum = grp_nt_curr_sum;
rq->curr_runnable_sum = 0;
rq->nt_curr_runnable_sum = 0;
rq->grp_time.curr_runnable_sum = 0;
rq->grp_time.nt_curr_runnable_sum = 0;
}
/*
* Account cpu activity in its busy time counters (rq->curr/prev_runnable_sum)
*/
static void update_cpu_busy_time(struct task_struct *p, struct rq *rq,
int event, u64 wallclock, u64 irqtime)
{
int new_window, full_window = 0;
int p_is_curr_task = (p == rq->curr);
u64 mark_start = p->ravg.mark_start;
u64 window_start = rq->window_start;
u32 window_size = sched_ravg_window;
u64 delta;
u64 *curr_runnable_sum = &rq->curr_runnable_sum;
u64 *prev_runnable_sum = &rq->prev_runnable_sum;
u64 *nt_curr_runnable_sum = &rq->nt_curr_runnable_sum;
u64 *nt_prev_runnable_sum = &rq->nt_prev_runnable_sum;
bool new_task;
struct related_thread_group *grp;
int cpu = rq->cpu;
u32 old_curr_window = p->ravg.curr_window;
new_window = mark_start < window_start;
if (new_window) {
full_window = (window_start - mark_start) >= window_size;
if (p->ravg.active_windows < USHRT_MAX)
p->ravg.active_windows++;
}
new_task = is_new_task(p);
/*
* Handle per-task window rollover. We don't care about the idle
* task or exiting tasks.
*/
if (!is_idle_task(p) && !exiting_task(p)) {
if (new_window)
rollover_task_window(p, full_window);
}
if (p_is_curr_task && new_window) {
rollover_cpu_window(rq, full_window);
rollover_top_tasks(rq, full_window);
}
if (!account_busy_for_cpu_time(rq, p, irqtime, event))
goto done;
grp = p->grp;
if (grp && sched_freq_aggregate) {
struct group_cpu_time *cpu_time = &rq->grp_time;
curr_runnable_sum = &cpu_time->curr_runnable_sum;
prev_runnable_sum = &cpu_time->prev_runnable_sum;
nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
}
if (!new_window) {
/*
* account_busy_for_cpu_time() = 1 so busy time needs
* to be accounted to the current window. No rollover
* since we didn't start a new window. An example of this is
* when a task starts execution and then sleeps within the
* same window.
*/
if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq))
delta = wallclock - mark_start;
else
delta = irqtime;
delta = scale_exec_time(delta, rq);
*curr_runnable_sum += delta;
if (new_task)
*nt_curr_runnable_sum += delta;
if (!is_idle_task(p) && !exiting_task(p)) {
p->ravg.curr_window += delta;
p->ravg.curr_window_cpu[cpu] += delta;
}
goto done;
}
if (!p_is_curr_task) {
/*
* account_busy_for_cpu_time() = 1 so busy time needs
* to be accounted to the current window. A new window
* has also started, but p is not the current task, so the
* window is not rolled over - just split up and account
* as necessary into curr and prev. The window is only
* rolled over when a new window is processed for the current
* task.
*
* Irqtime can't be accounted by a task that isn't the
* currently running task.
*/
if (!full_window) {
/*
* A full window hasn't elapsed, account partial
* contribution to previous completed window.
*/
delta = scale_exec_time(window_start - mark_start, rq);
if (!exiting_task(p)) {
p->ravg.prev_window += delta;
p->ravg.prev_window_cpu[cpu] += delta;
}
} else {
/*
* Since at least one full window has elapsed,
* the contribution to the previous window is the
* full window (window_size).
*/
delta = scale_exec_time(window_size, rq);
if (!exiting_task(p)) {
p->ravg.prev_window = delta;
p->ravg.prev_window_cpu[cpu] = delta;
}
}
*prev_runnable_sum += delta;
if (new_task)
*nt_prev_runnable_sum += delta;
/* Account piece of busy time in the current window. */
delta = scale_exec_time(wallclock - window_start, rq);
*curr_runnable_sum += delta;
if (new_task)
*nt_curr_runnable_sum += delta;
if (!exiting_task(p)) {
p->ravg.curr_window = delta;
p->ravg.curr_window_cpu[cpu] = delta;
}
goto done;
}
if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq)) {
/*
* account_busy_for_cpu_time() = 1 so busy time needs
* to be accounted to the current window. A new window
* has started and p is the current task so rollover is
* needed. If any of these three above conditions are true
* then this busy time can't be accounted as irqtime.
*
* Busy time for the idle task or exiting tasks need not
* be accounted.
*
* An example of this would be a task that starts execution
* and then sleeps once a new window has begun.
*/
if (!full_window) {
/*
* A full window hasn't elapsed, account partial
* contribution to previous completed window.
*/
delta = scale_exec_time(window_start - mark_start, rq);
if (!is_idle_task(p) && !exiting_task(p)) {
p->ravg.prev_window += delta;
p->ravg.prev_window_cpu[cpu] += delta;
}
} else {
/*
* Since at least one full window has elapsed,
* the contribution to the previous window is the
* full window (window_size).
*/
delta = scale_exec_time(window_size, rq);
if (!is_idle_task(p) && !exiting_task(p)) {
p->ravg.prev_window = delta;
p->ravg.prev_window_cpu[cpu] = delta;
}
}
/*
* Rollover is done here by overwriting the values in
* prev_runnable_sum and curr_runnable_sum.
*/
*prev_runnable_sum += delta;
if (new_task)
*nt_prev_runnable_sum += delta;
/* Account piece of busy time in the current window. */
delta = scale_exec_time(wallclock - window_start, rq);
*curr_runnable_sum += delta;
if (new_task)
*nt_curr_runnable_sum += delta;
if (!is_idle_task(p) && !exiting_task(p)) {
p->ravg.curr_window = delta;
p->ravg.curr_window_cpu[cpu] = delta;
}
goto done;
}
if (irqtime) {
/*
* account_busy_for_cpu_time() = 1 so busy time needs
* to be accounted to the current window. A new window
* has started and p is the current task so rollover is
* needed. The current task must be the idle task because
* irqtime is not accounted for any other task.
*
* Irqtime will be accounted each time we process IRQ activity
* after a period of idleness, so we know the IRQ busy time
* started at wallclock - irqtime.
*/
BUG_ON(!is_idle_task(p));
mark_start = wallclock - irqtime;
/*
* Roll window over. If IRQ busy time was just in the current
* window then that is all that need be accounted.
*/
if (mark_start > window_start) {
*curr_runnable_sum = scale_exec_time(irqtime, rq);
return;
}
/*
* The IRQ busy time spanned multiple windows. Process the
* busy time preceding the current window start first.
*/
delta = window_start - mark_start;
if (delta > window_size)
delta = window_size;
delta = scale_exec_time(delta, rq);
*prev_runnable_sum += delta;
/* Process the remaining IRQ busy time in the current window. */
delta = wallclock - window_start;
rq->curr_runnable_sum = scale_exec_time(delta, rq);
return;
}
done:
if (!is_idle_task(p) && !exiting_task(p))
update_top_tasks(p, rq, old_curr_window,
new_window, full_window);
}
static inline u32 predict_and_update_buckets(struct rq *rq,
struct task_struct *p, u32 runtime) {
int bidx;
u32 pred_demand;
bidx = busy_to_bucket(runtime);
pred_demand = get_pred_busy(rq, p, bidx, runtime);
bucket_increase(p->ravg.busy_buckets, bidx);
return pred_demand;
}
#define THRESH_CC_UPDATE (2 * NSEC_PER_USEC)
/*
* Assumes rq_lock is held and wallclock was recorded in the same critical
* section as this function's invocation.
*/
static inline u64 read_cycle_counter(int cpu, u64 wallclock)
{
struct sched_cluster *cluster = cpu_rq(cpu)->cluster;
u64 delta;
if (unlikely(!cluster))
return cpu_cycle_counter_cb.get_cpu_cycle_counter(cpu);
/*
* Why don't we need locking here? Let's say that delta is negative
* because some other CPU happened to update last_cc_update with a
* more recent timestamp. We simply read the conter again in that case
* with no harmful side effects. This can happen if there is an FIQ
* between when we read the wallclock and when we use it here.
*/
delta = wallclock - atomic64_read(&cluster->last_cc_update);
if (delta > THRESH_CC_UPDATE) {
atomic64_set(&cluster->cycles,
cpu_cycle_counter_cb.get_cpu_cycle_counter(cpu));
atomic64_set(&cluster->last_cc_update, wallclock);
}
return atomic64_read(&cluster->cycles);
}
static void update_task_cpu_cycles(struct task_struct *p, int cpu,
u64 wallclock)
{
if (use_cycle_counter)
p->cpu_cycles = read_cycle_counter(cpu, wallclock);
}
static void
update_task_rq_cpu_cycles(struct task_struct *p, struct rq *rq, int event,
u64 wallclock, u64 irqtime)
{
u64 cur_cycles;
int cpu = cpu_of(rq);
lockdep_assert_held(&rq->lock);
if (!use_cycle_counter) {
rq->cc.cycles = cpu_cur_freq(cpu);
rq->cc.time = 1;
return;
}
cur_cycles = read_cycle_counter(cpu, wallclock);
/*
* If current task is idle task and irqtime == 0 CPU was
* indeed idle and probably its cycle counter was not
* increasing. We still need estimatied CPU frequency
* for IO wait time accounting. Use the previously
* calculated frequency in such a case.
*/
if (!is_idle_task(rq->curr) || irqtime) {
if (unlikely(cur_cycles < p->cpu_cycles))
rq->cc.cycles = cur_cycles + (U64_MAX - p->cpu_cycles);
else
rq->cc.cycles = cur_cycles - p->cpu_cycles;
rq->cc.cycles = rq->cc.cycles * NSEC_PER_MSEC;
if (event == IRQ_UPDATE && is_idle_task(p))
/*
* Time between mark_start of idle task and IRQ handler
* entry time is CPU cycle counter stall period.
* Upon IRQ handler entry sched_account_irqstart()
* replenishes idle task's cpu cycle counter so
* rq->cc.cycles now represents increased cycles during
* IRQ handler rather than time between idle entry and
* IRQ exit. Thus use irqtime as time delta.
*/
rq->cc.time = irqtime;
else
rq->cc.time = wallclock - p->ravg.mark_start;
BUG_ON((s64)rq->cc.time < 0);
}
p->cpu_cycles = cur_cycles;
trace_sched_get_task_cpu_cycles(cpu, event, rq->cc.cycles,
rq->cc.time, p);
}
static int
account_busy_for_task_demand(struct rq *rq, struct task_struct *p, int event)
{
/*
* No need to bother updating task demand for exiting tasks
* or the idle task.
*/
if (exiting_task(p) || is_idle_task(p))
return 0;
/*
* When a task is waking up it is completing a segment of non-busy
* time. Likewise, if wait time is not treated as busy time, then
* when a task begins to run or is migrated, it is not running and
* is completing a segment of non-busy time.
*/
if (event == TASK_WAKE || (!SCHED_ACCOUNT_WAIT_TIME &&
(event == PICK_NEXT_TASK || event == TASK_MIGRATE)))
return 0;
/*
* TASK_UPDATE can be called on sleeping task, when its moved between
* related groups
*/
if (event == TASK_UPDATE) {
if (rq->curr == p)
return 1;
return p->on_rq ? SCHED_ACCOUNT_WAIT_TIME : 0;
}
return 1;
}
/*
* Called when new window is starting for a task, to record cpu usage over
* recently concluded window(s). Normally 'samples' should be 1. It can be > 1
* when, say, a real-time task runs without preemption for several windows at a
* stretch.
*/
static void update_history(struct rq *rq, struct task_struct *p,
u32 runtime, int samples, int event)
{
u32 *hist = &p->ravg.sum_history[0];
int ridx, widx;
u32 max = 0, avg, demand, pred_demand;
u64 sum = 0;
/* Ignore windows where task had no activity */
if (!runtime || is_idle_task(p) || exiting_task(p) || !samples)
goto done;
/* Push new 'runtime' value onto stack */
widx = sched_ravg_hist_size - 1;
ridx = widx - samples;
for (; ridx >= 0; --widx, --ridx) {
hist[widx] = hist[ridx];
sum += hist[widx];
if (hist[widx] > max)
max = hist[widx];
}
for (widx = 0; widx < samples && widx < sched_ravg_hist_size; widx++) {
hist[widx] = runtime;
sum += hist[widx];
if (hist[widx] > max)
max = hist[widx];
}
p->ravg.sum = 0;
if (sched_window_stats_policy == WINDOW_STATS_RECENT) {
demand = runtime;
} else if (sched_window_stats_policy == WINDOW_STATS_MAX) {
demand = max;
} else {
avg = div64_u64(sum, sched_ravg_hist_size);
if (sched_window_stats_policy == WINDOW_STATS_AVG)
demand = avg;
else
demand = max(avg, runtime);
}
pred_demand = predict_and_update_buckets(rq, p, runtime);
/*
* A throttled deadline sched class task gets dequeued without
* changing p->on_rq. Since the dequeue decrements hmp stats
* avoid decrementing it here again.
*/
if (task_on_rq_queued(p) && (!task_has_dl_policy(p) ||
!p->dl.dl_throttled))
p->sched_class->fixup_hmp_sched_stats(rq, p, demand,
pred_demand);
p->ravg.demand = demand;
p->ravg.pred_demand = pred_demand;
done:
trace_sched_update_history(rq, p, runtime, samples, event);
}
static u64 add_to_task_demand(struct rq *rq, struct task_struct *p, u64 delta)
{
delta = scale_exec_time(delta, rq);
p->ravg.sum += delta;
if (unlikely(p->ravg.sum > sched_ravg_window))
p->ravg.sum = sched_ravg_window;
return delta;
}
/*
* Account cpu demand of task and/or update task's cpu demand history
*
* ms = p->ravg.mark_start;
* wc = wallclock
* ws = rq->window_start
*
* Three possibilities:
*
* a) Task event is contained within one window.
* window_start < mark_start < wallclock
*
* ws ms wc
* | | |
* V V V
* |---------------|
*
* In this case, p->ravg.sum is updated *iff* event is appropriate
* (ex: event == PUT_PREV_TASK)
*
* b) Task event spans two windows.
* mark_start < window_start < wallclock
*
* ms ws wc
* | | |
* V V V
* -----|-------------------
*
* In this case, p->ravg.sum is updated with (ws - ms) *iff* event
* is appropriate, then a new window sample is recorded followed
* by p->ravg.sum being set to (wc - ws) *iff* event is appropriate.
*
* c) Task event spans more than two windows.
*
* ms ws_tmp ws wc
* | | | |
* V V V V
* ---|-------|-------|-------|-------|------
* | |
* |<------ nr_full_windows ------>|
*
* In this case, p->ravg.sum is updated with (ws_tmp - ms) first *iff*
* event is appropriate, window sample of p->ravg.sum is recorded,
* 'nr_full_window' samples of window_size is also recorded *iff*
* event is appropriate and finally p->ravg.sum is set to (wc - ws)
* *iff* event is appropriate.
*
* IMPORTANT : Leave p->ravg.mark_start unchanged, as update_cpu_busy_time()
* depends on it!
*/
static u64 update_task_demand(struct task_struct *p, struct rq *rq,
int event, u64 wallclock)
{
u64 mark_start = p->ravg.mark_start;
u64 delta, window_start = rq->window_start;
int new_window, nr_full_windows;
u32 window_size = sched_ravg_window;
u64 runtime;
new_window = mark_start < window_start;
if (!account_busy_for_task_demand(rq, p, event)) {
if (new_window)
/*
* If the time accounted isn't being accounted as
* busy time, and a new window started, only the
* previous window need be closed out with the
* pre-existing demand. Multiple windows may have
* elapsed, but since empty windows are dropped,
* it is not necessary to account those.
*/
update_history(rq, p, p->ravg.sum, 1, event);
return 0;
}
if (!new_window) {
/*
* The simple case - busy time contained within the existing
* window.
*/
return add_to_task_demand(rq, p, wallclock - mark_start);
}
/*
* Busy time spans at least two windows. Temporarily rewind
* window_start to first window boundary after mark_start.
*/
delta = window_start - mark_start;
nr_full_windows = div64_u64(delta, window_size);
window_start -= (u64)nr_full_windows * (u64)window_size;
/* Process (window_start - mark_start) first */
runtime = add_to_task_demand(rq, p, window_start - mark_start);
/* Push new sample(s) into task's demand history */
update_history(rq, p, p->ravg.sum, 1, event);
if (nr_full_windows) {
u64 scaled_window = scale_exec_time(window_size, rq);
update_history(rq, p, scaled_window, nr_full_windows, event);
runtime += nr_full_windows * scaled_window;
}
/*
* Roll window_start back to current to process any remainder
* in current window.
*/
window_start += (u64)nr_full_windows * (u64)window_size;
/* Process (wallclock - window_start) next */
mark_start = window_start;
runtime += add_to_task_demand(rq, p, wallclock - mark_start);
return runtime;
}
static inline void
update_task_burst(struct task_struct *p, struct rq *rq, int event, u64 runtime)
{
/*
* update_task_demand() has checks for idle task and
* exit task. The runtime may include the wait time,
* so update the burst only for the cases where the
* task is running.
*/
if (event == PUT_PREV_TASK || (event == TASK_UPDATE &&
rq->curr == p))
p->ravg.curr_burst += runtime;
}
/* Reflect task activity on its demand and cpu's busy time statistics */
void update_task_ravg(struct task_struct *p, struct rq *rq, int event,
u64 wallclock, u64 irqtime)
{
u64 runtime;
if (!rq->window_start || sched_disable_window_stats ||
p->ravg.mark_start == wallclock)
return;
lockdep_assert_held(&rq->lock);
update_window_start(rq, wallclock);
if (!p->ravg.mark_start) {
update_task_cpu_cycles(p, cpu_of(rq), wallclock);
goto done;
}
update_task_rq_cpu_cycles(p, rq, event, wallclock, irqtime);
runtime = update_task_demand(p, rq, event, wallclock);
if (runtime)
update_task_burst(p, rq, event, runtime);
update_cpu_busy_time(p, rq, event, wallclock, irqtime);
update_task_pred_demand(rq, p, event);
if (exiting_task(p))
goto done;
trace_sched_update_task_ravg(p, rq, event, wallclock, irqtime,
rq->cc.cycles, rq->cc.time,
p->grp ? &rq->grp_time : NULL);
done:
p->ravg.mark_start = wallclock;
}
void sched_account_irqtime(int cpu, struct task_struct *curr,
u64 delta, u64 wallclock)
{
struct rq *rq = cpu_rq(cpu);
unsigned long flags, nr_windows;
u64 cur_jiffies_ts;
raw_spin_lock_irqsave(&rq->lock, flags);
/*
* cputime (wallclock) uses sched_clock so use the same here for
* consistency.
*/
delta += sched_clock() - wallclock;
cur_jiffies_ts = get_jiffies_64();
if (is_idle_task(curr))
update_task_ravg(curr, rq, IRQ_UPDATE, sched_ktime_clock(),
delta);
nr_windows = cur_jiffies_ts - rq->irqload_ts;
if (nr_windows) {
if (nr_windows < 10) {
/* Decay CPU's irqload by 3/4 for each window. */
rq->avg_irqload *= (3 * nr_windows);
rq->avg_irqload = div64_u64(rq->avg_irqload,
4 * nr_windows);
} else {
rq->avg_irqload = 0;
}
rq->avg_irqload += rq->cur_irqload;
rq->cur_irqload = 0;
}
rq->cur_irqload += delta;
rq->irqload_ts = cur_jiffies_ts;
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
void sched_account_irqstart(int cpu, struct task_struct *curr, u64 wallclock)
{
struct rq *rq = cpu_rq(cpu);
if (!rq->window_start || sched_disable_window_stats)
return;
if (is_idle_task(curr)) {
/* We're here without rq->lock held, IRQ disabled */
raw_spin_lock(&rq->lock);
update_task_cpu_cycles(curr, cpu, sched_ktime_clock());
raw_spin_unlock(&rq->lock);
}
}
void reset_task_stats(struct task_struct *p)
{
u32 sum = 0;
u32 *curr_window_ptr = NULL;
u32 *prev_window_ptr = NULL;
if (exiting_task(p)) {
sum = EXITING_TASK_MARKER;
} else {
curr_window_ptr = p->ravg.curr_window_cpu;
prev_window_ptr = p->ravg.prev_window_cpu;
memset(curr_window_ptr, 0, sizeof(u32) * nr_cpu_ids);
memset(prev_window_ptr, 0, sizeof(u32) * nr_cpu_ids);
}
memset(&p->ravg, 0, sizeof(struct ravg));
p->ravg.curr_window_cpu = curr_window_ptr;
p->ravg.prev_window_cpu = prev_window_ptr;
p->ravg.avg_burst = 2 * (u64)sysctl_sched_short_burst;
/* Retain EXITING_TASK marker */
p->ravg.sum_history[0] = sum;
}
void mark_task_starting(struct task_struct *p)
{
u64 wallclock;
struct rq *rq = task_rq(p);
if (!rq->window_start || sched_disable_window_stats) {
reset_task_stats(p);
return;
}
wallclock = sched_ktime_clock();
p->ravg.mark_start = p->last_wake_ts = wallclock;
p->last_cpu_selected_ts = wallclock;
p->last_switch_out_ts = 0;
update_task_cpu_cycles(p, cpu_of(rq), wallclock);
}
void set_window_start(struct rq *rq)
{
static int sync_cpu_available;
if (rq->window_start)
return;
if (!sync_cpu_available) {
rq->window_start = sched_ktime_clock();
sync_cpu_available = 1;
} else {
struct rq *sync_rq = cpu_rq(cpumask_any(cpu_online_mask));
raw_spin_unlock(&rq->lock);
double_rq_lock(rq, sync_rq);
rq->window_start = sync_rq->window_start;
rq->curr_runnable_sum = rq->prev_runnable_sum = 0;
rq->nt_curr_runnable_sum = rq->nt_prev_runnable_sum = 0;
raw_spin_unlock(&sync_rq->lock);
}
rq->curr->ravg.mark_start = rq->window_start;
}
static void reset_all_task_stats(void)
{
struct task_struct *g, *p;
do_each_thread(g, p) {
reset_task_stats(p);
} while_each_thread(g, p);
}
enum reset_reason_code {
WINDOW_CHANGE,
POLICY_CHANGE,
HIST_SIZE_CHANGE,
FREQ_AGGREGATE_CHANGE,
};
const char *sched_window_reset_reasons[] = {
"WINDOW_CHANGE",
"POLICY_CHANGE",
"HIST_SIZE_CHANGE",
"FREQ_AGGREGATE_CHANGE",
};
/* Called with IRQs enabled */
void reset_all_window_stats(u64 window_start, unsigned int window_size)
{
int cpu, i;
unsigned long flags;
u64 start_ts = sched_ktime_clock();
int reason = WINDOW_CHANGE;
unsigned int old = 0, new = 0;
local_irq_save(flags);
read_lock(&tasklist_lock);
read_lock(&related_thread_group_lock);
/* Taking all runqueue locks prevents race with sched_exit(). */
for_each_possible_cpu(cpu)
raw_spin_lock(&cpu_rq(cpu)->lock);
sched_disable_window_stats = 1;
reset_all_task_stats();
read_unlock(&tasklist_lock);
if (window_size) {
sched_ravg_window = window_size * TICK_NSEC;
set_hmp_defaults();
sched_load_granule = sched_ravg_window / NUM_LOAD_INDICES;
}
sched_disable_window_stats = 0;
for_each_possible_cpu(cpu) {
struct rq *rq = cpu_rq(cpu);
if (window_start)
rq->window_start = window_start;
rq->curr_runnable_sum = rq->prev_runnable_sum = 0;
rq->nt_curr_runnable_sum = rq->nt_prev_runnable_sum = 0;
memset(&rq->grp_time, 0, sizeof(struct group_cpu_time));
for (i = 0; i < NUM_TRACKED_WINDOWS; i++) {
memset(&rq->load_subs[i], 0,
sizeof(struct load_subtractions));
clear_top_tasks_table(rq->top_tasks[i]);
clear_top_tasks_bitmap(rq->top_tasks_bitmap[i]);
}
rq->curr_table = 0;
rq->curr_top = 0;
rq->prev_top = 0;
reset_cpu_hmp_stats(cpu, 1);
}
if (sched_window_stats_policy != sysctl_sched_window_stats_policy) {
reason = POLICY_CHANGE;
old = sched_window_stats_policy;
new = sysctl_sched_window_stats_policy;
sched_window_stats_policy = sysctl_sched_window_stats_policy;
} else if (sched_ravg_hist_size != sysctl_sched_ravg_hist_size) {
reason = HIST_SIZE_CHANGE;
old = sched_ravg_hist_size;
new = sysctl_sched_ravg_hist_size;
sched_ravg_hist_size = sysctl_sched_ravg_hist_size;
} else if (sched_freq_aggregate !=
sysctl_sched_freq_aggregate) {
reason = FREQ_AGGREGATE_CHANGE;
old = sched_freq_aggregate;
new = sysctl_sched_freq_aggregate;
sched_freq_aggregate = sysctl_sched_freq_aggregate;
}
for_each_possible_cpu(cpu)
raw_spin_unlock(&cpu_rq(cpu)->lock);
read_unlock(&related_thread_group_lock);
local_irq_restore(flags);
trace_sched_reset_all_window_stats(window_start, window_size,
sched_ktime_clock() - start_ts, reason, old, new);
}
/*
* In this function we match the accumulated subtractions with the current
* and previous windows we are operating with. Ignore any entries where
* the window start in the load_subtraction struct does not match either
* the curent or the previous window. This could happen whenever CPUs
* become idle or busy with interrupts disabled for an extended period.
*/
static inline void account_load_subtractions(struct rq *rq)
{
u64 ws = rq->window_start;
u64 prev_ws = ws - sched_ravg_window;
struct load_subtractions *ls = rq->load_subs;
int i;
for (i = 0; i < NUM_TRACKED_WINDOWS; i++) {
if (ls[i].window_start == ws) {
rq->curr_runnable_sum -= ls[i].subs;
rq->nt_curr_runnable_sum -= ls[i].new_subs;
} else if (ls[i].window_start == prev_ws) {
rq->prev_runnable_sum -= ls[i].subs;
rq->nt_prev_runnable_sum -= ls[i].new_subs;
}
ls[i].subs = 0;
ls[i].new_subs = 0;
}
BUG_ON((s64)rq->prev_runnable_sum < 0);
BUG_ON((s64)rq->curr_runnable_sum < 0);
BUG_ON((s64)rq->nt_prev_runnable_sum < 0);
BUG_ON((s64)rq->nt_curr_runnable_sum < 0);
}
static inline u64 freq_policy_load(struct rq *rq, u64 load)
{
unsigned int reporting_policy = sysctl_sched_freq_reporting_policy;
switch (reporting_policy) {
case FREQ_REPORT_MAX_CPU_LOAD_TOP_TASK:
load = max_t(u64, load, top_task_load(rq));
break;
case FREQ_REPORT_TOP_TASK:
load = top_task_load(rq);
break;
case FREQ_REPORT_CPU_LOAD:
break;
default:
break;
}
return load;
}
void sched_get_cpus_busy(struct sched_load *busy,
const struct cpumask *query_cpus)
{
unsigned long flags;
struct rq *rq;
const int cpus = cpumask_weight(query_cpus);
u64 load[cpus], group_load[cpus];
u64 nload[cpus], ngload[cpus];
u64 pload[cpus];
unsigned int max_freq[cpus];
int notifier_sent = 0;
int early_detection[cpus];
int cpu, i = 0;
unsigned int window_size;
u64 max_prev_sum = 0;
int max_busy_cpu = cpumask_first(query_cpus);
u64 total_group_load = 0, total_ngload = 0;
bool aggregate_load = false;
struct sched_cluster *cluster = cpu_cluster(cpumask_first(query_cpus));
if (unlikely(cpus == 0))
return;
local_irq_save(flags);
/*
* This function could be called in timer context, and the
* current task may have been executing for a long time. Ensure
* that the window stats are current by doing an update.
*/
for_each_cpu(cpu, query_cpus)
raw_spin_lock(&cpu_rq(cpu)->lock);
window_size = sched_ravg_window;
/*
* We don't really need the cluster lock for this entire for loop
* block. However, there is no advantage in optimizing this as rq
* locks are held regardless and would prevent migration anyways
*/
raw_spin_lock(&cluster->load_lock);
for_each_cpu(cpu, query_cpus) {
rq = cpu_rq(cpu);
update_task_ravg(rq->curr, rq, TASK_UPDATE, sched_ktime_clock(),
0);
account_load_subtractions(rq);
load[i] = rq->prev_runnable_sum;
nload[i] = rq->nt_prev_runnable_sum;
pload[i] = rq->hmp_stats.pred_demands_sum;
rq->old_estimated_time = pload[i];
if (load[i] > max_prev_sum) {
max_prev_sum = load[i];
max_busy_cpu = cpu;
}
/*
* sched_get_cpus_busy() is called for all CPUs in a
* frequency domain. So the notifier_sent flag per
* cluster works even when a frequency domain spans
* more than 1 cluster.
*/
if (rq->cluster->notifier_sent) {
notifier_sent = 1;
rq->cluster->notifier_sent = 0;
}
early_detection[i] = (rq->ed_task != NULL);
max_freq[i] = cpu_max_freq(cpu);
i++;
}
raw_spin_unlock(&cluster->load_lock);
group_load_in_freq_domain(
&cpu_rq(max_busy_cpu)->freq_domain_cpumask,
&total_group_load, &total_ngload);
aggregate_load = !!(total_group_load > sched_freq_aggregate_threshold);
i = 0;
for_each_cpu(cpu, query_cpus) {
group_load[i] = 0;
ngload[i] = 0;
if (early_detection[i])
goto skip_early;
rq = cpu_rq(cpu);
if (aggregate_load) {
if (cpu == max_busy_cpu) {
group_load[i] = total_group_load;
ngload[i] = total_ngload;
}
} else {
group_load[i] = rq->grp_time.prev_runnable_sum;
ngload[i] = rq->grp_time.nt_prev_runnable_sum;
}
load[i] += group_load[i];
nload[i] += ngload[i];
load[i] = freq_policy_load(rq, load[i]);
rq->old_busy_time = load[i];
/*
* Scale load in reference to cluster max_possible_freq.
*
* Note that scale_load_to_cpu() scales load in reference to
* the cluster max_freq.
*/
load[i] = scale_load_to_cpu(load[i], cpu);
nload[i] = scale_load_to_cpu(nload[i], cpu);
pload[i] = scale_load_to_cpu(pload[i], cpu);
skip_early:
i++;
}
for_each_cpu(cpu, query_cpus)
raw_spin_unlock(&(cpu_rq(cpu))->lock);
local_irq_restore(flags);
i = 0;
for_each_cpu(cpu, query_cpus) {
rq = cpu_rq(cpu);
if (early_detection[i]) {
busy[i].prev_load = div64_u64(sched_ravg_window,
NSEC_PER_USEC);
busy[i].new_task_load = 0;
busy[i].predicted_load = 0;
goto exit_early;
}
load[i] = scale_load_to_freq(load[i], max_freq[i],
cpu_max_possible_freq(cpu));
nload[i] = scale_load_to_freq(nload[i], max_freq[i],
cpu_max_possible_freq(cpu));
pload[i] = scale_load_to_freq(pload[i], max_freq[i],
rq->cluster->max_possible_freq);
busy[i].prev_load = div64_u64(load[i], NSEC_PER_USEC);
busy[i].new_task_load = div64_u64(nload[i], NSEC_PER_USEC);
busy[i].predicted_load = div64_u64(pload[i], NSEC_PER_USEC);
exit_early:
trace_sched_get_busy(cpu, busy[i].prev_load,
busy[i].new_task_load,
busy[i].predicted_load,
early_detection[i],
aggregate_load &&
cpu == max_busy_cpu);
i++;
}
}
void sched_set_io_is_busy(int val)
{
sched_io_is_busy = val;
}
int sched_set_window(u64 window_start, unsigned int window_size)
{
u64 now, cur_jiffies, jiffy_ktime_ns;
s64 ws;
unsigned long flags;
if (window_size * TICK_NSEC < MIN_SCHED_RAVG_WINDOW)
return -EINVAL;
mutex_lock(&policy_mutex);
/*
* Get a consistent view of ktime, jiffies, and the time
* since the last jiffy (based on last_jiffies_update).
*/
local_irq_save(flags);
cur_jiffies = jiffy_to_ktime_ns(&now, &jiffy_ktime_ns);
local_irq_restore(flags);
/* translate window_start from jiffies to nanoseconds */
ws = (window_start - cur_jiffies); /* jiffy difference */
ws *= TICK_NSEC;
ws += jiffy_ktime_ns;
/*
* Roll back calculated window start so that it is in
* the past (window stats must have a current window).
*/
while (ws > now)
ws -= (window_size * TICK_NSEC);
BUG_ON(sched_ktime_clock() < ws);
reset_all_window_stats(ws, window_size);
sched_update_freq_max_load(cpu_possible_mask);
mutex_unlock(&policy_mutex);
return 0;
}
static inline void create_subtraction_entry(struct rq *rq, u64 ws, int index)
{
rq->load_subs[index].window_start = ws;
rq->load_subs[index].subs = 0;
rq->load_subs[index].new_subs = 0;
}
static bool get_subtraction_index(struct rq *rq, u64 ws)
{
int i;
u64 oldest = ULLONG_MAX;
int oldest_index = 0;
for (i = 0; i < NUM_TRACKED_WINDOWS; i++) {
u64 entry_ws = rq->load_subs[i].window_start;
if (ws == entry_ws)
return i;
if (entry_ws < oldest) {
oldest = entry_ws;
oldest_index = i;
}
}
create_subtraction_entry(rq, ws, oldest_index);
return oldest_index;
}
static void update_rq_load_subtractions(int index, struct rq *rq,
u32 sub_load, bool new_task)
{
rq->load_subs[index].subs += sub_load;
if (new_task)
rq->load_subs[index].new_subs += sub_load;
}
static void update_cluster_load_subtractions(struct task_struct *p,
int cpu, u64 ws, bool new_task)
{
struct sched_cluster *cluster = cpu_cluster(cpu);
struct cpumask cluster_cpus = cluster->cpus;
u64 prev_ws = ws - sched_ravg_window;
int i;
cpumask_clear_cpu(cpu, &cluster_cpus);
raw_spin_lock(&cluster->load_lock);
for_each_cpu(i, &cluster_cpus) {
struct rq *rq = cpu_rq(i);
int index;
if (p->ravg.curr_window_cpu[i]) {
index = get_subtraction_index(rq, ws);
update_rq_load_subtractions(index, rq,
p->ravg.curr_window_cpu[i], new_task);
p->ravg.curr_window_cpu[i] = 0;
}
if (p->ravg.prev_window_cpu[i]) {
index = get_subtraction_index(rq, prev_ws);
update_rq_load_subtractions(index, rq,
p->ravg.prev_window_cpu[i], new_task);
p->ravg.prev_window_cpu[i] = 0;
}
}
raw_spin_unlock(&cluster->load_lock);
}
static inline void inter_cluster_migration_fixup
(struct task_struct *p, int new_cpu, int task_cpu, bool new_task)
{
struct rq *dest_rq = cpu_rq(new_cpu);
struct rq *src_rq = cpu_rq(task_cpu);
if (same_freq_domain(new_cpu, task_cpu))
return;
p->ravg.curr_window_cpu[new_cpu] = p->ravg.curr_window;
p->ravg.prev_window_cpu[new_cpu] = p->ravg.prev_window;
dest_rq->curr_runnable_sum += p->ravg.curr_window;
dest_rq->prev_runnable_sum += p->ravg.prev_window;
src_rq->curr_runnable_sum -= p->ravg.curr_window_cpu[task_cpu];
src_rq->prev_runnable_sum -= p->ravg.prev_window_cpu[task_cpu];
if (new_task) {
dest_rq->nt_curr_runnable_sum += p->ravg.curr_window;
dest_rq->nt_prev_runnable_sum += p->ravg.prev_window;
src_rq->nt_curr_runnable_sum -=
p->ravg.curr_window_cpu[task_cpu];
src_rq->nt_prev_runnable_sum -=
p->ravg.prev_window_cpu[task_cpu];
}
p->ravg.curr_window_cpu[task_cpu] = 0;
p->ravg.prev_window_cpu[task_cpu] = 0;
update_cluster_load_subtractions(p, task_cpu,
src_rq->window_start, new_task);
BUG_ON((s64)src_rq->prev_runnable_sum < 0);
BUG_ON((s64)src_rq->curr_runnable_sum < 0);
BUG_ON((s64)src_rq->nt_prev_runnable_sum < 0);
BUG_ON((s64)src_rq->nt_curr_runnable_sum < 0);
}
static int get_top_index(unsigned long *bitmap, unsigned long old_top)
{
int index = find_next_bit(bitmap, NUM_LOAD_INDICES, old_top);
if (index == NUM_LOAD_INDICES)
return 0;
return NUM_LOAD_INDICES - 1 - index;
}
static void
migrate_top_tasks(struct task_struct *p, struct rq *src_rq, struct rq *dst_rq)
{
int index;
int top_index;
u32 curr_window = p->ravg.curr_window;
u32 prev_window = p->ravg.prev_window;
u8 src = src_rq->curr_table;
u8 dst = dst_rq->curr_table;
u8 *src_table;
u8 *dst_table;
if (curr_window) {
src_table = src_rq->top_tasks[src];
dst_table = dst_rq->top_tasks[dst];
index = load_to_index(curr_window);
src_table[index] -= 1;
dst_table[index] += 1;
if (!src_table[index])
__clear_bit(NUM_LOAD_INDICES - index - 1,
src_rq->top_tasks_bitmap[src]);
if (dst_table[index] == 1)
__set_bit(NUM_LOAD_INDICES - index - 1,
dst_rq->top_tasks_bitmap[dst]);
if (index > dst_rq->curr_top)
dst_rq->curr_top = index;
top_index = src_rq->curr_top;
if (index == top_index && !src_table[index])
src_rq->curr_top = get_top_index(
src_rq->top_tasks_bitmap[src], top_index);
}
if (prev_window) {
src = 1 - src;
dst = 1 - dst;
src_table = src_rq->top_tasks[src];
dst_table = dst_rq->top_tasks[dst];
index = load_to_index(prev_window);
src_table[index] -= 1;
dst_table[index] += 1;
if (!src_table[index])
__clear_bit(NUM_LOAD_INDICES - index - 1,
src_rq->top_tasks_bitmap[src]);
if (dst_table[index] == 1)
__set_bit(NUM_LOAD_INDICES - index - 1,
dst_rq->top_tasks_bitmap[dst]);
if (index > dst_rq->prev_top)
dst_rq->prev_top = index;
top_index = src_rq->prev_top;
if (index == top_index && !src_table[index])
src_rq->prev_top = get_top_index(
src_rq->top_tasks_bitmap[src], top_index);
}
}
void fixup_busy_time(struct task_struct *p, int new_cpu)
{
struct rq *src_rq = task_rq(p);
struct rq *dest_rq = cpu_rq(new_cpu);
u64 wallclock;
u64 *src_curr_runnable_sum, *dst_curr_runnable_sum;
u64 *src_prev_runnable_sum, *dst_prev_runnable_sum;
u64 *src_nt_curr_runnable_sum, *dst_nt_curr_runnable_sum;
u64 *src_nt_prev_runnable_sum, *dst_nt_prev_runnable_sum;
bool new_task;
struct related_thread_group *grp;
if (!p->on_rq && p->state != TASK_WAKING)
return;
if (exiting_task(p)) {
clear_ed_task(p, src_rq);
return;
}
if (p->state == TASK_WAKING)
double_rq_lock(src_rq, dest_rq);
if (sched_disable_window_stats)
goto done;
wallclock = sched_ktime_clock();
update_task_ravg(task_rq(p)->curr, task_rq(p),
TASK_UPDATE,
wallclock, 0);
update_task_ravg(dest_rq->curr, dest_rq,
TASK_UPDATE, wallclock, 0);
update_task_ravg(p, task_rq(p), TASK_MIGRATE,
wallclock, 0);
update_task_cpu_cycles(p, new_cpu, wallclock);
new_task = is_new_task(p);
/* Protected by rq_lock */
grp = p->grp;
/*
* For frequency aggregation, we continue to do migration fixups
* even for intra cluster migrations. This is because, the aggregated
* load has to reported on a single CPU regardless.
*/
if (grp && sched_freq_aggregate) {
struct group_cpu_time *cpu_time;
cpu_time = &src_rq->grp_time;
src_curr_runnable_sum = &cpu_time->curr_runnable_sum;
src_prev_runnable_sum = &cpu_time->prev_runnable_sum;
src_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
src_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
cpu_time = &dest_rq->grp_time;
dst_curr_runnable_sum = &cpu_time->curr_runnable_sum;
dst_prev_runnable_sum = &cpu_time->prev_runnable_sum;
dst_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
dst_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
if (p->ravg.curr_window) {
*src_curr_runnable_sum -= p->ravg.curr_window;
*dst_curr_runnable_sum += p->ravg.curr_window;
if (new_task) {
*src_nt_curr_runnable_sum -=
p->ravg.curr_window;
*dst_nt_curr_runnable_sum +=
p->ravg.curr_window;
}
}
if (p->ravg.prev_window) {
*src_prev_runnable_sum -= p->ravg.prev_window;
*dst_prev_runnable_sum += p->ravg.prev_window;
if (new_task) {
*src_nt_prev_runnable_sum -=
p->ravg.prev_window;
*dst_nt_prev_runnable_sum +=
p->ravg.prev_window;
}
}
} else {
inter_cluster_migration_fixup(p, new_cpu,
task_cpu(p), new_task);
}
migrate_top_tasks(p, src_rq, dest_rq);
if (p == src_rq->ed_task) {
src_rq->ed_task = NULL;
if (!dest_rq->ed_task)
dest_rq->ed_task = p;
}
done:
if (p->state == TASK_WAKING)
double_rq_unlock(src_rq, dest_rq);
}
#define sched_up_down_migrate_auto_update 1
static void check_for_up_down_migrate_update(const struct cpumask *cpus)
{
int i = cpumask_first(cpus);
if (!sched_up_down_migrate_auto_update)
return;
if (cpu_max_possible_capacity(i) == max_possible_capacity)
return;
if (cpu_max_possible_freq(i) == cpu_max_freq(i))
up_down_migrate_scale_factor = 1024;
else
up_down_migrate_scale_factor = (1024 *
cpu_max_possible_freq(i)) / cpu_max_freq(i);
update_up_down_migrate();
}
/* Return cluster which can offer required capacity for group */
static struct sched_cluster *best_cluster(struct related_thread_group *grp,
u64 total_demand, bool group_boost)
{
struct sched_cluster *cluster = NULL;
for_each_sched_cluster(cluster) {
if (group_will_fit(cluster, grp, total_demand, group_boost))
return cluster;
}
return sched_cluster[0];
}
static void _set_preferred_cluster(struct related_thread_group *grp)
{
struct task_struct *p;
u64 combined_demand = 0;
bool boost_on_big = sched_boost_policy() == SCHED_BOOST_ON_BIG;
bool group_boost = false;
u64 wallclock;
if (list_empty(&grp->tasks))
return;
wallclock = sched_ktime_clock();
/*
* wakeup of two or more related tasks could race with each other and
* could result in multiple calls to _set_preferred_cluster being issued
* at same time. Avoid overhead in such cases of rechecking preferred
* cluster
*/
if (wallclock - grp->last_update < sched_ravg_window / 10)
return;
list_for_each_entry(p, &grp->tasks, grp_list) {
if (boost_on_big && task_sched_boost(p)) {
group_boost = true;
break;
}
if (p->ravg.mark_start < wallclock -
(sched_ravg_window * sched_ravg_hist_size))
continue;
combined_demand += p->ravg.demand;
}
grp->preferred_cluster = best_cluster(grp,
combined_demand, group_boost);
grp->last_update = sched_ktime_clock();
trace_sched_set_preferred_cluster(grp, combined_demand);
}
void set_preferred_cluster(struct related_thread_group *grp)
{
raw_spin_lock(&grp->lock);
_set_preferred_cluster(grp);
raw_spin_unlock(&grp->lock);
}
#define ADD_TASK 0
#define REM_TASK 1
#define DEFAULT_CGROUP_COLOC_ID 1
/*
* Task's cpu usage is accounted in:
* rq->curr/prev_runnable_sum, when its ->grp is NULL
* grp->cpu_time[cpu]->curr/prev_runnable_sum, when its ->grp is !NULL
*
* Transfer task's cpu usage between those counters when transitioning between
* groups
*/
static void transfer_busy_time(struct rq *rq, struct related_thread_group *grp,
struct task_struct *p, int event)
{
u64 wallclock;
struct group_cpu_time *cpu_time;
u64 *src_curr_runnable_sum, *dst_curr_runnable_sum;
u64 *src_prev_runnable_sum, *dst_prev_runnable_sum;
u64 *src_nt_curr_runnable_sum, *dst_nt_curr_runnable_sum;
u64 *src_nt_prev_runnable_sum, *dst_nt_prev_runnable_sum;
int migrate_type;
int cpu = cpu_of(rq);
bool new_task;
int i;
if (!sched_freq_aggregate)
return;
wallclock = sched_ktime_clock();
update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
update_task_ravg(p, rq, TASK_UPDATE, wallclock, 0);
new_task = is_new_task(p);
cpu_time = &rq->grp_time;
if (event == ADD_TASK) {
migrate_type = RQ_TO_GROUP;
src_curr_runnable_sum = &rq->curr_runnable_sum;
dst_curr_runnable_sum = &cpu_time->curr_runnable_sum;
src_prev_runnable_sum = &rq->prev_runnable_sum;
dst_prev_runnable_sum = &cpu_time->prev_runnable_sum;
src_nt_curr_runnable_sum = &rq->nt_curr_runnable_sum;
dst_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
src_nt_prev_runnable_sum = &rq->nt_prev_runnable_sum;
dst_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
*src_curr_runnable_sum -= p->ravg.curr_window_cpu[cpu];
*src_prev_runnable_sum -= p->ravg.prev_window_cpu[cpu];
if (new_task) {
*src_nt_curr_runnable_sum -=
p->ravg.curr_window_cpu[cpu];
*src_nt_prev_runnable_sum -=
p->ravg.prev_window_cpu[cpu];
}
update_cluster_load_subtractions(p, cpu,
rq->window_start, new_task);
} else {
migrate_type = GROUP_TO_RQ;
src_curr_runnable_sum = &cpu_time->curr_runnable_sum;
dst_curr_runnable_sum = &rq->curr_runnable_sum;
src_prev_runnable_sum = &cpu_time->prev_runnable_sum;
dst_prev_runnable_sum = &rq->prev_runnable_sum;
src_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
dst_nt_curr_runnable_sum = &rq->nt_curr_runnable_sum;
src_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
dst_nt_prev_runnable_sum = &rq->nt_prev_runnable_sum;
*src_curr_runnable_sum -= p->ravg.curr_window;
*src_prev_runnable_sum -= p->ravg.prev_window;
if (new_task) {
*src_nt_curr_runnable_sum -= p->ravg.curr_window;
*src_nt_prev_runnable_sum -= p->ravg.prev_window;
}
/*
* Need to reset curr/prev windows for all CPUs, not just the
* ones in the same cluster. Since inter cluster migrations
* did not result in the appropriate book keeping, the values
* per CPU would be inaccurate.
*/
for_each_possible_cpu(i) {
p->ravg.curr_window_cpu[i] = 0;
p->ravg.prev_window_cpu[i] = 0;
}
}
*dst_curr_runnable_sum += p->ravg.curr_window;
*dst_prev_runnable_sum += p->ravg.prev_window;
if (new_task) {
*dst_nt_curr_runnable_sum += p->ravg.curr_window;
*dst_nt_prev_runnable_sum += p->ravg.prev_window;
}
/*
* When a task enter or exits a group, it's curr and prev windows are
* moved to a single CPU. This behavior might be sub-optimal in the
* exit case, however, it saves us the overhead of handling inter
* cluster migration fixups while the task is part of a related group.
*/
p->ravg.curr_window_cpu[cpu] = p->ravg.curr_window;
p->ravg.prev_window_cpu[cpu] = p->ravg.prev_window;
trace_sched_migration_update_sum(p, migrate_type, rq);
BUG_ON((s64)*src_curr_runnable_sum < 0);
BUG_ON((s64)*src_prev_runnable_sum < 0);
BUG_ON((s64)*src_nt_curr_runnable_sum < 0);
BUG_ON((s64)*src_nt_prev_runnable_sum < 0);
}
static inline struct related_thread_group*
lookup_related_thread_group(unsigned int group_id)
{
return related_thread_groups[group_id];
}
int alloc_related_thread_groups(void)
{
int i, ret;
struct related_thread_group *grp;
/* groupd_id = 0 is invalid as it's special id to remove group. */
for (i = 1; i < MAX_NUM_CGROUP_COLOC_ID; i++) {
grp = kzalloc(sizeof(*grp), GFP_NOWAIT);
if (!grp) {
ret = -ENOMEM;
goto err;
}
grp->id = i;
INIT_LIST_HEAD(&grp->tasks);
INIT_LIST_HEAD(&grp->list);
raw_spin_lock_init(&grp->lock);
related_thread_groups[i] = grp;
}
return 0;
err:
for (i = 1; i < MAX_NUM_CGROUP_COLOC_ID; i++) {
grp = lookup_related_thread_group(i);
if (grp) {
kfree(grp);
related_thread_groups[i] = NULL;
} else {
break;
}
}
return ret;
}
static void remove_task_from_group(struct task_struct *p)
{
struct related_thread_group *grp = p->grp;
struct rq *rq;
int empty_group = 1;
raw_spin_lock(&grp->lock);
rq = __task_rq_lock(p);
transfer_busy_time(rq, p->grp, p, REM_TASK);
list_del_init(&p->grp_list);
rcu_assign_pointer(p->grp, NULL);
__task_rq_unlock(rq);
if (!list_empty(&grp->tasks)) {
empty_group = 0;
_set_preferred_cluster(grp);
}
raw_spin_unlock(&grp->lock);
/* Reserved groups cannot be destroyed */
if (empty_group && grp->id != DEFAULT_CGROUP_COLOC_ID)
/*
* We test whether grp->list is attached with list_empty()
* hence re-init the list after deletion.
*/
list_del_init(&grp->list);
}
static int
add_task_to_group(struct task_struct *p, struct related_thread_group *grp)
{
struct rq *rq;
raw_spin_lock(&grp->lock);
/*
* Change p->grp under rq->lock. Will prevent races with read-side
* reference of p->grp in various hot-paths
*/
rq = __task_rq_lock(p);
transfer_busy_time(rq, grp, p, ADD_TASK);
list_add(&p->grp_list, &grp->tasks);
rcu_assign_pointer(p->grp, grp);
__task_rq_unlock(rq);
_set_preferred_cluster(grp);
raw_spin_unlock(&grp->lock);
return 0;
}
void add_new_task_to_grp(struct task_struct *new)
{
unsigned long flags;
struct related_thread_group *grp;
struct task_struct *leader = new->group_leader;
unsigned int leader_grp_id = sched_get_group_id(leader);
if (!sysctl_sched_enable_thread_grouping &&
leader_grp_id != DEFAULT_CGROUP_COLOC_ID)
return;
if (thread_group_leader(new))
return;
if (leader_grp_id == DEFAULT_CGROUP_COLOC_ID) {
if (!same_schedtune(new, leader))
return;
}
write_lock_irqsave(&related_thread_group_lock, flags);
rcu_read_lock();
grp = task_related_thread_group(leader);
rcu_read_unlock();
/*
* It's possible that someone already added the new task to the
* group. A leader's thread group is updated prior to calling
* this function. It's also possible that the leader has exited
* the group. In either case, there is nothing else to do.
*/
if (!grp || new->grp) {
write_unlock_irqrestore(&related_thread_group_lock, flags);
return;
}
raw_spin_lock(&grp->lock);
rcu_assign_pointer(new->grp, grp);
list_add(&new->grp_list, &grp->tasks);
raw_spin_unlock(&grp->lock);
write_unlock_irqrestore(&related_thread_group_lock, flags);
}
static int __sched_set_group_id(struct task_struct *p, unsigned int group_id)
{
int rc = 0;
unsigned long flags;
struct related_thread_group *grp = NULL;
if (group_id >= MAX_NUM_CGROUP_COLOC_ID)
return -EINVAL;
raw_spin_lock_irqsave(&p->pi_lock, flags);
write_lock(&related_thread_group_lock);
/* Switching from one group to another directly is not permitted */
if ((current != p && p->flags & PF_EXITING) ||
(!p->grp && !group_id) ||
(p->grp && group_id))
goto done;
if (!group_id) {
remove_task_from_group(p);
goto done;
}
grp = lookup_related_thread_group(group_id);
if (list_empty(&grp->list))
list_add(&grp->list, &active_related_thread_groups);
rc = add_task_to_group(p, grp);
done:
write_unlock(&related_thread_group_lock);
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
return rc;
}
int sched_set_group_id(struct task_struct *p, unsigned int group_id)
{
/* DEFAULT_CGROUP_COLOC_ID is a reserved id */
if (group_id == DEFAULT_CGROUP_COLOC_ID)
return -EINVAL;
return __sched_set_group_id(p, group_id);
}
unsigned int sched_get_group_id(struct task_struct *p)
{
unsigned int group_id;
struct related_thread_group *grp;
rcu_read_lock();
grp = task_related_thread_group(p);
group_id = grp ? grp->id : 0;
rcu_read_unlock();
return group_id;
}
#if defined(CONFIG_SCHED_TUNE) && defined(CONFIG_CGROUP_SCHEDTUNE)
/*
* We create a default colocation group at boot. There is no need to
* synchronize tasks between cgroups at creation time because the
* correct cgroup hierarchy is not available at boot. Therefore cgroup
* colocation is turned off by default even though the colocation group
* itself has been allocated. Furthermore this colocation group cannot
* be destroyted once it has been created. All of this has been as part
* of runtime optimizations.
*
* The job of synchronizing tasks to the colocation group is done when
* the colocation flag in the cgroup is turned on.
*/
static int __init create_default_coloc_group(void)
{
struct related_thread_group *grp = NULL;
unsigned long flags;
grp = lookup_related_thread_group(DEFAULT_CGROUP_COLOC_ID);
write_lock_irqsave(&related_thread_group_lock, flags);
list_add(&grp->list, &active_related_thread_groups);
write_unlock_irqrestore(&related_thread_group_lock, flags);
update_freq_aggregate_threshold(MAX_FREQ_AGGR_THRESH);
return 0;
}
late_initcall(create_default_coloc_group);
int sync_cgroup_colocation(struct task_struct *p, bool insert)
{
unsigned int grp_id = insert ? DEFAULT_CGROUP_COLOC_ID : 0;
return __sched_set_group_id(p, grp_id);
}
#endif
static void update_cpu_cluster_capacity(const cpumask_t *cpus)
{
int i;
struct sched_cluster *cluster;
struct cpumask cpumask;
cpumask_copy(&cpumask, cpus);
pre_big_task_count_change(cpu_possible_mask);
for_each_cpu(i, &cpumask) {
cluster = cpu_rq(i)->cluster;
cpumask_andnot(&cpumask, &cpumask, &cluster->cpus);
cluster->capacity = compute_capacity(cluster);
cluster->load_scale_factor = compute_load_scale_factor(cluster);
/* 'cpus' can contain cpumask more than one cluster */
check_for_up_down_migrate_update(&cluster->cpus);
}
__update_min_max_capacity();
post_big_task_count_change(cpu_possible_mask);
}
static DEFINE_SPINLOCK(cpu_freq_min_max_lock);
void sched_update_cpu_freq_min_max(const cpumask_t *cpus, u32 fmin, u32 fmax)
{
struct cpumask cpumask;
struct sched_cluster *cluster;
int i, update_capacity = 0;
unsigned long flags;
spin_lock_irqsave(&cpu_freq_min_max_lock, flags);
cpumask_copy(&cpumask, cpus);
for_each_cpu(i, &cpumask) {
cluster = cpu_rq(i)->cluster;
cpumask_andnot(&cpumask, &cpumask, &cluster->cpus);
update_capacity += (cluster->max_mitigated_freq != fmax);
cluster->max_mitigated_freq = fmax;
}
spin_unlock_irqrestore(&cpu_freq_min_max_lock, flags);
if (update_capacity)
update_cpu_cluster_capacity(cpus);
}
static int cpufreq_notifier_policy(struct notifier_block *nb,
unsigned long val, void *data)
{
struct cpufreq_policy *policy = (struct cpufreq_policy *)data;
struct sched_cluster *cluster = NULL;
struct cpumask policy_cluster = *policy->related_cpus;
unsigned int orig_max_freq = 0;
int i, j, update_capacity = 0;
if (val != CPUFREQ_NOTIFY && val != CPUFREQ_REMOVE_POLICY &&
val != CPUFREQ_CREATE_POLICY)
return 0;
if (val == CPUFREQ_REMOVE_POLICY || val == CPUFREQ_CREATE_POLICY) {
update_min_max_capacity();
return 0;
}
max_possible_freq = max(max_possible_freq, policy->cpuinfo.max_freq);
if (min_max_freq == 1)
min_max_freq = UINT_MAX;
min_max_freq = min(min_max_freq, policy->cpuinfo.max_freq);
BUG_ON(!min_max_freq);
BUG_ON(!policy->max);
for_each_cpu(i, &policy_cluster) {
cluster = cpu_rq(i)->cluster;
cpumask_andnot(&policy_cluster, &policy_cluster,
&cluster->cpus);
orig_max_freq = cluster->max_freq;
cluster->min_freq = policy->min;
cluster->max_freq = policy->max;
cluster->cur_freq = policy->cur;
if (!cluster->freq_init_done) {
mutex_lock(&cluster_lock);
for_each_cpu(j, &cluster->cpus)
cpumask_copy(&cpu_rq(j)->freq_domain_cpumask,
policy->related_cpus);
cluster->max_possible_freq = policy->cpuinfo.max_freq;
cluster->max_possible_capacity =
compute_max_possible_capacity(cluster);
cluster->freq_init_done = true;
sort_clusters();
update_all_clusters_stats();
mutex_unlock(&cluster_lock);
continue;
}
update_capacity += (orig_max_freq != cluster->max_freq);
}
if (update_capacity)
update_cpu_cluster_capacity(policy->related_cpus);
return 0;
}
static int cpufreq_notifier_trans(struct notifier_block *nb,
unsigned long val, void *data)
{
struct cpufreq_freqs *freq = (struct cpufreq_freqs *)data;
unsigned int cpu = freq->cpu, new_freq = freq->new;
unsigned long flags;
struct sched_cluster *cluster;
struct cpumask policy_cpus = cpu_rq(cpu)->freq_domain_cpumask;
int i, j;
if (val != CPUFREQ_POSTCHANGE)
return 0;
BUG_ON(!new_freq);
if (cpu_cur_freq(cpu) == new_freq)
return 0;
for_each_cpu(i, &policy_cpus) {
cluster = cpu_rq(i)->cluster;
for_each_cpu(j, &cluster->cpus) {
struct rq *rq = cpu_rq(j);
raw_spin_lock_irqsave(&rq->lock, flags);
update_task_ravg(rq->curr, rq, TASK_UPDATE,
sched_ktime_clock(), 0);
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
cluster->cur_freq = new_freq;
cpumask_andnot(&policy_cpus, &policy_cpus, &cluster->cpus);
}
return 0;
}
static int pwr_stats_ready_notifier(struct notifier_block *nb,
unsigned long cpu, void *data)
{
cpumask_t mask = CPU_MASK_NONE;
cpumask_set_cpu(cpu, &mask);
sched_update_freq_max_load(&mask);
mutex_lock(&cluster_lock);
sort_clusters();
mutex_unlock(&cluster_lock);
return 0;
}
static struct notifier_block notifier_policy_block = {
.notifier_call = cpufreq_notifier_policy
};
static struct notifier_block notifier_trans_block = {
.notifier_call = cpufreq_notifier_trans
};
static struct notifier_block notifier_pwr_stats_ready = {
.notifier_call = pwr_stats_ready_notifier
};
int __weak register_cpu_pwr_stats_ready_notifier(struct notifier_block *nb)
{
return -EINVAL;
}
static int register_sched_callback(void)
{
int ret;
ret = cpufreq_register_notifier(&notifier_policy_block,
CPUFREQ_POLICY_NOTIFIER);
if (!ret)
ret = cpufreq_register_notifier(&notifier_trans_block,
CPUFREQ_TRANSITION_NOTIFIER);
register_cpu_pwr_stats_ready_notifier(&notifier_pwr_stats_ready);
return 0;
}
/*
* cpufreq callbacks can be registered at core_initcall or later time.
* Any registration done prior to that is "forgotten" by cpufreq. See
* initialization of variable init_cpufreq_transition_notifier_list_called
* for further information.
*/
core_initcall(register_sched_callback);
int update_preferred_cluster(struct related_thread_group *grp,
struct task_struct *p, u32 old_load)
{
u32 new_load = task_load(p);
if (!grp || !p->grp)
return 0;
/*
* Update if task's load has changed significantly or a complete window
* has passed since we last updated preference
*/
if (abs(new_load - old_load) > sched_ravg_window / 4 ||
sched_ktime_clock() - grp->last_update > sched_ravg_window)
return 1;
return 0;
}
bool early_detection_notify(struct rq *rq, u64 wallclock)
{
struct task_struct *p;
int loop_max = 10;
if (sched_boost_policy() == SCHED_BOOST_NONE || !rq->cfs.h_nr_running)
return 0;
rq->ed_task = NULL;
list_for_each_entry(p, &rq->cfs_tasks, se.group_node) {
if (!loop_max)
break;
if (wallclock - p->last_wake_ts >= EARLY_DETECTION_DURATION) {
rq->ed_task = p;
return 1;
}
loop_max--;
}
return 0;
}
void update_avg_burst(struct task_struct *p)
{
update_avg(&p->ravg.avg_burst, p->ravg.curr_burst);
p->ravg.curr_burst = 0;
}
void note_task_waking(struct task_struct *p, u64 wallclock)
{
u64 sleep_time = wallclock - p->last_switch_out_ts;
/*
* When a short burst and short sleeping task goes for a long
* sleep, the task's avg_sleep_time gets boosted. It will not
* come below short_sleep threshold for a lot of time and it
* results in incorrect packing. The idead behind tracking
* avg_sleep_time is to detect if a task is short sleeping
* or not. So limit the sleep time to twice the short sleep
* threshold. For regular long sleeping tasks, the avg_sleep_time
* would be higher than threshold, and packing happens correctly.
*/
sleep_time = min_t(u64, sleep_time, 2 * sysctl_sched_short_sleep);
update_avg(&p->ravg.avg_sleep_time, sleep_time);
p->last_wake_ts = wallclock;
}
#ifdef CONFIG_CGROUP_SCHED
u64 cpu_upmigrate_discourage_read_u64(struct cgroup_subsys_state *css,
struct cftype *cft)
{
struct task_group *tg = css_tg(css);
return tg->upmigrate_discouraged;
}
int cpu_upmigrate_discourage_write_u64(struct cgroup_subsys_state *css,
struct cftype *cft, u64 upmigrate_discourage)
{
struct task_group *tg = css_tg(css);
int discourage = upmigrate_discourage > 0;
if (tg->upmigrate_discouraged == discourage)
return 0;
/*
* Revisit big-task classification for tasks of this cgroup. It would
* have been efficient to walk tasks of just this cgroup in running
* state, but we don't have easy means to do that. Walk all tasks in
* running state on all cpus instead and re-visit their big task
* classification.
*/
get_online_cpus();
pre_big_task_count_change(cpu_online_mask);
tg->upmigrate_discouraged = discourage;
post_big_task_count_change(cpu_online_mask);
put_online_cpus();
return 0;
}
#endif /* CONFIG_CGROUP_SCHED */