* refs/heads/tmp-8ec9fd8
ANDROID: sdcardfs: Check stacked filesystem depth
Fix backport of "tcp: detect malicious patterns in tcp_collapse_ofo_queue()"
tcp: detect malicious patterns in tcp_collapse_ofo_queue()
tcp: avoid collapses in tcp_prune_queue() if possible
x86_64_cuttlefish_defconfig: Enable android-verity
x86_64_cuttlefish_defconfig: enable verity cert
Linux 4.4.142
perf tools: Move syscall number fallbacks from perf-sys.h to tools/arch/x86/include/asm/
x86/cpu: Probe CPUID leaf 6 even when cpuid_level == 6
Kbuild: fix # escaping in .cmd files for future Make
ANDROID: Fix massive cpufreq_times memory leaks
ANDROID: Reduce use of #ifdef CONFIG_CPU_FREQ_TIMES
UPSTREAM: binder: replace "%p" with "%pK"
UPSTREAM: binder: free memory on error
UPSTREAM: binder: fix proc->files use-after-free
UPSTREAM: Revert "FROMLIST: binder: fix proc->files use-after-free"
UPSTREAM: ANDROID: binder: change down_write to down_read
UPSTREAM: ANDROID: binder: correct the cmd print for BINDER_WORK_RETURN_ERROR
UPSTREAM: ANDROID: binder: remove 32-bit binder interface.
UPSTREAM: ANDROID: binder: re-order some conditions
UPSTREAM: android: binder: use VM_ALLOC to get vm area
UPSTREAM: android: binder: Use true and false for boolean values
UPSTREAM: android: binder: Use octal permissions
UPSTREAM: android: binder: Prefer __func__ to using hardcoded function name
UPSTREAM: ANDROID: binder: make binder_alloc_new_buf_locked static and indent its arguments
UPSTREAM: android: binder: Check for errors in binder_alloc_shrinker_init().
treewide: Use array_size in f2fs_kvzalloc()
treewide: Use array_size() in f2fs_kzalloc()
treewide: Use array_size() in f2fs_kmalloc()
overflow.h: Add allocation size calculation helpers
f2fs: fix to clear FI_VOLATILE_FILE correctly
f2fs: let sync node IO interrupt async one
f2fs: don't change wbc->sync_mode
f2fs: fix to update mtime correctly
fs: f2fs: insert space around that ':' and ', '
fs: f2fs: add missing blank lines after declarations
fs: f2fs: changed variable type of offset "unsigned" to "loff_t"
f2fs: clean up symbol namespace
f2fs: make set_de_type() static
f2fs: make __f2fs_write_data_pages() static
f2fs: fix to avoid accessing cross the boundary
f2fs: fix to let caller retry allocating block address
disable loading f2fs module on PAGE_SIZE > 4KB
f2fs: fix error path of move_data_page
f2fs: don't drop dentry pages after fs shutdown
f2fs: fix to avoid race during access gc_thread pointer
f2fs: clean up with clear_radix_tree_dirty_tag
f2fs: fix to don't trigger writeback during recovery
f2fs: clear discard_wake earlier
f2fs: let discard thread wait a little longer if dev is busy
f2fs: avoid stucking GC due to atomic write
f2fs: introduce sbi->gc_mode to determine the policy
f2fs: keep migration IO order in LFS mode
f2fs: fix to wait page writeback during revoking atomic write
f2fs: Fix deadlock in shutdown ioctl
f2fs: detect synchronous writeback more earlier
mm: remove nr_pages argument from pagevec_lookup_{,range}_tag()
ceph: use pagevec_lookup_range_nr_tag()
mm: add variant of pagevec_lookup_range_tag() taking number of pages
mm: use pagevec_lookup_range_tag() in write_cache_pages()
mm: use pagevec_lookup_range_tag() in __filemap_fdatawait_range()
nilfs2: use pagevec_lookup_range_tag()
gfs2: use pagevec_lookup_range_tag()
f2fs: use find_get_pages_tag() for looking up single page
f2fs: simplify page iteration loops
f2fs: use pagevec_lookup_range_tag()
ext4: use pagevec_lookup_range_tag()
ceph: use pagevec_lookup_range_tag()
btrfs: use pagevec_lookup_range_tag()
mm: implement find_get_pages_range_tag()
f2fs: clean up with is_valid_blkaddr()
f2fs: fix to initialize min_mtime with ULLONG_MAX
f2fs: fix to let checkpoint guarantee atomic page persistence
f2fs: fix to initialize i_current_depth according to inode type
Revert "f2fs: add ovp valid_blocks check for bg gc victim to fg_gc"
f2fs: don't drop any page on f2fs_cp_error() case
f2fs: fix spelling mistake: "extenstion" -> "extension"
f2fs: enhance sanity_check_raw_super() to avoid potential overflows
f2fs: treat volatile file's data as hot one
f2fs: introduce release_discard_addr() for cleanup
f2fs: fix potential overflow
f2fs: rename dio_rwsem to i_gc_rwsem
f2fs: move mnt_want_write_file after range check
f2fs: fix missing clear FI_NO_PREALLOC in some error case
f2fs: enforce fsync_mode=strict for renamed directory
f2fs: sanity check for total valid node blocks
f2fs: sanity check on sit entry
f2fs: avoid bug_on on corrupted inode
f2fs: give message and set need_fsck given broken node id
f2fs: clean up commit_inmem_pages()
f2fs: do not check F2FS_INLINE_DOTS in recover
f2fs: remove duplicated dquot_initialize and fix error handling
f2fs: stop issue discard if something wrong with f2fs
f2fs: fix return value in f2fs_ioc_commit_atomic_write
f2fs: allocate hot_data for atomic write more strictly
f2fs: check if inmem_pages list is empty correctly
f2fs: fix race in between GC and atomic open
f2fs: change le32 to le16 of f2fs_inode->i_extra_size
f2fs: check cur_valid_map_mir & raw_sit block count when flush sit entries
f2fs: correct return value of f2fs_trim_fs
f2fs: fix to show missing bits in FS_IOC_GETFLAGS
f2fs: remove unneeded F2FS_PROJINHERIT_FL
f2fs: don't use GFP_ZERO for page caches
f2fs: issue all big range discards in umount process
f2fs: remove redundant block plug
f2fs: remove unmatched zero_user_segment when convert inline dentry
f2fs: introduce private inode status mapping
fscrypt: log the crypto algorithm implementations
crypto: api - Add crypto_type_has_alg helper
crypto: skcipher - Add low-level skcipher interface
crypto: skcipher - Add helper to retrieve driver name
crypto: skcipher - Add default key size helper
fscrypt: add Speck128/256 support
fscrypt: only derive the needed portion of the key
fscrypt: separate key lookup from key derivation
fscrypt: use a common logging function
fscrypt: remove internal key size constants
fscrypt: remove unnecessary check for non-logon key type
fscrypt: make fscrypt_operations.max_namelen an integer
fscrypt: drop empty name check from fname_decrypt()
fscrypt: drop max_namelen check from fname_decrypt()
fscrypt: don't special-case EOPNOTSUPP from fscrypt_get_encryption_info()
fscrypt: don't clear flags on crypto transform
fscrypt: remove stale comment from fscrypt_d_revalidate()
fscrypt: remove error messages for skcipher_request_alloc() failure
fscrypt: remove unnecessary NULL check when allocating skcipher
fscrypt: clean up after fscrypt_prepare_lookup() conversions
fscrypt: use unbound workqueue for decryption
f2fs: run fstrim asynchronously if runtime discard is on
f2fs: turn down IO priority of discard from background
f2fs: don't split checkpoint in fstrim
f2fs: issue discard commands proactively in high fs utilization
f2fs: add fsync_mode=nobarrier for non-atomic files
f2fs: let fstrim issue discard commands in lower priority
f2fs: avoid fsync() failure caused by EAGAIN in writepage()
f2fs: clear PageError on writepage - part 2
f2fs: check cap_resource only for data blocks
Revert "f2fs: introduce f2fs_set_page_dirty_nobuffer"
f2fs: clear PageError on writepage
f2fs: call unlock_new_inode() before d_instantiate()
f2fs: refactor read path to allow multiple postprocessing steps
fscrypt: allow synchronous bio decryption
f2fs: remain written times to update inode during fsync
f2fs: make assignment of t->dentry_bitmap more readable
f2fs: truncate preallocated blocks in error case
f2fs: fix a wrong condition in f2fs_skip_inode_update
f2fs: reserve bits for fs-verity
f2fs: Add a segment type check in inplace write
f2fs: no need to initialize zero value for GFP_F2FS_ZERO
f2fs: don't track new nat entry in nat set
f2fs: clean up with F2FS_BLK_ALIGN
f2fs: check blkaddr more accuratly before issue a bio
f2fs: Set GF_NOFS in read_cache_page_gfp while doing f2fs_quota_read
f2fs: introduce a new mount option test_dummy_encryption
f2fs: introduce F2FS_FEATURE_LOST_FOUND feature
f2fs: release locks before return in f2fs_ioc_gc_range()
f2fs: align memory boundary for bitops
f2fs: remove unneeded set_cold_node()
f2fs: add nowait aio support
f2fs: wrap all options with f2fs_sb_info.mount_opt
f2fs: Don't overwrite all types of node to keep node chain
f2fs: introduce mount option for fsync mode
f2fs: fix to restore old mount option in ->remount_fs
f2fs: wrap sb_rdonly with f2fs_readonly
f2fs: avoid selinux denial on CAP_SYS_RESOURCE
f2fs: support hot file extension
f2fs: fix to avoid race in between atomic write and background GC
f2fs: do gc in greedy mode for whole range if gc_urgent mode is set
f2fs: issue discard aggressively in the gc_urgent mode
f2fs: set readdir_ra by default
f2fs: add auto tuning for small devices
f2fs: add mount option for segment allocation policy
f2fs: don't stop GC if GC is contended
f2fs: expose extension_list sysfs entry
f2fs: fix to set KEEP_SIZE bit in f2fs_zero_range
f2fs: introduce sb_lock to make encrypt pwsalt update exclusive
f2fs: remove redundant initialization of pointer 'p'
f2fs: flush cp pack except cp pack 2 page at first
f2fs: clean up f2fs_sb_has_xxx functions
f2fs: remove redundant check of page type when submit bio
f2fs: fix to handle looped node chain during recovery
f2fs: handle quota for orphan inodes
f2fs: support passing down write hints to block layer with F2FS policy
f2fs: support passing down write hints given by users to block layer
f2fs: fix to clear CP_TRIMMED_FLAG
f2fs: support large nat bitmap
f2fs: fix to check extent cache in f2fs_drop_extent_tree
f2fs: restrict inline_xattr_size configuration
f2fs: fix heap mode to reset it back
f2fs: fix potential corruption in area before F2FS_SUPER_OFFSET
fscrypt: fix build with pre-4.6 gcc versions
fscrypt: fix up fscrypt_fname_encrypted_size() for internal use
fscrypt: define fscrypt_fname_alloc_buffer() to be for presented names
fscrypt: calculate NUL-padding length in one place only
fscrypt: move fscrypt_symlink_data to fscrypt_private.h
fscrypt: remove fscrypt_fname_usr_to_disk()
f2fs: switch to fscrypt_get_symlink()
f2fs: switch to fscrypt ->symlink() helper functions
fscrypt: new helper function - fscrypt_get_symlink()
fscrypt: new helper functions for ->symlink()
fscrypt: trim down fscrypt.h includes
fscrypt: move fscrypt_is_dot_dotdot() to fs/crypto/fname.c
fscrypt: move fscrypt_valid_enc_modes() to fscrypt_private.h
fscrypt: move fscrypt_operations declaration to fscrypt_supp.h
fscrypt: split fscrypt_dummy_context_enabled() into supp/notsupp versions
fscrypt: move fscrypt_ctx declaration to fscrypt_supp.h
fscrypt: move fscrypt_info_cachep declaration to fscrypt_private.h
fscrypt: move fscrypt_control_page() to supp/notsupp headers
fscrypt: move fscrypt_has_encryption_key() to supp/notsupp headers
f2fs: don't put dentry page in pagecache into highmem
f2fs: support inode creation time
f2fs: rebuild sit page from sit info in mem
f2fs: stop issuing discard if fs is readonly
f2fs: clean up duplicated assignment in init_discard_policy
f2fs: use GFP_F2FS_ZERO for cleanup
f2fs: allow to recover node blocks given updated checkpoint
f2fs: recover some i_inline flags
f2fs: correct removexattr behavior for null valued extended attribute
f2fs: drop page cache after fs shutdown
f2fs: stop gc/discard thread after fs shutdown
f2fs: hanlde error case in f2fs_ioc_shutdown
f2fs: split need_inplace_update
f2fs: fix to update last_disk_size correctly
f2fs: kill F2FS_INLINE_XATTR_ADDRS for cleanup
f2fs: clean up error path of fill_super
f2fs: avoid hungtask when GC encrypted block if io_bits is set
f2fs: allow quota to use reserved blocks
f2fs: fix to drop all inmem pages correctly
f2fs: speed up defragment on sparse file
f2fs: support F2FS_IOC_PRECACHE_EXTENTS
f2fs: add an ioctl to disable GC for specific file
f2fs: prevent newly created inode from being dirtied incorrectly
f2fs: support FIEMAP_FLAG_XATTR
f2fs: fix to cover f2fs_inline_data_fiemap with inode_lock
f2fs: check node page again in write end io
f2fs: fix to caclulate required free section correctly
f2fs: handle newly created page when revoking inmem pages
f2fs: add resgid and resuid to reserve root blocks
f2fs: implement cgroup writeback support
f2fs: remove unused pend_list_tag
f2fs: avoid high cpu usage in discard thread
f2fs: make local functions static
f2fs: add reserved blocks for root user
f2fs: check segment type in __f2fs_replace_block
f2fs: update inode info to inode page for new file
f2fs: show precise # of blocks that user/root can use
f2fs: clean up unneeded declaration
f2fs: continue to do direct IO if we only preallocate partial blocks
f2fs: enable quota at remount from r to w
f2fs: skip stop_checkpoint for user data writes
f2fs: fix missing error number for xattr operation
f2fs: recover directory operations by fsync
f2fs: return error during fill_super
f2fs: fix an error case of missing update inode page
f2fs: fix potential hangtask in f2fs_trace_pid
f2fs: no need return value in restore summary process
f2fs: use unlikely for release case
f2fs: don't return value in truncate_data_blocks_range
f2fs: clean up f2fs_map_blocks
f2fs: clean up hash codes
f2fs: fix error handling in fill_super
f2fs: spread f2fs_k{m,z}alloc
f2fs: inject fault to kvmalloc
f2fs: inject fault to kzalloc
f2fs: remove a redundant conditional expression
f2fs: apply write hints to select the type of segment for direct write
f2fs: switch to fscrypt_prepare_setattr()
f2fs: switch to fscrypt_prepare_lookup()
f2fs: switch to fscrypt_prepare_rename()
f2fs: switch to fscrypt_prepare_link()
f2fs: switch to fscrypt_file_open()
f2fs: remove repeated f2fs_bug_on
f2fs: remove an excess variable
f2fs: fix lock dependency in between dio_rwsem & i_mmap_sem
f2fs: remove unused parameter
f2fs: still write data if preallocate only partial blocks
f2fs: introduce sysfs readdir_ra to readahead inode block in readdir
f2fs: fix concurrent problem for updating free bitmap
f2fs: remove unneeded memory footprint accounting
f2fs: no need to read nat block if nat_block_bitmap is set
f2fs: reserve nid resource for quota sysfile
fscrypt: resolve some cherry-pick bugs
fscrypt: move to generic async completion
crypto: introduce crypto wait for async op
fscrypt: lock mutex before checking for bounce page pool
fscrypt: new helper function - fscrypt_prepare_setattr()
fscrypt: new helper function - fscrypt_prepare_lookup()
fscrypt: new helper function - fscrypt_prepare_rename()
fscrypt: new helper function - fscrypt_prepare_link()
fscrypt: new helper function - fscrypt_file_open()
fscrypt: new helper function - fscrypt_require_key()
fscrypt: remove unneeded empty fscrypt_operations structs
fscrypt: remove ->is_encrypted()
fscrypt: switch from ->is_encrypted() to IS_ENCRYPTED()
fs, fscrypt: add an S_ENCRYPTED inode flag
fscrypt: clean up include file mess
fscrypt: fix dereference of NULL user_key_payload
fscrypt: make ->dummy_context() return bool
f2fs: deny accessing encryption policy if encryption is off
f2fs: inject fault in inc_valid_node_count
f2fs: fix to clear FI_NO_PREALLOC
f2fs: expose quota information in debugfs
f2fs: separate nat entry mem alloc from nat_tree_lock
f2fs: validate before set/clear free nat bitmap
f2fs: avoid opened loop codes in __add_ino_entry
f2fs: apply write hints to select the type of segments for buffered write
f2fs: introduce scan_curseg_cache for cleanup
f2fs: optimize the way of traversing free_nid_bitmap
f2fs: keep scanning until enough free nids are acquired
f2fs: trace checkpoint reason in fsync()
f2fs: keep isize once block is reserved cross EOF
f2fs: avoid race in between GC and block exchange
f2fs: save a multiplication for last_nid calculation
f2fs: fix summary info corruption
f2fs: remove dead code in update_meta_page
f2fs: remove unneeded semicolon
f2fs: don't bother with inode->i_version
f2fs: check curseg space before foreground GC
f2fs: use rw_semaphore to protect SIT cache
f2fs: support quota sys files
f2fs: add quota_ino feature infra
f2fs: optimize __update_nat_bits
f2fs: modify for accurate fggc node io stat
Revert "f2fs: handle dirty segments inside refresh_sit_entry"
f2fs: add a function to move nid
f2fs: export SSR allocation threshold
f2fs: give correct trimmed blocks in fstrim
f2fs: support bio allocation error injection
f2fs: support get_page error injection
f2fs: add missing sysfs description
f2fs: support soft block reservation
f2fs: handle error case when adding xattr entry
f2fs: support flexible inline xattr size
f2fs: show current cp state
f2fs: add missing quota_initialize
f2fs: show # of dirty segments via sysfs
f2fs: stop all the operations by cp_error flag
f2fs: remove several redundant assignments
f2fs: avoid using timespec
f2fs: fix to correct no_fggc_candidate
Revert "f2fs: return wrong error number on f2fs_quota_write"
f2fs: remove obsolete pointer for truncate_xattr_node
f2fs: retry ENOMEM for quota_read|write
f2fs: limit # of inmemory pages
f2fs: update ctx->pos correctly when hitting hole in directory
f2fs: relocate readahead codes in readdir()
f2fs: allow readdir() to be interrupted
f2fs: trace f2fs_readdir
f2fs: trace f2fs_lookup
f2fs: skip searching non-exist range in truncate_hole
f2fs: expose some sectors to user in inline data or dentry case
f2fs: avoid stale fi->gdirty_list pointer
f2fs/crypto: drop crypto key at evict_inode only
f2fs: fix to avoid race when accessing last_disk_size
f2fs: Fix bool initialization/comparison
f2fs: give up CP_TRIMMED_FLAG if it drops discards
f2fs: trace f2fs_remove_discard
f2fs: reduce cmd_lock coverage in __issue_discard_cmd
f2fs: split discard policy
f2fs: wrap discard policy
f2fs: support issuing/waiting discard in range
f2fs: fix to flush multiple device in checkpoint
f2fs: enhance multiple device flush
f2fs: fix to show ino management cache size correctly
f2fs: drop FI_UPDATE_WRITE tag after f2fs_issue_flush
f2fs: obsolete ALLOC_NID_LIST list
f2fs: convert inline data for direct I/O & FI_NO_PREALLOC
f2fs: allow readpages with NULL file pointer
f2fs: show flush list status in sysfs
f2fs: introduce read_xattr_block
f2fs: introduce read_inline_xattr
Revert "f2fs: reuse nids more aggressively"
Revert "f2fs: node segment is prior to data segment selected victim"
f2fs: fix potential panic during fstrim
f2fs: hurry up to issue discard after io interruption
f2fs: fix to show correct discard_granularity in sysfs
f2fs: detect dirty inode in evict_inode
f2fs: clear radix tree dirty tag of pages whose dirty flag is cleared
f2fs: speed up gc_urgent mode with SSR
f2fs: better to wait for fstrim completion
f2fs: avoid race in between read xattr & write xattr
f2fs: make get_lock_data_page to handle encrypted inode
f2fs: use generic terms used for encrypted block management
f2fs: introduce f2fs_encrypted_file for clean-up
Revert "f2fs: add a new function get_ssr_cost"
f2fs: constify super_operations
f2fs: fix to wake up all sleeping flusher
f2fs: avoid race in between atomic_read & atomic_inc
f2fs: remove unneeded parameter of change_curseg
f2fs: update i_flags correctly
f2fs: don't check inode's checksum if it was dirtied or writebacked
f2fs: don't need to update inode checksum for recovery
f2fs: trigger fdatasync for non-atomic_write file
f2fs: fix to avoid race in between aio and gc
f2fs: wake up discard_thread iff there is a candidate
f2fs: return error when accessing insane flie offset
f2fs: trigger normal fsync for non-atomic_write file
f2fs: clear FI_HOT_DATA correctly
f2fs: fix out-of-order execution in f2fs_issue_flush
f2fs: issue discard commands if gc_urgent is set
f2fs: introduce discard_granularity sysfs entry
f2fs: remove unused function overprovision_sections
f2fs: check hot_data for roll-forward recovery
f2fs: add tracepoint for f2fs_gc
f2fs: retry to revoke atomic commit in -ENOMEM case
f2fs: let fill_super handle roll-forward errors
f2fs: merge equivalent flags F2FS_GET_BLOCK_[READ|DIO]
f2fs: support journalled quota
f2fs: fix potential overflow when adjusting GC cycle
f2fs: avoid unneeded sync on quota file
f2fs: introduce gc_urgent mode for background GC
f2fs: use IPU for cold files
f2fs: fix the size value in __check_sit_bitmap
f2fs: add app/fs io stat
f2fs: do not change the valid_block value if cur_valid_map was wrongly set or cleared
f2fs: update cur_valid_map_mir together with cur_valid_map
f2fs: use printk_ratelimited for f2fs_msg
f2fs: expose features to sysfs entry
f2fs: support inode checksum
f2fs: return wrong error number on f2fs_quota_write
f2fs: provide f2fs_balance_fs to __write_node_page
f2fs: introduce f2fs_statfs_project
f2fs: don't need to wait for node writes for atomic write
f2fs: avoid naming confusion of sysfs init
f2fs: support project quota
f2fs: record quota during dot{,dot} recovery
f2fs: enhance on-disk inode structure scalability
f2fs: make max inline size changeable
f2fs: add ioctl to expose current features
f2fs: make background threads of f2fs being aware of freezing
f2fs: don't give partially written atomic data from process crash
f2fs: give a try to do atomic write in -ENOMEM case
f2fs: preserve i_mode if __f2fs_set_acl() fails
f2fs: alloc new nids for xattr block in recovery
f2fs: spread struct f2fs_dentry_ptr for inline path
f2fs: remove unused input parameter
f2fs: avoid cpu lockup
f2fs: include seq_file.h for sysfs.c
f2fs: Don't clear SGID when inheriting ACLs
f2fs: remove extra inode_unlock() in error path
fscrypt: add support for AES-128-CBC
fscrypt: inline fscrypt_free_filename()
f2fs: make more close to v4.13-rc1
f2fs: support plain user/group quota
f2fs: avoid deadlock caused by lock order of page and lock_op
f2fs: use spin_{,un}lock_irq{save,restore}
f2fs: relax migratepage for atomic written page
f2fs: don't count inode block in in-memory inode.i_blocks
Revert "f2fs: fix to clean previous mount option when remount_fs"
f2fs: do not set LOST_PINO for renamed dir
f2fs: do not set LOST_PINO for newly created dir
f2fs: skip ->writepages for {mete,node}_inode during recovery
f2fs: introduce __check_sit_bitmap
f2fs: stop gc/discard thread in prior during umount
f2fs: introduce reserved_blocks in sysfs
f2fs: avoid redundant f2fs_flush after remount
f2fs: report # of free inodes more precisely
f2fs: add ioctl to do gc with target block address
f2fs: don't need to check encrypted inode for partial truncation
f2fs: measure inode.i_blocks as generic filesystem
f2fs: set CP_TRIMMED_FLAG correctly
f2fs: require key for truncate(2) of encrypted file
f2fs: move sysfs code from super.c to fs/f2fs/sysfs.c
f2fs: clean up sysfs codes
f2fs: fix wrong error number of fill_super
f2fs: fix to show injection rate in ->show_options
f2fs: Fix a return value in case of error in 'f2fs_fill_super'
f2fs: use proper variable name
f2fs: fix to avoid panic when encountering corrupt node
f2fs: don't track newly allocated nat entry in list
f2fs: add f2fs_bug_on in __remove_discard_cmd
f2fs: introduce __wait_one_discard_bio
f2fs: dax: fix races between page faults and truncating pages
f2fs: simplify the way of calulating next nat address
f2fs: sanity check size of nat and sit cache
f2fs: fix a panic caused by NULL flush_cmd_control
f2fs: remove the unnecessary cast for PTR_ERR
f2fs: remove false-positive bug_on
f2fs: Do not issue small discards in LFS mode
f2fs: don't bother checking for encryption key in ->write_iter()
f2fs: don't bother checking for encryption key in ->mmap()
f2fs: wait discard IO completion without cmd_lock held
f2fs: wake up all waiters in f2fs_submit_discard_endio
f2fs: show more info if fail to issue discard
f2fs: introduce io_list for serialize data/node IOs
f2fs: split wio_mutex
f2fs: combine huge num of discard rb tree consistence checks
f2fs: fix a bug caused by NULL extent tree
f2fs: try to freeze in gc and discard threads
f2fs: add a new function get_ssr_cost
f2fs: declare load_free_nid_bitmap static
f2fs: avoid f2fs_lock_op for IPU writes
f2fs: split bio cache
f2fs: use fio instead of multiple parameters
f2fs: remove unnecessary read cases in merged IO flow
f2fs: use f2fs_submit_page_bio for ra_meta_pages
f2fs: make sure f2fs_gc returns consistent errno
f2fs: load inode's flag from disk
f2fs: sanity check checkpoint segno and blkoff
f2fs, block_dump: give WRITE direction to submit_bio
fscrypt: correct collision claim for digested names
f2fs: switch to using fscrypt_match_name()
fscrypt: introduce helper function for filename matching
fscrypt: fix context consistency check when key(s) unavailable
fscrypt: Move key structure and constants to uapi
fscrypt: remove fscrypt_symlink_data_len()
fscrypt: remove unnecessary checks for NULL operations
fscrypt: eliminate ->prepare_context() operation
fscrypt: remove broken support for detecting keyring key revocation
fscrypt: avoid collisions when presenting long encrypted filenames
f2fs: check entire encrypted bigname when finding a dentry
f2fs: sync f2fs_lookup() with ext4_lookup()
f2fs: fix a mount fail for wrong next_scan_nid
f2fs: relocate inode_{,un}lock in F2FS_IOC_SETFLAGS
f2fs: show available_nids in f2fs/status
f2fs: flush dirty nats periodically
f2fs: introduce CP_TRIMMED_FLAG to avoid unneeded discard
f2fs: allow cpc->reason to indicate more than one reason
f2fs: release cp and dnode lock before IPU
f2fs: shrink size of struct discard_cmd
f2fs: don't hold cmd_lock during waiting discard command
f2fs: nullify fio->encrypted_page for each writes
f2fs: sanity check segment count
f2fs: introduce valid_ipu_blkaddr to clean up
f2fs: lookup extent cache first under IPU scenario
f2fs: reconstruct code to write a data page
f2fs: introduce __wait_discard_cmd
f2fs: introduce __issue_discard_cmd
f2fs: enable small discard by default
f2fs: delay awaking discard thread
f2fs: seperate read nat page from nat_tree_lock
f2fs: fix multiple f2fs_add_link() having same name for inline dentry
f2fs: skip encrypted inode in ASYNC IPU policy
f2fs: fix out-of free segments
f2fs: improve definition of statistic macros
f2fs: assign allocation hint for warm/cold data
f2fs: fix _IOW usage
f2fs: add ioctl to flush data from faster device to cold area
f2fs: introduce async IPU policy
f2fs: add undiscard blocks stat
f2fs: unlock cp_rwsem early for IPU writes
f2fs: introduce __check_rb_tree_consistence
f2fs: trace __submit_discard_cmd
f2fs: in prior to issue big discard
f2fs: clean up discard_cmd_control structure
f2fs: use rb-tree to track pending discard commands
f2fs: avoid dirty node pages in check_only recovery
f2fs: fix not to set fsync/dentry mark
f2fs: allocate hot_data for atomic writes
f2fs: give time to flush dirty pages for checkpoint
f2fs: fix fs corruption due to zero inode page
f2fs: shrink blk plug region
f2fs: extract rb-tree operation infrastructure
f2fs: avoid frequent checkpoint during f2fs_gc
f2fs: clean up some macros in terms of GET_SEGNO
f2fs: clean up get_valid_blocks with consistent parameter
f2fs: use segment number for get_valid_blocks
f2fs: guard macro variables with braces
f2fs: fix comment on f2fs_flush_merged_bios() after 86531d6b
f2fs: prevent waiter encountering incorrect discard states
f2fs: introduce f2fs_wait_discard_bios
f2fs: split discard_cmd_list
Revert "f2fs: put allocate_segment after refresh_sit_entry"
f2fs: split make_dentry_ptr() into block and inline versions
f2fs: submit bio of in-place-update pages
f2fs: remove the redundant variable definition
f2fs: avoid IO split due to mixed WB_SYNC_ALL and WB_SYNC_NONE
f2fs: write small sized IO to hot log
f2fs: use bitmap in discard_entry
f2fs: clean up destroy_discard_cmd_control
f2fs: count discard command entry
f2fs: show issued flush/discard count
f2fs: relax node version check for victim data in gc
f2fs: start SSR much eariler to avoid FG_GC
f2fs: allocate node and hot data in the beginning of partition
f2fs: fix wrong max cost initialization
f2fs: allow write page cache when writting cp
f2fs: don't reserve additional space in xattr block
f2fs: clean up xattr operation
f2fs: don't track volatile file in dirty inode list
f2fs: show the max number of volatile operations
f2fs: fix race condition in between free nid allocator/initializer
f2fs: use set_page_private marcro in f2fs_trace_pid
f2fs: fix recording invalid last_victim
f2fs: more reasonable mem_size calculating of ino_entry
f2fs: calculate the f2fs_stat_info into base_mem
f2fs: avoid stat_inc_atomic_write for non-atomic file
f2fs: sanity check of crc_offset from raw checkpoint
f2fs: cleanup the disk level filename updating
f2fs: cover update_free_nid_bitmap with nid_list_lock
f2fs: fix bad prefetchw of NULL page
f2fs: clear FI_DATA_EXIST flag in truncate_inline_inode
f2fs: move mnt_want_write_file after arguments checking
f2fs: check new size by inode_newsize_ok in f2fs_insert_range
f2fs: avoid copy date to user-space if move file range fail
f2fs: drop duplicate new_size assign in f2fs_zero_range
f2fs: adjust the way of calculating nat block
f2fs: add fault injection on f2fs_truncate
f2fs: check range before defragment
f2fs: use parameter max_items instead of PIDVEC_SIZE
f2fs: add a punch discard command function
f2fs: allocate a bio for discarding when actually issuing it
f2fs: skip writeback meta pages if cp_mutex acquire failed
f2fs: show more precise message on orphan recovery failure
f2fs: remove dead macro PGOFS_OF_NEXT_DNODE
f2fs: drop duplicate radix tree lookup of nat_entry_set
f2fs: make sure trace all f2fs_issue_flush
f2fs: don't allow volatile writes for non-regular file
f2fs: don't allow atomic writes for not regular files
f2fs: fix stale ATOMIC_WRITTEN_PAGE private pointer
f2fs: build stat_info before orphan inode recovery
f2fs: fix the fault of calculating blkstart twice
f2fs: fix the fault of checking F2FS_LINK_MAX for rename inode
f2fs: don't allow to get pino when filename is encrypted
f2fs: fix wrong error injection for evict_inode
f2fs: le32_to_cpu for ckpt->cp_pack_total_block_count
f2fs: le16_to_cpu for xattr->e_value_size
f2fs: don't need to invalidate wrong node page
f2fs: fix an error return value in truncate_partial_data_page
f2fs: combine nat_bits and free_nid_bitmap cache
f2fs: skip scanning free nid bitmap of full NAT blocks
f2fs: use __set{__clear}_bit_le
f2fs: update_free_nid_bitmap() can be static
f2fs: __update_nat_bits() can be static
f2fs: le16_to_cpu for xattr->e_value_size
f2fs: don't overwrite node block by SSR
f2fs: don't need to invalidate wrong node page
f2fs: fix an error return value in truncate_partial_data_page
fscrypt: catch up to v4.11-rc1
f2fs: avoid to flush nat journal entries
f2fs: avoid to issue redundant discard commands
f2fs: fix a plint compile warning
f2fs: add f2fs_drop_inode tracepoint
f2fs: Fix zoned block device support
f2fs: remove redundant set_page_dirty()
f2fs: fix to enlarge size of write_io_dummy mempool
f2fs: fix memory leak of write_io_dummy mempool during umount
f2fs: fix to update F2FS_{CP_}WB_DATA count correctly
f2fs: use MAX_FREE_NIDS for the free nids target
f2fs: introduce free nid bitmap
f2fs: new helper cur_cp_crc() getting crc in f2fs_checkpoint
f2fs: update the comment of default nr_pages to skipping
f2fs: drop the duplicate pval in f2fs_getxattr
f2fs: Don't update the xattr data that same as the exist
f2fs: kill __is_extent_same
f2fs: avoid bggc->fggc when enough free segments are avaliable after cp
f2fs: select target segment with closer temperature in SSR mode
f2fs: show simple call stack in fault injection message
fscrypt: catch fscrypto_get_policy in v4.10-rc6
f2fs: use __clear_bit_le
f2fs: no need lock_op in f2fs_write_inline_data
f2fs: add bitmaps for empty or full NAT blocks
f2fs: replace rw semaphore extent_tree_lock with mutex lock
f2fs: avoid m_flags overlay when allocating more data blocks
f2fs: remove unsafe bitmap checking
f2fs: init local extent_info to avoid stale stack info in tp
f2fs: remove unnecessary condition check for write_checkpoint in f2fs_gc
f2fs: do SSR for node segments more aggresively
f2fs: check discard alignment only for SEQWRITE zones
f2fs: wait for discard completion after submission
f2fs: much larger batched trim_fs job
f2fs: avoid very large discard command
f2fs: find data segments across all the types
f2fs: do SSR in higher priority
f2fs: do SSR for data when there is enough free space
f2fs: node segment is prior to data segment selected victim
f2fs: put allocate_segment after refresh_sit_entry
f2fs: add ovp valid_blocks check for bg gc victim to fg_gc
f2fs: do not wait for writeback in write_begin
f2fs: replace __get_victim by dirty_segments in FG_GC
f2fs: fix multiple f2fs_add_link() calls having same name
f2fs: show actual device info in tracepoints
f2fs: use SSR for warm node as well
f2fs: enable inline_xattr by default
f2fs: introduce noinline_xattr mount option
f2fs: avoid reading NAT page by get_node_info
f2fs: remove build_free_nids() during checkpoint
f2fs: change recovery policy of xattr node block
f2fs: super: constify fscrypt_operations structure
f2fs: show checkpoint version at mount time
f2fs: remove preflush for nobarrier case
f2fs: check last page index in cached bio to decide submission
f2fs: check io submission more precisely
f2fs: fix trim_fs assignment
Revert "f2fs: remove batched discard in f2fs_trim_fs"
f2fs: fix missing bio_alloc(1)
f2fs: call internal __write_data_page directly
f2fs: avoid out-of-order execution of atomic writes
f2fs: move write_node_page above fsync_node_pages
f2fs: move flush tracepoint
f2fs: show # of APPEND and UPDATE inodes
f2fs: fix 446 coding style warnings in f2fs.h
f2fs: fix 3 coding style errors in f2fs.h
f2fs: declare missing static function
f2fs: show the fault injection mount option
f2fs: fix null pointer dereference when issuing flush in ->fsync
f2fs: fix to avoid overflow when left shifting page offset
f2fs: enhance lookup xattr
f2fs: fix a dead loop in f2fs_fiemap()
f2fs: do not preallocate blocks which has wrong buffer
f2fs: show # of on-going flush and discard bios
f2fs: add a kernel thread to issue discard commands asynchronously
f2fs: factor out discard command info into discard_cmd_control
f2fs: remove batched discard in f2fs_trim_fs
f2fs: reorganize stat information
f2fs: clean up flush/discard command namings
f2fs: check in-memory sit version bitmap
f2fs: check in-memory nat version bitmap
f2fs: check in-memory block bitmap
f2fs: introduce FI_ATOMIC_COMMIT
f2fs: clean up with list_{first, last}_entry
f2fs: return fs_trim if there is no candidate
f2fs: avoid needless checkpoint in f2fs_trim_fs
f2fs: relax async discard commands more
f2fs: drop exist_data for inline_data when truncated to 0
f2fs: don't allow encrypted operations without keys
f2fs: show the max number of atomic operations
f2fs: get io size bit from mount option
f2fs: support IO alignment for DATA and NODE writes
f2fs: add submit_bio tracepoint
f2fs: reassign new segment for mode=lfs
f2fs: fix a missing discard prefree segments
f2fs: use rb_entry_safe
f2fs: add a case of no need to read a page in write begin
f2fs: fix a problem of using memory after free
f2fs: remove unneeded condition
f2fs: don't cache nat entry if out of memory
f2fs: remove unused values in recover_fsync_data
f2fs: support async discard based on v4.9
f2fs: resolve op and op_flags confilcts
f2fs: remove wrong backported codes
f2fs: fix a missing size change in f2fs_setattr
fs/super.c: fix race between freeze_super() and thaw_super()
scripts/tags.sh: catch 4.9-rc6
f2fs: fix to access nullified flush_cmd_control pointer
f2fs: free meta pages if sanity check for ckpt is failed
f2fs: detect wrong layout
f2fs: call sync_fs when f2fs is idle
Revert "f2fs: use percpu_counter for # of dirty pages in inode"
f2fs: return AOP_WRITEPAGE_ACTIVATE for writepage
f2fs: do not activate auto_recovery for fallocated i_size
f2fs: fix 32-bit build
f2fs: set ->owner for debugfs status file's file_operations
f2fs: fix incorrect free inode count in ->statfs
f2fs: drop duplicate header timer.h
f2fs: fix wrong AUTO_RECOVER condition
f2fs: do not recover i_size if it's valid
f2fs: fix fdatasync
f2fs: fix to account total free nid correctly
f2fs: fix an infinite loop when flush nodes in cp
f2fs: don't wait writeback for datas during checkpoint
f2fs: fix wrong written_valid_blocks counting
f2fs: avoid BG_GC in f2fs_balance_fs
f2fs: fix redundant block allocation
f2fs: use err for f2fs_preallocate_blocks
f2fs: support multiple devices
f2fs: allow dio read for LFS mode
f2fs: revert segment allocation for direct IO
f2fs: return directly if block has been removed from the victim
Revert "f2fs: do not recover from previous remained wrong dnodes"
f2fs: remove checkpoint in f2fs_freeze
f2fs: assign segments correctly for direct_io
f2fs: fix wrong i_atime recovery
f2fs: record inode updating status correctly
f2fs: Trace reset zone events
f2fs: Reset sequential zones on zoned block devices
f2fs: Cache zoned block devices zone type
f2fs: Do not allow adaptive mode for host-managed zoned block devices
f2fs: Always enable discard for zoned blocks devices
f2fs: Suppress discard warning message for zoned block devices
f2fs: Check zoned block feature for host-managed zoned block devices
f2fs: Use generic zoned block device terminology
f2fs: Add missing break in switch-case
f2fs: avoid infinite loop in the EIO case on recover_orphan_inodes
f2fs: report error of f2fs_fill_dentries
fs/crypto: catch up 4.9-rc6
f2fs: hide a maybe-uninitialized warning
f2fs: remove percpu_count due to performance regression
f2fs: make clean inodes when flushing inode page
f2fs: keep dirty inodes selectively for checkpoint
f2fs: Replace CURRENT_TIME_SEC with current_time() for inode timestamps
f2fs: use BIO_MAX_PAGES for bio allocation
f2fs: declare static function for __build_free_nids
f2fs: call f2fs_balance_fs for setattr
f2fs: count dirty inodes to flush node pages during checkpoint
f2fs: avoid casted negative value as shrink count
f2fs: don't interrupt free nids building during nid allocation
f2fs: clean up free nid list operations
f2fs: split free nid list
f2fs: clear nlink if fail to add_link
f2fs: fix sparse warnings
f2fs: fix error handling in fsync_node_pages
f2fs: fix to update largest extent under lock
f2fs: be aware of extent beyond EOF in fiemap
f2fs: don't miss any f2fs_balance_fs cases
f2fs: add missing f2fs_balance_fs in f2fs_zero_range
f2fs: give a chance to detach from dirty list
f2fs: fix to release discard entries during checkpoint
f2fs: exclude free nids building and allocation
f2fs: fix to determine start_cp_addr by sbi->cur_cp_pack
f2fs: fix overflow due to condition check order
posix_acl: Clear SGID bit when setting file permissions
f2fs: fix wrong sum_page pointer in f2fs_gc
f2fs: backport from (4c1fad64 - Merge tag 'for-f2fs-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs)
Change-Id: I6c7208efc63ce7b13f26f0ec1cd3c8aef410eff0
Signed-off-by: Blagovest Kolenichev <bkolenichev@codeaurora.org>
Signed-off-by: Srinivasarao P <spathi@codeaurora.org>
2823 lines
84 KiB
C
2823 lines
84 KiB
C
/*
|
|
* mm/page-writeback.c
|
|
*
|
|
* Copyright (C) 2002, Linus Torvalds.
|
|
* Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
|
|
*
|
|
* Contains functions related to writing back dirty pages at the
|
|
* address_space level.
|
|
*
|
|
* 10Apr2002 Andrew Morton
|
|
* Initial version
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/export.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/init.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
|
|
#include <linux/pagevec.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/sched/rt.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <trace/events/writeback.h>
|
|
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* Sleep at most 200ms at a time in balance_dirty_pages().
|
|
*/
|
|
#define MAX_PAUSE max(HZ/5, 1)
|
|
|
|
/*
|
|
* Try to keep balance_dirty_pages() call intervals higher than this many pages
|
|
* by raising pause time to max_pause when falls below it.
|
|
*/
|
|
#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
|
|
|
|
/*
|
|
* Estimate write bandwidth at 200ms intervals.
|
|
*/
|
|
#define BANDWIDTH_INTERVAL max(HZ/5, 1)
|
|
|
|
#define RATELIMIT_CALC_SHIFT 10
|
|
|
|
/*
|
|
* After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
|
|
* will look to see if it needs to force writeback or throttling.
|
|
*/
|
|
static long ratelimit_pages = 32;
|
|
|
|
/* The following parameters are exported via /proc/sys/vm */
|
|
|
|
/*
|
|
* Start background writeback (via writeback threads) at this percentage
|
|
*/
|
|
int dirty_background_ratio = 10;
|
|
|
|
/*
|
|
* dirty_background_bytes starts at 0 (disabled) so that it is a function of
|
|
* dirty_background_ratio * the amount of dirtyable memory
|
|
*/
|
|
unsigned long dirty_background_bytes;
|
|
|
|
/*
|
|
* free highmem will not be subtracted from the total free memory
|
|
* for calculating free ratios if vm_highmem_is_dirtyable is true
|
|
*/
|
|
int vm_highmem_is_dirtyable;
|
|
|
|
/*
|
|
* The generator of dirty data starts writeback at this percentage
|
|
*/
|
|
int vm_dirty_ratio = 20;
|
|
|
|
/*
|
|
* vm_dirty_bytes starts at 0 (disabled) so that it is a function of
|
|
* vm_dirty_ratio * the amount of dirtyable memory
|
|
*/
|
|
unsigned long vm_dirty_bytes;
|
|
|
|
/*
|
|
* The interval between `kupdate'-style writebacks
|
|
*/
|
|
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
|
|
|
|
EXPORT_SYMBOL_GPL(dirty_writeback_interval);
|
|
|
|
/*
|
|
* The longest time for which data is allowed to remain dirty
|
|
*/
|
|
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
|
|
|
|
/*
|
|
* Flag that makes the machine dump writes/reads and block dirtyings.
|
|
*/
|
|
int block_dump;
|
|
|
|
/*
|
|
* Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
|
|
* a full sync is triggered after this time elapses without any disk activity.
|
|
*/
|
|
int laptop_mode;
|
|
|
|
EXPORT_SYMBOL(laptop_mode);
|
|
|
|
/* End of sysctl-exported parameters */
|
|
|
|
struct wb_domain global_wb_domain;
|
|
|
|
/* consolidated parameters for balance_dirty_pages() and its subroutines */
|
|
struct dirty_throttle_control {
|
|
#ifdef CONFIG_CGROUP_WRITEBACK
|
|
struct wb_domain *dom;
|
|
struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
|
|
#endif
|
|
struct bdi_writeback *wb;
|
|
struct fprop_local_percpu *wb_completions;
|
|
|
|
unsigned long avail; /* dirtyable */
|
|
unsigned long dirty; /* file_dirty + write + nfs */
|
|
unsigned long thresh; /* dirty threshold */
|
|
unsigned long bg_thresh; /* dirty background threshold */
|
|
|
|
unsigned long wb_dirty; /* per-wb counterparts */
|
|
unsigned long wb_thresh;
|
|
unsigned long wb_bg_thresh;
|
|
|
|
unsigned long pos_ratio;
|
|
};
|
|
|
|
/*
|
|
* Length of period for aging writeout fractions of bdis. This is an
|
|
* arbitrarily chosen number. The longer the period, the slower fractions will
|
|
* reflect changes in current writeout rate.
|
|
*/
|
|
#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
|
|
|
|
#ifdef CONFIG_CGROUP_WRITEBACK
|
|
|
|
#define GDTC_INIT(__wb) .wb = (__wb), \
|
|
.dom = &global_wb_domain, \
|
|
.wb_completions = &(__wb)->completions
|
|
|
|
#define GDTC_INIT_NO_WB .dom = &global_wb_domain
|
|
|
|
#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
|
|
.dom = mem_cgroup_wb_domain(__wb), \
|
|
.wb_completions = &(__wb)->memcg_completions, \
|
|
.gdtc = __gdtc
|
|
|
|
static bool mdtc_valid(struct dirty_throttle_control *dtc)
|
|
{
|
|
return dtc->dom;
|
|
}
|
|
|
|
static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
|
|
{
|
|
return dtc->dom;
|
|
}
|
|
|
|
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
|
|
{
|
|
return mdtc->gdtc;
|
|
}
|
|
|
|
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
|
|
{
|
|
return &wb->memcg_completions;
|
|
}
|
|
|
|
static void wb_min_max_ratio(struct bdi_writeback *wb,
|
|
unsigned long *minp, unsigned long *maxp)
|
|
{
|
|
unsigned long this_bw = wb->avg_write_bandwidth;
|
|
unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
|
|
unsigned long long min = wb->bdi->min_ratio;
|
|
unsigned long long max = wb->bdi->max_ratio;
|
|
|
|
/*
|
|
* @wb may already be clean by the time control reaches here and
|
|
* the total may not include its bw.
|
|
*/
|
|
if (this_bw < tot_bw) {
|
|
if (min) {
|
|
min *= this_bw;
|
|
do_div(min, tot_bw);
|
|
}
|
|
if (max < 100) {
|
|
max *= this_bw;
|
|
do_div(max, tot_bw);
|
|
}
|
|
}
|
|
|
|
*minp = min;
|
|
*maxp = max;
|
|
}
|
|
|
|
#else /* CONFIG_CGROUP_WRITEBACK */
|
|
|
|
#define GDTC_INIT(__wb) .wb = (__wb), \
|
|
.wb_completions = &(__wb)->completions
|
|
#define GDTC_INIT_NO_WB
|
|
#define MDTC_INIT(__wb, __gdtc)
|
|
|
|
static bool mdtc_valid(struct dirty_throttle_control *dtc)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
|
|
{
|
|
return &global_wb_domain;
|
|
}
|
|
|
|
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void wb_min_max_ratio(struct bdi_writeback *wb,
|
|
unsigned long *minp, unsigned long *maxp)
|
|
{
|
|
*minp = wb->bdi->min_ratio;
|
|
*maxp = wb->bdi->max_ratio;
|
|
}
|
|
|
|
#endif /* CONFIG_CGROUP_WRITEBACK */
|
|
|
|
/*
|
|
* In a memory zone, there is a certain amount of pages we consider
|
|
* available for the page cache, which is essentially the number of
|
|
* free and reclaimable pages, minus some zone reserves to protect
|
|
* lowmem and the ability to uphold the zone's watermarks without
|
|
* requiring writeback.
|
|
*
|
|
* This number of dirtyable pages is the base value of which the
|
|
* user-configurable dirty ratio is the effictive number of pages that
|
|
* are allowed to be actually dirtied. Per individual zone, or
|
|
* globally by using the sum of dirtyable pages over all zones.
|
|
*
|
|
* Because the user is allowed to specify the dirty limit globally as
|
|
* absolute number of bytes, calculating the per-zone dirty limit can
|
|
* require translating the configured limit into a percentage of
|
|
* global dirtyable memory first.
|
|
*/
|
|
|
|
/**
|
|
* zone_dirtyable_memory - number of dirtyable pages in a zone
|
|
* @zone: the zone
|
|
*
|
|
* Returns the zone's number of pages potentially available for dirty
|
|
* page cache. This is the base value for the per-zone dirty limits.
|
|
*/
|
|
static unsigned long zone_dirtyable_memory(struct zone *zone)
|
|
{
|
|
unsigned long nr_pages;
|
|
|
|
nr_pages = zone_page_state(zone, NR_FREE_PAGES);
|
|
/*
|
|
* Pages reserved for the kernel should not be considered
|
|
* dirtyable, to prevent a situation where reclaim has to
|
|
* clean pages in order to balance the zones.
|
|
*/
|
|
nr_pages -= min(nr_pages, zone->totalreserve_pages);
|
|
|
|
nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
|
|
nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
|
|
|
|
return nr_pages;
|
|
}
|
|
|
|
static unsigned long highmem_dirtyable_memory(unsigned long total)
|
|
{
|
|
#ifdef CONFIG_HIGHMEM
|
|
int node;
|
|
unsigned long x = 0;
|
|
|
|
for_each_node_state(node, N_HIGH_MEMORY) {
|
|
struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
|
|
|
|
x += zone_dirtyable_memory(z);
|
|
}
|
|
/*
|
|
* Unreclaimable memory (kernel memory or anonymous memory
|
|
* without swap) can bring down the dirtyable pages below
|
|
* the zone's dirty balance reserve and the above calculation
|
|
* will underflow. However we still want to add in nodes
|
|
* which are below threshold (negative values) to get a more
|
|
* accurate calculation but make sure that the total never
|
|
* underflows.
|
|
*/
|
|
if ((long)x < 0)
|
|
x = 0;
|
|
|
|
/*
|
|
* Make sure that the number of highmem pages is never larger
|
|
* than the number of the total dirtyable memory. This can only
|
|
* occur in very strange VM situations but we want to make sure
|
|
* that this does not occur.
|
|
*/
|
|
return min(x, total);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* global_dirtyable_memory - number of globally dirtyable pages
|
|
*
|
|
* Returns the global number of pages potentially available for dirty
|
|
* page cache. This is the base value for the global dirty limits.
|
|
*/
|
|
static unsigned long global_dirtyable_memory(void)
|
|
{
|
|
unsigned long x;
|
|
|
|
x = global_page_state(NR_FREE_PAGES);
|
|
/*
|
|
* Pages reserved for the kernel should not be considered
|
|
* dirtyable, to prevent a situation where reclaim has to
|
|
* clean pages in order to balance the zones.
|
|
*/
|
|
x -= min(x, totalreserve_pages);
|
|
|
|
x += global_page_state(NR_INACTIVE_FILE);
|
|
x += global_page_state(NR_ACTIVE_FILE);
|
|
|
|
if (!vm_highmem_is_dirtyable)
|
|
x -= highmem_dirtyable_memory(x);
|
|
|
|
return x + 1; /* Ensure that we never return 0 */
|
|
}
|
|
|
|
/**
|
|
* domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
|
|
* @dtc: dirty_throttle_control of interest
|
|
*
|
|
* Calculate @dtc->thresh and ->bg_thresh considering
|
|
* vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
|
|
* must ensure that @dtc->avail is set before calling this function. The
|
|
* dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
|
|
* real-time tasks.
|
|
*/
|
|
static void domain_dirty_limits(struct dirty_throttle_control *dtc)
|
|
{
|
|
const unsigned long available_memory = dtc->avail;
|
|
struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
|
|
unsigned long bytes = vm_dirty_bytes;
|
|
unsigned long bg_bytes = dirty_background_bytes;
|
|
/* convert ratios to per-PAGE_SIZE for higher precision */
|
|
unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
|
|
unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
|
|
unsigned long thresh;
|
|
unsigned long bg_thresh;
|
|
struct task_struct *tsk;
|
|
|
|
/* gdtc is !NULL iff @dtc is for memcg domain */
|
|
if (gdtc) {
|
|
unsigned long global_avail = gdtc->avail;
|
|
|
|
/*
|
|
* The byte settings can't be applied directly to memcg
|
|
* domains. Convert them to ratios by scaling against
|
|
* globally available memory. As the ratios are in
|
|
* per-PAGE_SIZE, they can be obtained by dividing bytes by
|
|
* number of pages.
|
|
*/
|
|
if (bytes)
|
|
ratio = min(DIV_ROUND_UP(bytes, global_avail),
|
|
PAGE_SIZE);
|
|
if (bg_bytes)
|
|
bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
|
|
PAGE_SIZE);
|
|
bytes = bg_bytes = 0;
|
|
}
|
|
|
|
if (bytes)
|
|
thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
|
|
else
|
|
thresh = (ratio * available_memory) / PAGE_SIZE;
|
|
|
|
if (bg_bytes)
|
|
bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
|
|
else
|
|
bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
|
|
|
|
if (bg_thresh >= thresh)
|
|
bg_thresh = thresh / 2;
|
|
tsk = current;
|
|
if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
|
|
bg_thresh += bg_thresh / 4;
|
|
thresh += thresh / 4;
|
|
}
|
|
dtc->thresh = thresh;
|
|
dtc->bg_thresh = bg_thresh;
|
|
|
|
/* we should eventually report the domain in the TP */
|
|
if (!gdtc)
|
|
trace_global_dirty_state(bg_thresh, thresh);
|
|
}
|
|
|
|
/**
|
|
* global_dirty_limits - background-writeback and dirty-throttling thresholds
|
|
* @pbackground: out parameter for bg_thresh
|
|
* @pdirty: out parameter for thresh
|
|
*
|
|
* Calculate bg_thresh and thresh for global_wb_domain. See
|
|
* domain_dirty_limits() for details.
|
|
*/
|
|
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
|
|
{
|
|
struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
|
|
|
|
gdtc.avail = global_dirtyable_memory();
|
|
domain_dirty_limits(&gdtc);
|
|
|
|
*pbackground = gdtc.bg_thresh;
|
|
*pdirty = gdtc.thresh;
|
|
}
|
|
|
|
/**
|
|
* zone_dirty_limit - maximum number of dirty pages allowed in a zone
|
|
* @zone: the zone
|
|
*
|
|
* Returns the maximum number of dirty pages allowed in a zone, based
|
|
* on the zone's dirtyable memory.
|
|
*/
|
|
static unsigned long zone_dirty_limit(struct zone *zone)
|
|
{
|
|
unsigned long zone_memory = zone_dirtyable_memory(zone);
|
|
struct task_struct *tsk = current;
|
|
unsigned long dirty;
|
|
|
|
if (vm_dirty_bytes)
|
|
dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
|
|
zone_memory / global_dirtyable_memory();
|
|
else
|
|
dirty = vm_dirty_ratio * zone_memory / 100;
|
|
|
|
if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
|
|
dirty += dirty / 4;
|
|
|
|
return dirty;
|
|
}
|
|
|
|
/**
|
|
* zone_dirty_ok - tells whether a zone is within its dirty limits
|
|
* @zone: the zone to check
|
|
*
|
|
* Returns %true when the dirty pages in @zone are within the zone's
|
|
* dirty limit, %false if the limit is exceeded.
|
|
*/
|
|
bool zone_dirty_ok(struct zone *zone)
|
|
{
|
|
unsigned long limit = zone_dirty_limit(zone);
|
|
|
|
return zone_page_state(zone, NR_FILE_DIRTY) +
|
|
zone_page_state(zone, NR_UNSTABLE_NFS) +
|
|
zone_page_state(zone, NR_WRITEBACK) <= limit;
|
|
}
|
|
|
|
int dirty_background_ratio_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int ret;
|
|
|
|
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
|
|
if (ret == 0 && write)
|
|
dirty_background_bytes = 0;
|
|
return ret;
|
|
}
|
|
|
|
int dirty_background_bytes_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int ret;
|
|
|
|
ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
|
|
if (ret == 0 && write)
|
|
dirty_background_ratio = 0;
|
|
return ret;
|
|
}
|
|
|
|
int dirty_ratio_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int old_ratio = vm_dirty_ratio;
|
|
int ret;
|
|
|
|
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
|
|
if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
|
|
writeback_set_ratelimit();
|
|
vm_dirty_bytes = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int dirty_bytes_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
unsigned long old_bytes = vm_dirty_bytes;
|
|
int ret;
|
|
|
|
ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
|
|
if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
|
|
writeback_set_ratelimit();
|
|
vm_dirty_ratio = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long wp_next_time(unsigned long cur_time)
|
|
{
|
|
cur_time += VM_COMPLETIONS_PERIOD_LEN;
|
|
/* 0 has a special meaning... */
|
|
if (!cur_time)
|
|
return 1;
|
|
return cur_time;
|
|
}
|
|
|
|
static void wb_domain_writeout_inc(struct wb_domain *dom,
|
|
struct fprop_local_percpu *completions,
|
|
unsigned int max_prop_frac)
|
|
{
|
|
__fprop_inc_percpu_max(&dom->completions, completions,
|
|
max_prop_frac);
|
|
/* First event after period switching was turned off? */
|
|
if (!unlikely(dom->period_time)) {
|
|
/*
|
|
* We can race with other __bdi_writeout_inc calls here but
|
|
* it does not cause any harm since the resulting time when
|
|
* timer will fire and what is in writeout_period_time will be
|
|
* roughly the same.
|
|
*/
|
|
dom->period_time = wp_next_time(jiffies);
|
|
mod_timer(&dom->period_timer, dom->period_time);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Increment @wb's writeout completion count and the global writeout
|
|
* completion count. Called from test_clear_page_writeback().
|
|
*/
|
|
static inline void __wb_writeout_inc(struct bdi_writeback *wb)
|
|
{
|
|
struct wb_domain *cgdom;
|
|
|
|
__inc_wb_stat(wb, WB_WRITTEN);
|
|
wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
|
|
wb->bdi->max_prop_frac);
|
|
|
|
cgdom = mem_cgroup_wb_domain(wb);
|
|
if (cgdom)
|
|
wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
|
|
wb->bdi->max_prop_frac);
|
|
}
|
|
|
|
void wb_writeout_inc(struct bdi_writeback *wb)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
__wb_writeout_inc(wb);
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(wb_writeout_inc);
|
|
|
|
/*
|
|
* On idle system, we can be called long after we scheduled because we use
|
|
* deferred timers so count with missed periods.
|
|
*/
|
|
static void writeout_period(unsigned long t)
|
|
{
|
|
struct wb_domain *dom = (void *)t;
|
|
int miss_periods = (jiffies - dom->period_time) /
|
|
VM_COMPLETIONS_PERIOD_LEN;
|
|
|
|
if (fprop_new_period(&dom->completions, miss_periods + 1)) {
|
|
dom->period_time = wp_next_time(dom->period_time +
|
|
miss_periods * VM_COMPLETIONS_PERIOD_LEN);
|
|
mod_timer(&dom->period_timer, dom->period_time);
|
|
} else {
|
|
/*
|
|
* Aging has zeroed all fractions. Stop wasting CPU on period
|
|
* updates.
|
|
*/
|
|
dom->period_time = 0;
|
|
}
|
|
}
|
|
|
|
int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
|
|
{
|
|
memset(dom, 0, sizeof(*dom));
|
|
|
|
spin_lock_init(&dom->lock);
|
|
|
|
init_timer_deferrable(&dom->period_timer);
|
|
dom->period_timer.function = writeout_period;
|
|
dom->period_timer.data = (unsigned long)dom;
|
|
|
|
dom->dirty_limit_tstamp = jiffies;
|
|
|
|
return fprop_global_init(&dom->completions, gfp);
|
|
}
|
|
|
|
#ifdef CONFIG_CGROUP_WRITEBACK
|
|
void wb_domain_exit(struct wb_domain *dom)
|
|
{
|
|
del_timer_sync(&dom->period_timer);
|
|
fprop_global_destroy(&dom->completions);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* bdi_min_ratio keeps the sum of the minimum dirty shares of all
|
|
* registered backing devices, which, for obvious reasons, can not
|
|
* exceed 100%.
|
|
*/
|
|
static unsigned int bdi_min_ratio;
|
|
|
|
int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
|
|
{
|
|
int ret = 0;
|
|
|
|
spin_lock_bh(&bdi_lock);
|
|
if (min_ratio > bdi->max_ratio) {
|
|
ret = -EINVAL;
|
|
} else {
|
|
min_ratio -= bdi->min_ratio;
|
|
if (bdi_min_ratio + min_ratio < 100) {
|
|
bdi_min_ratio += min_ratio;
|
|
bdi->min_ratio += min_ratio;
|
|
} else {
|
|
ret = -EINVAL;
|
|
}
|
|
}
|
|
spin_unlock_bh(&bdi_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (max_ratio > 100)
|
|
return -EINVAL;
|
|
|
|
spin_lock_bh(&bdi_lock);
|
|
if (bdi->min_ratio > max_ratio) {
|
|
ret = -EINVAL;
|
|
} else {
|
|
bdi->max_ratio = max_ratio;
|
|
bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
|
|
}
|
|
spin_unlock_bh(&bdi_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(bdi_set_max_ratio);
|
|
|
|
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
|
|
unsigned long bg_thresh)
|
|
{
|
|
return (thresh + bg_thresh) / 2;
|
|
}
|
|
|
|
static unsigned long hard_dirty_limit(struct wb_domain *dom,
|
|
unsigned long thresh)
|
|
{
|
|
return max(thresh, dom->dirty_limit);
|
|
}
|
|
|
|
/*
|
|
* Memory which can be further allocated to a memcg domain is capped by
|
|
* system-wide clean memory excluding the amount being used in the domain.
|
|
*/
|
|
static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
|
|
unsigned long filepages, unsigned long headroom)
|
|
{
|
|
struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
|
|
unsigned long clean = filepages - min(filepages, mdtc->dirty);
|
|
unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
|
|
unsigned long other_clean = global_clean - min(global_clean, clean);
|
|
|
|
mdtc->avail = filepages + min(headroom, other_clean);
|
|
}
|
|
|
|
/**
|
|
* __wb_calc_thresh - @wb's share of dirty throttling threshold
|
|
* @dtc: dirty_throttle_context of interest
|
|
*
|
|
* Returns @wb's dirty limit in pages. The term "dirty" in the context of
|
|
* dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
|
|
*
|
|
* Note that balance_dirty_pages() will only seriously take it as a hard limit
|
|
* when sleeping max_pause per page is not enough to keep the dirty pages under
|
|
* control. For example, when the device is completely stalled due to some error
|
|
* conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
|
|
* In the other normal situations, it acts more gently by throttling the tasks
|
|
* more (rather than completely block them) when the wb dirty pages go high.
|
|
*
|
|
* It allocates high/low dirty limits to fast/slow devices, in order to prevent
|
|
* - starving fast devices
|
|
* - piling up dirty pages (that will take long time to sync) on slow devices
|
|
*
|
|
* The wb's share of dirty limit will be adapting to its throughput and
|
|
* bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
|
|
*/
|
|
static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
|
|
{
|
|
struct wb_domain *dom = dtc_dom(dtc);
|
|
unsigned long thresh = dtc->thresh;
|
|
u64 wb_thresh;
|
|
long numerator, denominator;
|
|
unsigned long wb_min_ratio, wb_max_ratio;
|
|
|
|
/*
|
|
* Calculate this BDI's share of the thresh ratio.
|
|
*/
|
|
fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
|
|
&numerator, &denominator);
|
|
|
|
wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
|
|
wb_thresh *= numerator;
|
|
do_div(wb_thresh, denominator);
|
|
|
|
wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
|
|
|
|
wb_thresh += (thresh * wb_min_ratio) / 100;
|
|
if (wb_thresh > (thresh * wb_max_ratio) / 100)
|
|
wb_thresh = thresh * wb_max_ratio / 100;
|
|
|
|
return wb_thresh;
|
|
}
|
|
|
|
unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
|
|
{
|
|
struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
|
|
.thresh = thresh };
|
|
return __wb_calc_thresh(&gdtc);
|
|
}
|
|
|
|
/*
|
|
* setpoint - dirty 3
|
|
* f(dirty) := 1.0 + (----------------)
|
|
* limit - setpoint
|
|
*
|
|
* it's a 3rd order polynomial that subjects to
|
|
*
|
|
* (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
|
|
* (2) f(setpoint) = 1.0 => the balance point
|
|
* (3) f(limit) = 0 => the hard limit
|
|
* (4) df/dx <= 0 => negative feedback control
|
|
* (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
|
|
* => fast response on large errors; small oscillation near setpoint
|
|
*/
|
|
static long long pos_ratio_polynom(unsigned long setpoint,
|
|
unsigned long dirty,
|
|
unsigned long limit)
|
|
{
|
|
long long pos_ratio;
|
|
long x;
|
|
|
|
x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
|
|
(limit - setpoint) | 1);
|
|
pos_ratio = x;
|
|
pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
|
|
pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
|
|
pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
|
|
|
|
return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* Dirty position control.
|
|
*
|
|
* (o) global/bdi setpoints
|
|
*
|
|
* We want the dirty pages be balanced around the global/wb setpoints.
|
|
* When the number of dirty pages is higher/lower than the setpoint, the
|
|
* dirty position control ratio (and hence task dirty ratelimit) will be
|
|
* decreased/increased to bring the dirty pages back to the setpoint.
|
|
*
|
|
* pos_ratio = 1 << RATELIMIT_CALC_SHIFT
|
|
*
|
|
* if (dirty < setpoint) scale up pos_ratio
|
|
* if (dirty > setpoint) scale down pos_ratio
|
|
*
|
|
* if (wb_dirty < wb_setpoint) scale up pos_ratio
|
|
* if (wb_dirty > wb_setpoint) scale down pos_ratio
|
|
*
|
|
* task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
|
|
*
|
|
* (o) global control line
|
|
*
|
|
* ^ pos_ratio
|
|
* |
|
|
* | |<===== global dirty control scope ======>|
|
|
* 2.0 .............*
|
|
* | .*
|
|
* | . *
|
|
* | . *
|
|
* | . *
|
|
* | . *
|
|
* | . *
|
|
* 1.0 ................................*
|
|
* | . . *
|
|
* | . . *
|
|
* | . . *
|
|
* | . . *
|
|
* | . . *
|
|
* 0 +------------.------------------.----------------------*------------->
|
|
* freerun^ setpoint^ limit^ dirty pages
|
|
*
|
|
* (o) wb control line
|
|
*
|
|
* ^ pos_ratio
|
|
* |
|
|
* | *
|
|
* | *
|
|
* | *
|
|
* | *
|
|
* | * |<=========== span ============>|
|
|
* 1.0 .......................*
|
|
* | . *
|
|
* | . *
|
|
* | . *
|
|
* | . *
|
|
* | . *
|
|
* | . *
|
|
* | . *
|
|
* | . *
|
|
* | . *
|
|
* | . *
|
|
* | . *
|
|
* 1/4 ...............................................* * * * * * * * * * * *
|
|
* | . .
|
|
* | . .
|
|
* | . .
|
|
* 0 +----------------------.-------------------------------.------------->
|
|
* wb_setpoint^ x_intercept^
|
|
*
|
|
* The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
|
|
* be smoothly throttled down to normal if it starts high in situations like
|
|
* - start writing to a slow SD card and a fast disk at the same time. The SD
|
|
* card's wb_dirty may rush to many times higher than wb_setpoint.
|
|
* - the wb dirty thresh drops quickly due to change of JBOD workload
|
|
*/
|
|
static void wb_position_ratio(struct dirty_throttle_control *dtc)
|
|
{
|
|
struct bdi_writeback *wb = dtc->wb;
|
|
unsigned long write_bw = wb->avg_write_bandwidth;
|
|
unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
|
|
unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
|
|
unsigned long wb_thresh = dtc->wb_thresh;
|
|
unsigned long x_intercept;
|
|
unsigned long setpoint; /* dirty pages' target balance point */
|
|
unsigned long wb_setpoint;
|
|
unsigned long span;
|
|
long long pos_ratio; /* for scaling up/down the rate limit */
|
|
long x;
|
|
|
|
dtc->pos_ratio = 0;
|
|
|
|
if (unlikely(dtc->dirty >= limit))
|
|
return;
|
|
|
|
/*
|
|
* global setpoint
|
|
*
|
|
* See comment for pos_ratio_polynom().
|
|
*/
|
|
setpoint = (freerun + limit) / 2;
|
|
pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
|
|
|
|
/*
|
|
* The strictlimit feature is a tool preventing mistrusted filesystems
|
|
* from growing a large number of dirty pages before throttling. For
|
|
* such filesystems balance_dirty_pages always checks wb counters
|
|
* against wb limits. Even if global "nr_dirty" is under "freerun".
|
|
* This is especially important for fuse which sets bdi->max_ratio to
|
|
* 1% by default. Without strictlimit feature, fuse writeback may
|
|
* consume arbitrary amount of RAM because it is accounted in
|
|
* NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
|
|
*
|
|
* Here, in wb_position_ratio(), we calculate pos_ratio based on
|
|
* two values: wb_dirty and wb_thresh. Let's consider an example:
|
|
* total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
|
|
* limits are set by default to 10% and 20% (background and throttle).
|
|
* Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
|
|
* wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
|
|
* about ~6K pages (as the average of background and throttle wb
|
|
* limits). The 3rd order polynomial will provide positive feedback if
|
|
* wb_dirty is under wb_setpoint and vice versa.
|
|
*
|
|
* Note, that we cannot use global counters in these calculations
|
|
* because we want to throttle process writing to a strictlimit wb
|
|
* much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
|
|
* in the example above).
|
|
*/
|
|
if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
|
|
long long wb_pos_ratio;
|
|
|
|
if (dtc->wb_dirty < 8) {
|
|
dtc->pos_ratio = min_t(long long, pos_ratio * 2,
|
|
2 << RATELIMIT_CALC_SHIFT);
|
|
return;
|
|
}
|
|
|
|
if (dtc->wb_dirty >= wb_thresh)
|
|
return;
|
|
|
|
wb_setpoint = dirty_freerun_ceiling(wb_thresh,
|
|
dtc->wb_bg_thresh);
|
|
|
|
if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
|
|
return;
|
|
|
|
wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
|
|
wb_thresh);
|
|
|
|
/*
|
|
* Typically, for strictlimit case, wb_setpoint << setpoint
|
|
* and pos_ratio >> wb_pos_ratio. In the other words global
|
|
* state ("dirty") is not limiting factor and we have to
|
|
* make decision based on wb counters. But there is an
|
|
* important case when global pos_ratio should get precedence:
|
|
* global limits are exceeded (e.g. due to activities on other
|
|
* wb's) while given strictlimit wb is below limit.
|
|
*
|
|
* "pos_ratio * wb_pos_ratio" would work for the case above,
|
|
* but it would look too non-natural for the case of all
|
|
* activity in the system coming from a single strictlimit wb
|
|
* with bdi->max_ratio == 100%.
|
|
*
|
|
* Note that min() below somewhat changes the dynamics of the
|
|
* control system. Normally, pos_ratio value can be well over 3
|
|
* (when globally we are at freerun and wb is well below wb
|
|
* setpoint). Now the maximum pos_ratio in the same situation
|
|
* is 2. We might want to tweak this if we observe the control
|
|
* system is too slow to adapt.
|
|
*/
|
|
dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We have computed basic pos_ratio above based on global situation. If
|
|
* the wb is over/under its share of dirty pages, we want to scale
|
|
* pos_ratio further down/up. That is done by the following mechanism.
|
|
*/
|
|
|
|
/*
|
|
* wb setpoint
|
|
*
|
|
* f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
|
|
*
|
|
* x_intercept - wb_dirty
|
|
* := --------------------------
|
|
* x_intercept - wb_setpoint
|
|
*
|
|
* The main wb control line is a linear function that subjects to
|
|
*
|
|
* (1) f(wb_setpoint) = 1.0
|
|
* (2) k = - 1 / (8 * write_bw) (in single wb case)
|
|
* or equally: x_intercept = wb_setpoint + 8 * write_bw
|
|
*
|
|
* For single wb case, the dirty pages are observed to fluctuate
|
|
* regularly within range
|
|
* [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
|
|
* for various filesystems, where (2) can yield in a reasonable 12.5%
|
|
* fluctuation range for pos_ratio.
|
|
*
|
|
* For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
|
|
* own size, so move the slope over accordingly and choose a slope that
|
|
* yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
|
|
*/
|
|
if (unlikely(wb_thresh > dtc->thresh))
|
|
wb_thresh = dtc->thresh;
|
|
/*
|
|
* It's very possible that wb_thresh is close to 0 not because the
|
|
* device is slow, but that it has remained inactive for long time.
|
|
* Honour such devices a reasonable good (hopefully IO efficient)
|
|
* threshold, so that the occasional writes won't be blocked and active
|
|
* writes can rampup the threshold quickly.
|
|
*/
|
|
wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
|
|
/*
|
|
* scale global setpoint to wb's:
|
|
* wb_setpoint = setpoint * wb_thresh / thresh
|
|
*/
|
|
x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
|
|
wb_setpoint = setpoint * (u64)x >> 16;
|
|
/*
|
|
* Use span=(8*write_bw) in single wb case as indicated by
|
|
* (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
|
|
*
|
|
* wb_thresh thresh - wb_thresh
|
|
* span = --------- * (8 * write_bw) + ------------------ * wb_thresh
|
|
* thresh thresh
|
|
*/
|
|
span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
|
|
x_intercept = wb_setpoint + span;
|
|
|
|
if (dtc->wb_dirty < x_intercept - span / 4) {
|
|
pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
|
|
(x_intercept - wb_setpoint) | 1);
|
|
} else
|
|
pos_ratio /= 4;
|
|
|
|
/*
|
|
* wb reserve area, safeguard against dirty pool underrun and disk idle
|
|
* It may push the desired control point of global dirty pages higher
|
|
* than setpoint.
|
|
*/
|
|
x_intercept = wb_thresh / 2;
|
|
if (dtc->wb_dirty < x_intercept) {
|
|
if (dtc->wb_dirty > x_intercept / 8)
|
|
pos_ratio = div_u64(pos_ratio * x_intercept,
|
|
dtc->wb_dirty);
|
|
else
|
|
pos_ratio *= 8;
|
|
}
|
|
|
|
dtc->pos_ratio = pos_ratio;
|
|
}
|
|
|
|
static void wb_update_write_bandwidth(struct bdi_writeback *wb,
|
|
unsigned long elapsed,
|
|
unsigned long written)
|
|
{
|
|
const unsigned long period = roundup_pow_of_two(3 * HZ);
|
|
unsigned long avg = wb->avg_write_bandwidth;
|
|
unsigned long old = wb->write_bandwidth;
|
|
u64 bw;
|
|
|
|
/*
|
|
* bw = written * HZ / elapsed
|
|
*
|
|
* bw * elapsed + write_bandwidth * (period - elapsed)
|
|
* write_bandwidth = ---------------------------------------------------
|
|
* period
|
|
*
|
|
* @written may have decreased due to account_page_redirty().
|
|
* Avoid underflowing @bw calculation.
|
|
*/
|
|
bw = written - min(written, wb->written_stamp);
|
|
bw *= HZ;
|
|
if (unlikely(elapsed > period)) {
|
|
do_div(bw, elapsed);
|
|
avg = bw;
|
|
goto out;
|
|
}
|
|
bw += (u64)wb->write_bandwidth * (period - elapsed);
|
|
bw >>= ilog2(period);
|
|
|
|
/*
|
|
* one more level of smoothing, for filtering out sudden spikes
|
|
*/
|
|
if (avg > old && old >= (unsigned long)bw)
|
|
avg -= (avg - old) >> 3;
|
|
|
|
if (avg < old && old <= (unsigned long)bw)
|
|
avg += (old - avg) >> 3;
|
|
|
|
out:
|
|
/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
|
|
avg = max(avg, 1LU);
|
|
if (wb_has_dirty_io(wb)) {
|
|
long delta = avg - wb->avg_write_bandwidth;
|
|
WARN_ON_ONCE(atomic_long_add_return(delta,
|
|
&wb->bdi->tot_write_bandwidth) <= 0);
|
|
}
|
|
wb->write_bandwidth = bw;
|
|
wb->avg_write_bandwidth = avg;
|
|
}
|
|
|
|
static void update_dirty_limit(struct dirty_throttle_control *dtc)
|
|
{
|
|
struct wb_domain *dom = dtc_dom(dtc);
|
|
unsigned long thresh = dtc->thresh;
|
|
unsigned long limit = dom->dirty_limit;
|
|
|
|
/*
|
|
* Follow up in one step.
|
|
*/
|
|
if (limit < thresh) {
|
|
limit = thresh;
|
|
goto update;
|
|
}
|
|
|
|
/*
|
|
* Follow down slowly. Use the higher one as the target, because thresh
|
|
* may drop below dirty. This is exactly the reason to introduce
|
|
* dom->dirty_limit which is guaranteed to lie above the dirty pages.
|
|
*/
|
|
thresh = max(thresh, dtc->dirty);
|
|
if (limit > thresh) {
|
|
limit -= (limit - thresh) >> 5;
|
|
goto update;
|
|
}
|
|
return;
|
|
update:
|
|
dom->dirty_limit = limit;
|
|
}
|
|
|
|
static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
|
|
unsigned long now)
|
|
{
|
|
struct wb_domain *dom = dtc_dom(dtc);
|
|
|
|
/*
|
|
* check locklessly first to optimize away locking for the most time
|
|
*/
|
|
if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
|
|
return;
|
|
|
|
spin_lock(&dom->lock);
|
|
if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
|
|
update_dirty_limit(dtc);
|
|
dom->dirty_limit_tstamp = now;
|
|
}
|
|
spin_unlock(&dom->lock);
|
|
}
|
|
|
|
/*
|
|
* Maintain wb->dirty_ratelimit, the base dirty throttle rate.
|
|
*
|
|
* Normal wb tasks will be curbed at or below it in long term.
|
|
* Obviously it should be around (write_bw / N) when there are N dd tasks.
|
|
*/
|
|
static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
|
|
unsigned long dirtied,
|
|
unsigned long elapsed)
|
|
{
|
|
struct bdi_writeback *wb = dtc->wb;
|
|
unsigned long dirty = dtc->dirty;
|
|
unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
|
|
unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
|
|
unsigned long setpoint = (freerun + limit) / 2;
|
|
unsigned long write_bw = wb->avg_write_bandwidth;
|
|
unsigned long dirty_ratelimit = wb->dirty_ratelimit;
|
|
unsigned long dirty_rate;
|
|
unsigned long task_ratelimit;
|
|
unsigned long balanced_dirty_ratelimit;
|
|
unsigned long step;
|
|
unsigned long x;
|
|
unsigned long shift;
|
|
|
|
/*
|
|
* The dirty rate will match the writeout rate in long term, except
|
|
* when dirty pages are truncated by userspace or re-dirtied by FS.
|
|
*/
|
|
dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
|
|
|
|
/*
|
|
* task_ratelimit reflects each dd's dirty rate for the past 200ms.
|
|
*/
|
|
task_ratelimit = (u64)dirty_ratelimit *
|
|
dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
|
|
task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
|
|
|
|
/*
|
|
* A linear estimation of the "balanced" throttle rate. The theory is,
|
|
* if there are N dd tasks, each throttled at task_ratelimit, the wb's
|
|
* dirty_rate will be measured to be (N * task_ratelimit). So the below
|
|
* formula will yield the balanced rate limit (write_bw / N).
|
|
*
|
|
* Note that the expanded form is not a pure rate feedback:
|
|
* rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
|
|
* but also takes pos_ratio into account:
|
|
* rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
|
|
*
|
|
* (1) is not realistic because pos_ratio also takes part in balancing
|
|
* the dirty rate. Consider the state
|
|
* pos_ratio = 0.5 (3)
|
|
* rate = 2 * (write_bw / N) (4)
|
|
* If (1) is used, it will stuck in that state! Because each dd will
|
|
* be throttled at
|
|
* task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
|
|
* yielding
|
|
* dirty_rate = N * task_ratelimit = write_bw (6)
|
|
* put (6) into (1) we get
|
|
* rate_(i+1) = rate_(i) (7)
|
|
*
|
|
* So we end up using (2) to always keep
|
|
* rate_(i+1) ~= (write_bw / N) (8)
|
|
* regardless of the value of pos_ratio. As long as (8) is satisfied,
|
|
* pos_ratio is able to drive itself to 1.0, which is not only where
|
|
* the dirty count meet the setpoint, but also where the slope of
|
|
* pos_ratio is most flat and hence task_ratelimit is least fluctuated.
|
|
*/
|
|
balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
|
|
dirty_rate | 1);
|
|
/*
|
|
* balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
|
|
*/
|
|
if (unlikely(balanced_dirty_ratelimit > write_bw))
|
|
balanced_dirty_ratelimit = write_bw;
|
|
|
|
/*
|
|
* We could safely do this and return immediately:
|
|
*
|
|
* wb->dirty_ratelimit = balanced_dirty_ratelimit;
|
|
*
|
|
* However to get a more stable dirty_ratelimit, the below elaborated
|
|
* code makes use of task_ratelimit to filter out singular points and
|
|
* limit the step size.
|
|
*
|
|
* The below code essentially only uses the relative value of
|
|
*
|
|
* task_ratelimit - dirty_ratelimit
|
|
* = (pos_ratio - 1) * dirty_ratelimit
|
|
*
|
|
* which reflects the direction and size of dirty position error.
|
|
*/
|
|
|
|
/*
|
|
* dirty_ratelimit will follow balanced_dirty_ratelimit iff
|
|
* task_ratelimit is on the same side of dirty_ratelimit, too.
|
|
* For example, when
|
|
* - dirty_ratelimit > balanced_dirty_ratelimit
|
|
* - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
|
|
* lowering dirty_ratelimit will help meet both the position and rate
|
|
* control targets. Otherwise, don't update dirty_ratelimit if it will
|
|
* only help meet the rate target. After all, what the users ultimately
|
|
* feel and care are stable dirty rate and small position error.
|
|
*
|
|
* |task_ratelimit - dirty_ratelimit| is used to limit the step size
|
|
* and filter out the singular points of balanced_dirty_ratelimit. Which
|
|
* keeps jumping around randomly and can even leap far away at times
|
|
* due to the small 200ms estimation period of dirty_rate (we want to
|
|
* keep that period small to reduce time lags).
|
|
*/
|
|
step = 0;
|
|
|
|
/*
|
|
* For strictlimit case, calculations above were based on wb counters
|
|
* and limits (starting from pos_ratio = wb_position_ratio() and up to
|
|
* balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
|
|
* Hence, to calculate "step" properly, we have to use wb_dirty as
|
|
* "dirty" and wb_setpoint as "setpoint".
|
|
*
|
|
* We rampup dirty_ratelimit forcibly if wb_dirty is low because
|
|
* it's possible that wb_thresh is close to zero due to inactivity
|
|
* of backing device.
|
|
*/
|
|
if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
|
|
dirty = dtc->wb_dirty;
|
|
if (dtc->wb_dirty < 8)
|
|
setpoint = dtc->wb_dirty + 1;
|
|
else
|
|
setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
|
|
}
|
|
|
|
if (dirty < setpoint) {
|
|
x = min3(wb->balanced_dirty_ratelimit,
|
|
balanced_dirty_ratelimit, task_ratelimit);
|
|
if (dirty_ratelimit < x)
|
|
step = x - dirty_ratelimit;
|
|
} else {
|
|
x = max3(wb->balanced_dirty_ratelimit,
|
|
balanced_dirty_ratelimit, task_ratelimit);
|
|
if (dirty_ratelimit > x)
|
|
step = dirty_ratelimit - x;
|
|
}
|
|
|
|
/*
|
|
* Don't pursue 100% rate matching. It's impossible since the balanced
|
|
* rate itself is constantly fluctuating. So decrease the track speed
|
|
* when it gets close to the target. Helps eliminate pointless tremors.
|
|
*/
|
|
shift = dirty_ratelimit / (2 * step + 1);
|
|
if (shift < BITS_PER_LONG)
|
|
step = DIV_ROUND_UP(step >> shift, 8);
|
|
else
|
|
step = 0;
|
|
|
|
if (dirty_ratelimit < balanced_dirty_ratelimit)
|
|
dirty_ratelimit += step;
|
|
else
|
|
dirty_ratelimit -= step;
|
|
|
|
wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
|
|
wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
|
|
|
|
trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
|
|
}
|
|
|
|
static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
|
|
struct dirty_throttle_control *mdtc,
|
|
unsigned long start_time,
|
|
bool update_ratelimit)
|
|
{
|
|
struct bdi_writeback *wb = gdtc->wb;
|
|
unsigned long now = jiffies;
|
|
unsigned long elapsed = now - wb->bw_time_stamp;
|
|
unsigned long dirtied;
|
|
unsigned long written;
|
|
|
|
lockdep_assert_held(&wb->list_lock);
|
|
|
|
/*
|
|
* rate-limit, only update once every 200ms.
|
|
*/
|
|
if (elapsed < BANDWIDTH_INTERVAL)
|
|
return;
|
|
|
|
dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
|
|
written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
|
|
|
|
/*
|
|
* Skip quiet periods when disk bandwidth is under-utilized.
|
|
* (at least 1s idle time between two flusher runs)
|
|
*/
|
|
if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
|
|
goto snapshot;
|
|
|
|
if (update_ratelimit) {
|
|
domain_update_bandwidth(gdtc, now);
|
|
wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
|
|
|
|
/*
|
|
* @mdtc is always NULL if !CGROUP_WRITEBACK but the
|
|
* compiler has no way to figure that out. Help it.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
|
|
domain_update_bandwidth(mdtc, now);
|
|
wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
|
|
}
|
|
}
|
|
wb_update_write_bandwidth(wb, elapsed, written);
|
|
|
|
snapshot:
|
|
wb->dirtied_stamp = dirtied;
|
|
wb->written_stamp = written;
|
|
wb->bw_time_stamp = now;
|
|
}
|
|
|
|
void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
|
|
{
|
|
struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
|
|
|
|
__wb_update_bandwidth(&gdtc, NULL, start_time, false);
|
|
}
|
|
|
|
/*
|
|
* After a task dirtied this many pages, balance_dirty_pages_ratelimited()
|
|
* will look to see if it needs to start dirty throttling.
|
|
*
|
|
* If dirty_poll_interval is too low, big NUMA machines will call the expensive
|
|
* global_page_state() too often. So scale it near-sqrt to the safety margin
|
|
* (the number of pages we may dirty without exceeding the dirty limits).
|
|
*/
|
|
static unsigned long dirty_poll_interval(unsigned long dirty,
|
|
unsigned long thresh)
|
|
{
|
|
if (thresh > dirty)
|
|
return 1UL << (ilog2(thresh - dirty) >> 1);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static unsigned long wb_max_pause(struct bdi_writeback *wb,
|
|
unsigned long wb_dirty)
|
|
{
|
|
unsigned long bw = wb->avg_write_bandwidth;
|
|
unsigned long t;
|
|
|
|
/*
|
|
* Limit pause time for small memory systems. If sleeping for too long
|
|
* time, a small pool of dirty/writeback pages may go empty and disk go
|
|
* idle.
|
|
*
|
|
* 8 serves as the safety ratio.
|
|
*/
|
|
t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
|
|
t++;
|
|
|
|
return min_t(unsigned long, t, MAX_PAUSE);
|
|
}
|
|
|
|
static long wb_min_pause(struct bdi_writeback *wb,
|
|
long max_pause,
|
|
unsigned long task_ratelimit,
|
|
unsigned long dirty_ratelimit,
|
|
int *nr_dirtied_pause)
|
|
{
|
|
long hi = ilog2(wb->avg_write_bandwidth);
|
|
long lo = ilog2(wb->dirty_ratelimit);
|
|
long t; /* target pause */
|
|
long pause; /* estimated next pause */
|
|
int pages; /* target nr_dirtied_pause */
|
|
|
|
/* target for 10ms pause on 1-dd case */
|
|
t = max(1, HZ / 100);
|
|
|
|
/*
|
|
* Scale up pause time for concurrent dirtiers in order to reduce CPU
|
|
* overheads.
|
|
*
|
|
* (N * 10ms) on 2^N concurrent tasks.
|
|
*/
|
|
if (hi > lo)
|
|
t += (hi - lo) * (10 * HZ) / 1024;
|
|
|
|
/*
|
|
* This is a bit convoluted. We try to base the next nr_dirtied_pause
|
|
* on the much more stable dirty_ratelimit. However the next pause time
|
|
* will be computed based on task_ratelimit and the two rate limits may
|
|
* depart considerably at some time. Especially if task_ratelimit goes
|
|
* below dirty_ratelimit/2 and the target pause is max_pause, the next
|
|
* pause time will be max_pause*2 _trimmed down_ to max_pause. As a
|
|
* result task_ratelimit won't be executed faithfully, which could
|
|
* eventually bring down dirty_ratelimit.
|
|
*
|
|
* We apply two rules to fix it up:
|
|
* 1) try to estimate the next pause time and if necessary, use a lower
|
|
* nr_dirtied_pause so as not to exceed max_pause. When this happens,
|
|
* nr_dirtied_pause will be "dancing" with task_ratelimit.
|
|
* 2) limit the target pause time to max_pause/2, so that the normal
|
|
* small fluctuations of task_ratelimit won't trigger rule (1) and
|
|
* nr_dirtied_pause will remain as stable as dirty_ratelimit.
|
|
*/
|
|
t = min(t, 1 + max_pause / 2);
|
|
pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
|
|
|
|
/*
|
|
* Tiny nr_dirtied_pause is found to hurt I/O performance in the test
|
|
* case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
|
|
* When the 16 consecutive reads are often interrupted by some dirty
|
|
* throttling pause during the async writes, cfq will go into idles
|
|
* (deadline is fine). So push nr_dirtied_pause as high as possible
|
|
* until reaches DIRTY_POLL_THRESH=32 pages.
|
|
*/
|
|
if (pages < DIRTY_POLL_THRESH) {
|
|
t = max_pause;
|
|
pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
|
|
if (pages > DIRTY_POLL_THRESH) {
|
|
pages = DIRTY_POLL_THRESH;
|
|
t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
|
|
}
|
|
}
|
|
|
|
pause = HZ * pages / (task_ratelimit + 1);
|
|
if (pause > max_pause) {
|
|
t = max_pause;
|
|
pages = task_ratelimit * t / roundup_pow_of_two(HZ);
|
|
}
|
|
|
|
*nr_dirtied_pause = pages;
|
|
/*
|
|
* The minimal pause time will normally be half the target pause time.
|
|
*/
|
|
return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
|
|
}
|
|
|
|
static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
|
|
{
|
|
struct bdi_writeback *wb = dtc->wb;
|
|
unsigned long wb_reclaimable;
|
|
|
|
/*
|
|
* wb_thresh is not treated as some limiting factor as
|
|
* dirty_thresh, due to reasons
|
|
* - in JBOD setup, wb_thresh can fluctuate a lot
|
|
* - in a system with HDD and USB key, the USB key may somehow
|
|
* go into state (wb_dirty >> wb_thresh) either because
|
|
* wb_dirty starts high, or because wb_thresh drops low.
|
|
* In this case we don't want to hard throttle the USB key
|
|
* dirtiers for 100 seconds until wb_dirty drops under
|
|
* wb_thresh. Instead the auxiliary wb control line in
|
|
* wb_position_ratio() will let the dirtier task progress
|
|
* at some rate <= (write_bw / 2) for bringing down wb_dirty.
|
|
*/
|
|
dtc->wb_thresh = __wb_calc_thresh(dtc);
|
|
dtc->wb_bg_thresh = dtc->thresh ?
|
|
div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
|
|
|
|
/*
|
|
* In order to avoid the stacked BDI deadlock we need
|
|
* to ensure we accurately count the 'dirty' pages when
|
|
* the threshold is low.
|
|
*
|
|
* Otherwise it would be possible to get thresh+n pages
|
|
* reported dirty, even though there are thresh-m pages
|
|
* actually dirty; with m+n sitting in the percpu
|
|
* deltas.
|
|
*/
|
|
if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
|
|
wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
|
|
dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
|
|
} else {
|
|
wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
|
|
dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* balance_dirty_pages() must be called by processes which are generating dirty
|
|
* data. It looks at the number of dirty pages in the machine and will force
|
|
* the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
|
|
* If we're over `background_thresh' then the writeback threads are woken to
|
|
* perform some writeout.
|
|
*/
|
|
static void balance_dirty_pages(struct address_space *mapping,
|
|
struct bdi_writeback *wb,
|
|
unsigned long pages_dirtied)
|
|
{
|
|
struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
|
|
struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
|
|
struct dirty_throttle_control * const gdtc = &gdtc_stor;
|
|
struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
|
|
&mdtc_stor : NULL;
|
|
struct dirty_throttle_control *sdtc;
|
|
unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
|
|
long period;
|
|
long pause;
|
|
long max_pause;
|
|
long min_pause;
|
|
int nr_dirtied_pause;
|
|
bool dirty_exceeded = false;
|
|
unsigned long task_ratelimit;
|
|
unsigned long dirty_ratelimit;
|
|
struct backing_dev_info *bdi = wb->bdi;
|
|
bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
|
|
unsigned long start_time = jiffies;
|
|
|
|
for (;;) {
|
|
unsigned long now = jiffies;
|
|
unsigned long dirty, thresh, bg_thresh;
|
|
unsigned long m_dirty = 0; /* stop bogus uninit warnings */
|
|
unsigned long m_thresh = 0;
|
|
unsigned long m_bg_thresh = 0;
|
|
|
|
/*
|
|
* Unstable writes are a feature of certain networked
|
|
* filesystems (i.e. NFS) in which data may have been
|
|
* written to the server's write cache, but has not yet
|
|
* been flushed to permanent storage.
|
|
*/
|
|
nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
|
|
global_page_state(NR_UNSTABLE_NFS);
|
|
gdtc->avail = global_dirtyable_memory();
|
|
gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
|
|
|
|
domain_dirty_limits(gdtc);
|
|
|
|
if (unlikely(strictlimit)) {
|
|
wb_dirty_limits(gdtc);
|
|
|
|
dirty = gdtc->wb_dirty;
|
|
thresh = gdtc->wb_thresh;
|
|
bg_thresh = gdtc->wb_bg_thresh;
|
|
} else {
|
|
dirty = gdtc->dirty;
|
|
thresh = gdtc->thresh;
|
|
bg_thresh = gdtc->bg_thresh;
|
|
}
|
|
|
|
if (mdtc) {
|
|
unsigned long filepages, headroom, writeback;
|
|
|
|
/*
|
|
* If @wb belongs to !root memcg, repeat the same
|
|
* basic calculations for the memcg domain.
|
|
*/
|
|
mem_cgroup_wb_stats(wb, &filepages, &headroom,
|
|
&mdtc->dirty, &writeback);
|
|
mdtc->dirty += writeback;
|
|
mdtc_calc_avail(mdtc, filepages, headroom);
|
|
|
|
domain_dirty_limits(mdtc);
|
|
|
|
if (unlikely(strictlimit)) {
|
|
wb_dirty_limits(mdtc);
|
|
m_dirty = mdtc->wb_dirty;
|
|
m_thresh = mdtc->wb_thresh;
|
|
m_bg_thresh = mdtc->wb_bg_thresh;
|
|
} else {
|
|
m_dirty = mdtc->dirty;
|
|
m_thresh = mdtc->thresh;
|
|
m_bg_thresh = mdtc->bg_thresh;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Throttle it only when the background writeback cannot
|
|
* catch-up. This avoids (excessively) small writeouts
|
|
* when the wb limits are ramping up in case of !strictlimit.
|
|
*
|
|
* In strictlimit case make decision based on the wb counters
|
|
* and limits. Small writeouts when the wb limits are ramping
|
|
* up are the price we consciously pay for strictlimit-ing.
|
|
*
|
|
* If memcg domain is in effect, @dirty should be under
|
|
* both global and memcg freerun ceilings.
|
|
*/
|
|
if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
|
|
(!mdtc ||
|
|
m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
|
|
unsigned long intv = dirty_poll_interval(dirty, thresh);
|
|
unsigned long m_intv = ULONG_MAX;
|
|
|
|
current->dirty_paused_when = now;
|
|
current->nr_dirtied = 0;
|
|
if (mdtc)
|
|
m_intv = dirty_poll_interval(m_dirty, m_thresh);
|
|
current->nr_dirtied_pause = min(intv, m_intv);
|
|
break;
|
|
}
|
|
|
|
if (unlikely(!writeback_in_progress(wb)))
|
|
wb_start_background_writeback(wb);
|
|
|
|
/*
|
|
* Calculate global domain's pos_ratio and select the
|
|
* global dtc by default.
|
|
*/
|
|
if (!strictlimit)
|
|
wb_dirty_limits(gdtc);
|
|
|
|
dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
|
|
((gdtc->dirty > gdtc->thresh) || strictlimit);
|
|
|
|
wb_position_ratio(gdtc);
|
|
sdtc = gdtc;
|
|
|
|
if (mdtc) {
|
|
/*
|
|
* If memcg domain is in effect, calculate its
|
|
* pos_ratio. @wb should satisfy constraints from
|
|
* both global and memcg domains. Choose the one
|
|
* w/ lower pos_ratio.
|
|
*/
|
|
if (!strictlimit)
|
|
wb_dirty_limits(mdtc);
|
|
|
|
dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
|
|
((mdtc->dirty > mdtc->thresh) || strictlimit);
|
|
|
|
wb_position_ratio(mdtc);
|
|
if (mdtc->pos_ratio < gdtc->pos_ratio)
|
|
sdtc = mdtc;
|
|
}
|
|
|
|
if (dirty_exceeded && !wb->dirty_exceeded)
|
|
wb->dirty_exceeded = 1;
|
|
|
|
if (time_is_before_jiffies(wb->bw_time_stamp +
|
|
BANDWIDTH_INTERVAL)) {
|
|
spin_lock(&wb->list_lock);
|
|
__wb_update_bandwidth(gdtc, mdtc, start_time, true);
|
|
spin_unlock(&wb->list_lock);
|
|
}
|
|
|
|
/* throttle according to the chosen dtc */
|
|
dirty_ratelimit = wb->dirty_ratelimit;
|
|
task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
|
|
RATELIMIT_CALC_SHIFT;
|
|
max_pause = wb_max_pause(wb, sdtc->wb_dirty);
|
|
min_pause = wb_min_pause(wb, max_pause,
|
|
task_ratelimit, dirty_ratelimit,
|
|
&nr_dirtied_pause);
|
|
|
|
if (unlikely(task_ratelimit == 0)) {
|
|
period = max_pause;
|
|
pause = max_pause;
|
|
goto pause;
|
|
}
|
|
period = HZ * pages_dirtied / task_ratelimit;
|
|
pause = period;
|
|
if (current->dirty_paused_when)
|
|
pause -= now - current->dirty_paused_when;
|
|
/*
|
|
* For less than 1s think time (ext3/4 may block the dirtier
|
|
* for up to 800ms from time to time on 1-HDD; so does xfs,
|
|
* however at much less frequency), try to compensate it in
|
|
* future periods by updating the virtual time; otherwise just
|
|
* do a reset, as it may be a light dirtier.
|
|
*/
|
|
if (pause < min_pause) {
|
|
trace_balance_dirty_pages(wb,
|
|
sdtc->thresh,
|
|
sdtc->bg_thresh,
|
|
sdtc->dirty,
|
|
sdtc->wb_thresh,
|
|
sdtc->wb_dirty,
|
|
dirty_ratelimit,
|
|
task_ratelimit,
|
|
pages_dirtied,
|
|
period,
|
|
min(pause, 0L),
|
|
start_time);
|
|
if (pause < -HZ) {
|
|
current->dirty_paused_when = now;
|
|
current->nr_dirtied = 0;
|
|
} else if (period) {
|
|
current->dirty_paused_when += period;
|
|
current->nr_dirtied = 0;
|
|
} else if (current->nr_dirtied_pause <= pages_dirtied)
|
|
current->nr_dirtied_pause += pages_dirtied;
|
|
break;
|
|
}
|
|
if (unlikely(pause > max_pause)) {
|
|
/* for occasional dropped task_ratelimit */
|
|
now += min(pause - max_pause, max_pause);
|
|
pause = max_pause;
|
|
}
|
|
|
|
pause:
|
|
trace_balance_dirty_pages(wb,
|
|
sdtc->thresh,
|
|
sdtc->bg_thresh,
|
|
sdtc->dirty,
|
|
sdtc->wb_thresh,
|
|
sdtc->wb_dirty,
|
|
dirty_ratelimit,
|
|
task_ratelimit,
|
|
pages_dirtied,
|
|
period,
|
|
pause,
|
|
start_time);
|
|
__set_current_state(TASK_KILLABLE);
|
|
io_schedule_timeout(pause);
|
|
|
|
current->dirty_paused_when = now + pause;
|
|
current->nr_dirtied = 0;
|
|
current->nr_dirtied_pause = nr_dirtied_pause;
|
|
|
|
/*
|
|
* This is typically equal to (dirty < thresh) and can also
|
|
* keep "1000+ dd on a slow USB stick" under control.
|
|
*/
|
|
if (task_ratelimit)
|
|
break;
|
|
|
|
/*
|
|
* In the case of an unresponding NFS server and the NFS dirty
|
|
* pages exceeds dirty_thresh, give the other good wb's a pipe
|
|
* to go through, so that tasks on them still remain responsive.
|
|
*
|
|
* In theory 1 page is enough to keep the comsumer-producer
|
|
* pipe going: the flusher cleans 1 page => the task dirties 1
|
|
* more page. However wb_dirty has accounting errors. So use
|
|
* the larger and more IO friendly wb_stat_error.
|
|
*/
|
|
if (sdtc->wb_dirty <= wb_stat_error(wb))
|
|
break;
|
|
|
|
if (fatal_signal_pending(current))
|
|
break;
|
|
}
|
|
|
|
if (!dirty_exceeded && wb->dirty_exceeded)
|
|
wb->dirty_exceeded = 0;
|
|
|
|
if (writeback_in_progress(wb))
|
|
return;
|
|
|
|
/*
|
|
* In laptop mode, we wait until hitting the higher threshold before
|
|
* starting background writeout, and then write out all the way down
|
|
* to the lower threshold. So slow writers cause minimal disk activity.
|
|
*
|
|
* In normal mode, we start background writeout at the lower
|
|
* background_thresh, to keep the amount of dirty memory low.
|
|
*/
|
|
if (laptop_mode)
|
|
return;
|
|
|
|
if (nr_reclaimable > gdtc->bg_thresh)
|
|
wb_start_background_writeback(wb);
|
|
}
|
|
|
|
static DEFINE_PER_CPU(int, bdp_ratelimits);
|
|
|
|
/*
|
|
* Normal tasks are throttled by
|
|
* loop {
|
|
* dirty tsk->nr_dirtied_pause pages;
|
|
* take a snap in balance_dirty_pages();
|
|
* }
|
|
* However there is a worst case. If every task exit immediately when dirtied
|
|
* (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
|
|
* called to throttle the page dirties. The solution is to save the not yet
|
|
* throttled page dirties in dirty_throttle_leaks on task exit and charge them
|
|
* randomly into the running tasks. This works well for the above worst case,
|
|
* as the new task will pick up and accumulate the old task's leaked dirty
|
|
* count and eventually get throttled.
|
|
*/
|
|
DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
|
|
|
|
/**
|
|
* balance_dirty_pages_ratelimited - balance dirty memory state
|
|
* @mapping: address_space which was dirtied
|
|
*
|
|
* Processes which are dirtying memory should call in here once for each page
|
|
* which was newly dirtied. The function will periodically check the system's
|
|
* dirty state and will initiate writeback if needed.
|
|
*
|
|
* On really big machines, get_writeback_state is expensive, so try to avoid
|
|
* calling it too often (ratelimiting). But once we're over the dirty memory
|
|
* limit we decrease the ratelimiting by a lot, to prevent individual processes
|
|
* from overshooting the limit by (ratelimit_pages) each.
|
|
*/
|
|
void balance_dirty_pages_ratelimited(struct address_space *mapping)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
struct backing_dev_info *bdi = inode_to_bdi(inode);
|
|
struct bdi_writeback *wb = NULL;
|
|
int ratelimit;
|
|
int *p;
|
|
|
|
if (!bdi_cap_account_dirty(bdi))
|
|
return;
|
|
|
|
if (inode_cgwb_enabled(inode))
|
|
wb = wb_get_create_current(bdi, GFP_KERNEL);
|
|
if (!wb)
|
|
wb = &bdi->wb;
|
|
|
|
ratelimit = current->nr_dirtied_pause;
|
|
if (wb->dirty_exceeded)
|
|
ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
|
|
|
|
preempt_disable();
|
|
/*
|
|
* This prevents one CPU to accumulate too many dirtied pages without
|
|
* calling into balance_dirty_pages(), which can happen when there are
|
|
* 1000+ tasks, all of them start dirtying pages at exactly the same
|
|
* time, hence all honoured too large initial task->nr_dirtied_pause.
|
|
*/
|
|
p = this_cpu_ptr(&bdp_ratelimits);
|
|
if (unlikely(current->nr_dirtied >= ratelimit))
|
|
*p = 0;
|
|
else if (unlikely(*p >= ratelimit_pages)) {
|
|
*p = 0;
|
|
ratelimit = 0;
|
|
}
|
|
/*
|
|
* Pick up the dirtied pages by the exited tasks. This avoids lots of
|
|
* short-lived tasks (eg. gcc invocations in a kernel build) escaping
|
|
* the dirty throttling and livelock other long-run dirtiers.
|
|
*/
|
|
p = this_cpu_ptr(&dirty_throttle_leaks);
|
|
if (*p > 0 && current->nr_dirtied < ratelimit) {
|
|
unsigned long nr_pages_dirtied;
|
|
nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
|
|
*p -= nr_pages_dirtied;
|
|
current->nr_dirtied += nr_pages_dirtied;
|
|
}
|
|
preempt_enable();
|
|
|
|
if (unlikely(current->nr_dirtied >= ratelimit))
|
|
balance_dirty_pages(mapping, wb, current->nr_dirtied);
|
|
|
|
wb_put(wb);
|
|
}
|
|
EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
|
|
|
|
/**
|
|
* wb_over_bg_thresh - does @wb need to be written back?
|
|
* @wb: bdi_writeback of interest
|
|
*
|
|
* Determines whether background writeback should keep writing @wb or it's
|
|
* clean enough. Returns %true if writeback should continue.
|
|
*/
|
|
bool wb_over_bg_thresh(struct bdi_writeback *wb)
|
|
{
|
|
struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
|
|
struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
|
|
struct dirty_throttle_control * const gdtc = &gdtc_stor;
|
|
struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
|
|
&mdtc_stor : NULL;
|
|
|
|
/*
|
|
* Similar to balance_dirty_pages() but ignores pages being written
|
|
* as we're trying to decide whether to put more under writeback.
|
|
*/
|
|
gdtc->avail = global_dirtyable_memory();
|
|
gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
|
|
global_page_state(NR_UNSTABLE_NFS);
|
|
domain_dirty_limits(gdtc);
|
|
|
|
if (gdtc->dirty > gdtc->bg_thresh)
|
|
return true;
|
|
|
|
if (wb_stat(wb, WB_RECLAIMABLE) >
|
|
wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
|
|
return true;
|
|
|
|
if (mdtc) {
|
|
unsigned long filepages, headroom, writeback;
|
|
|
|
mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
|
|
&writeback);
|
|
mdtc_calc_avail(mdtc, filepages, headroom);
|
|
domain_dirty_limits(mdtc); /* ditto, ignore writeback */
|
|
|
|
if (mdtc->dirty > mdtc->bg_thresh)
|
|
return true;
|
|
|
|
if (wb_stat(wb, WB_RECLAIMABLE) >
|
|
wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void throttle_vm_writeout(gfp_t gfp_mask)
|
|
{
|
|
unsigned long background_thresh;
|
|
unsigned long dirty_thresh;
|
|
|
|
for ( ; ; ) {
|
|
global_dirty_limits(&background_thresh, &dirty_thresh);
|
|
dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
|
|
|
|
/*
|
|
* Boost the allowable dirty threshold a bit for page
|
|
* allocators so they don't get DoS'ed by heavy writers
|
|
*/
|
|
dirty_thresh += dirty_thresh / 10; /* wheeee... */
|
|
|
|
if (global_page_state(NR_UNSTABLE_NFS) +
|
|
global_page_state(NR_WRITEBACK) <= dirty_thresh)
|
|
break;
|
|
/* Try safe version */
|
|
else if (unlikely(global_page_state_snapshot(NR_UNSTABLE_NFS) +
|
|
global_page_state_snapshot(NR_WRITEBACK) <=
|
|
dirty_thresh))
|
|
break;
|
|
|
|
congestion_wait(BLK_RW_ASYNC, HZ/10);
|
|
|
|
/*
|
|
* The caller might hold locks which can prevent IO completion
|
|
* or progress in the filesystem. So we cannot just sit here
|
|
* waiting for IO to complete.
|
|
*/
|
|
if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
|
|
*/
|
|
int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
proc_dointvec(table, write, buffer, length, ppos);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
void laptop_mode_timer_fn(unsigned long data)
|
|
{
|
|
struct request_queue *q = (struct request_queue *)data;
|
|
int nr_pages = global_page_state(NR_FILE_DIRTY) +
|
|
global_page_state(NR_UNSTABLE_NFS);
|
|
struct bdi_writeback *wb;
|
|
|
|
/*
|
|
* We want to write everything out, not just down to the dirty
|
|
* threshold
|
|
*/
|
|
if (!bdi_has_dirty_io(q->backing_dev_info))
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(wb, &q->backing_dev_info->wb_list, bdi_node)
|
|
if (wb_has_dirty_io(wb))
|
|
wb_start_writeback(wb, nr_pages, true,
|
|
WB_REASON_LAPTOP_TIMER);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*
|
|
* We've spun up the disk and we're in laptop mode: schedule writeback
|
|
* of all dirty data a few seconds from now. If the flush is already scheduled
|
|
* then push it back - the user is still using the disk.
|
|
*/
|
|
void laptop_io_completion(struct backing_dev_info *info)
|
|
{
|
|
mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
|
|
}
|
|
|
|
/*
|
|
* We're in laptop mode and we've just synced. The sync's writes will have
|
|
* caused another writeback to be scheduled by laptop_io_completion.
|
|
* Nothing needs to be written back anymore, so we unschedule the writeback.
|
|
*/
|
|
void laptop_sync_completion(void)
|
|
{
|
|
struct backing_dev_info *bdi;
|
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
|
|
del_timer(&bdi->laptop_mode_wb_timer);
|
|
|
|
rcu_read_unlock();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If ratelimit_pages is too high then we can get into dirty-data overload
|
|
* if a large number of processes all perform writes at the same time.
|
|
* If it is too low then SMP machines will call the (expensive)
|
|
* get_writeback_state too often.
|
|
*
|
|
* Here we set ratelimit_pages to a level which ensures that when all CPUs are
|
|
* dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
|
|
* thresholds.
|
|
*/
|
|
|
|
void writeback_set_ratelimit(void)
|
|
{
|
|
struct wb_domain *dom = &global_wb_domain;
|
|
unsigned long background_thresh;
|
|
unsigned long dirty_thresh;
|
|
|
|
global_dirty_limits(&background_thresh, &dirty_thresh);
|
|
dom->dirty_limit = dirty_thresh;
|
|
ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
|
|
if (ratelimit_pages < 16)
|
|
ratelimit_pages = 16;
|
|
}
|
|
|
|
static int
|
|
ratelimit_handler(struct notifier_block *self, unsigned long action,
|
|
void *hcpu)
|
|
{
|
|
|
|
switch (action & ~CPU_TASKS_FROZEN) {
|
|
case CPU_ONLINE:
|
|
case CPU_DEAD:
|
|
writeback_set_ratelimit();
|
|
return NOTIFY_OK;
|
|
default:
|
|
return NOTIFY_DONE;
|
|
}
|
|
}
|
|
|
|
static struct notifier_block ratelimit_nb = {
|
|
.notifier_call = ratelimit_handler,
|
|
.next = NULL,
|
|
};
|
|
|
|
/*
|
|
* Called early on to tune the page writeback dirty limits.
|
|
*
|
|
* We used to scale dirty pages according to how total memory
|
|
* related to pages that could be allocated for buffers (by
|
|
* comparing nr_free_buffer_pages() to vm_total_pages.
|
|
*
|
|
* However, that was when we used "dirty_ratio" to scale with
|
|
* all memory, and we don't do that any more. "dirty_ratio"
|
|
* is now applied to total non-HIGHPAGE memory (by subtracting
|
|
* totalhigh_pages from vm_total_pages), and as such we can't
|
|
* get into the old insane situation any more where we had
|
|
* large amounts of dirty pages compared to a small amount of
|
|
* non-HIGHMEM memory.
|
|
*
|
|
* But we might still want to scale the dirty_ratio by how
|
|
* much memory the box has..
|
|
*/
|
|
void __init page_writeback_init(void)
|
|
{
|
|
BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
|
|
|
|
writeback_set_ratelimit();
|
|
register_cpu_notifier(&ratelimit_nb);
|
|
}
|
|
|
|
/**
|
|
* tag_pages_for_writeback - tag pages to be written by write_cache_pages
|
|
* @mapping: address space structure to write
|
|
* @start: starting page index
|
|
* @end: ending page index (inclusive)
|
|
*
|
|
* This function scans the page range from @start to @end (inclusive) and tags
|
|
* all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
|
|
* that write_cache_pages (or whoever calls this function) will then use
|
|
* TOWRITE tag to identify pages eligible for writeback. This mechanism is
|
|
* used to avoid livelocking of writeback by a process steadily creating new
|
|
* dirty pages in the file (thus it is important for this function to be quick
|
|
* so that it can tag pages faster than a dirtying process can create them).
|
|
*/
|
|
/*
|
|
* We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
|
|
*/
|
|
void tag_pages_for_writeback(struct address_space *mapping,
|
|
pgoff_t start, pgoff_t end)
|
|
{
|
|
#define WRITEBACK_TAG_BATCH 4096
|
|
unsigned long tagged;
|
|
|
|
do {
|
|
spin_lock_irq(&mapping->tree_lock);
|
|
tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
|
|
&start, end, WRITEBACK_TAG_BATCH,
|
|
PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
|
|
cond_resched();
|
|
/* We check 'start' to handle wrapping when end == ~0UL */
|
|
} while (tagged >= WRITEBACK_TAG_BATCH && start);
|
|
}
|
|
EXPORT_SYMBOL(tag_pages_for_writeback);
|
|
|
|
/**
|
|
* write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
|
|
* @mapping: address space structure to write
|
|
* @wbc: subtract the number of written pages from *@wbc->nr_to_write
|
|
* @writepage: function called for each page
|
|
* @data: data passed to writepage function
|
|
*
|
|
* If a page is already under I/O, write_cache_pages() skips it, even
|
|
* if it's dirty. This is desirable behaviour for memory-cleaning writeback,
|
|
* but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
|
|
* and msync() need to guarantee that all the data which was dirty at the time
|
|
* the call was made get new I/O started against them. If wbc->sync_mode is
|
|
* WB_SYNC_ALL then we were called for data integrity and we must wait for
|
|
* existing IO to complete.
|
|
*
|
|
* To avoid livelocks (when other process dirties new pages), we first tag
|
|
* pages which should be written back with TOWRITE tag and only then start
|
|
* writing them. For data-integrity sync we have to be careful so that we do
|
|
* not miss some pages (e.g., because some other process has cleared TOWRITE
|
|
* tag we set). The rule we follow is that TOWRITE tag can be cleared only
|
|
* by the process clearing the DIRTY tag (and submitting the page for IO).
|
|
*/
|
|
int write_cache_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc, writepage_t writepage,
|
|
void *data)
|
|
{
|
|
int ret = 0;
|
|
int done = 0;
|
|
struct pagevec pvec;
|
|
int nr_pages;
|
|
pgoff_t uninitialized_var(writeback_index);
|
|
pgoff_t index;
|
|
pgoff_t end; /* Inclusive */
|
|
pgoff_t done_index;
|
|
int cycled;
|
|
int range_whole = 0;
|
|
int tag;
|
|
|
|
pagevec_init(&pvec, 0);
|
|
if (wbc->range_cyclic) {
|
|
writeback_index = mapping->writeback_index; /* prev offset */
|
|
index = writeback_index;
|
|
if (index == 0)
|
|
cycled = 1;
|
|
else
|
|
cycled = 0;
|
|
end = -1;
|
|
} else {
|
|
index = wbc->range_start >> PAGE_CACHE_SHIFT;
|
|
end = wbc->range_end >> PAGE_CACHE_SHIFT;
|
|
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
|
|
range_whole = 1;
|
|
cycled = 1; /* ignore range_cyclic tests */
|
|
}
|
|
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
|
|
tag = PAGECACHE_TAG_TOWRITE;
|
|
else
|
|
tag = PAGECACHE_TAG_DIRTY;
|
|
retry:
|
|
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
|
|
tag_pages_for_writeback(mapping, index, end);
|
|
done_index = index;
|
|
while (!done && (index <= end)) {
|
|
int i;
|
|
|
|
nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
|
|
tag);
|
|
if (nr_pages == 0)
|
|
break;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *page = pvec.pages[i];
|
|
|
|
done_index = page->index;
|
|
|
|
lock_page(page);
|
|
|
|
/*
|
|
* Page truncated or invalidated. We can freely skip it
|
|
* then, even for data integrity operations: the page
|
|
* has disappeared concurrently, so there could be no
|
|
* real expectation of this data interity operation
|
|
* even if there is now a new, dirty page at the same
|
|
* pagecache address.
|
|
*/
|
|
if (unlikely(page->mapping != mapping)) {
|
|
continue_unlock:
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
|
|
if (!PageDirty(page)) {
|
|
/* someone wrote it for us */
|
|
goto continue_unlock;
|
|
}
|
|
|
|
if (PageWriteback(page)) {
|
|
if (wbc->sync_mode != WB_SYNC_NONE)
|
|
wait_on_page_writeback(page);
|
|
else
|
|
goto continue_unlock;
|
|
}
|
|
|
|
BUG_ON(PageWriteback(page));
|
|
if (!clear_page_dirty_for_io(page))
|
|
goto continue_unlock;
|
|
|
|
trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
|
|
ret = (*writepage)(page, wbc, data);
|
|
if (unlikely(ret)) {
|
|
if (ret == AOP_WRITEPAGE_ACTIVATE) {
|
|
unlock_page(page);
|
|
ret = 0;
|
|
} else {
|
|
/*
|
|
* done_index is set past this page,
|
|
* so media errors will not choke
|
|
* background writeout for the entire
|
|
* file. This has consequences for
|
|
* range_cyclic semantics (ie. it may
|
|
* not be suitable for data integrity
|
|
* writeout).
|
|
*/
|
|
done_index = page->index + 1;
|
|
done = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We stop writing back only if we are not doing
|
|
* integrity sync. In case of integrity sync we have to
|
|
* keep going until we have written all the pages
|
|
* we tagged for writeback prior to entering this loop.
|
|
*/
|
|
if (--wbc->nr_to_write <= 0 &&
|
|
wbc->sync_mode == WB_SYNC_NONE) {
|
|
done = 1;
|
|
break;
|
|
}
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
}
|
|
if (!cycled && !done) {
|
|
/*
|
|
* range_cyclic:
|
|
* We hit the last page and there is more work to be done: wrap
|
|
* back to the start of the file
|
|
*/
|
|
cycled = 1;
|
|
index = 0;
|
|
end = writeback_index - 1;
|
|
goto retry;
|
|
}
|
|
if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
|
|
mapping->writeback_index = done_index;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(write_cache_pages);
|
|
|
|
/*
|
|
* Function used by generic_writepages to call the real writepage
|
|
* function and set the mapping flags on error
|
|
*/
|
|
static int __writepage(struct page *page, struct writeback_control *wbc,
|
|
void *data)
|
|
{
|
|
struct address_space *mapping = data;
|
|
int ret = mapping->a_ops->writepage(page, wbc);
|
|
mapping_set_error(mapping, ret);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
|
|
* @mapping: address space structure to write
|
|
* @wbc: subtract the number of written pages from *@wbc->nr_to_write
|
|
*
|
|
* This is a library function, which implements the writepages()
|
|
* address_space_operation.
|
|
*/
|
|
int generic_writepages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct blk_plug plug;
|
|
int ret;
|
|
|
|
/* deal with chardevs and other special file */
|
|
if (!mapping->a_ops->writepage)
|
|
return 0;
|
|
|
|
blk_start_plug(&plug);
|
|
ret = write_cache_pages(mapping, wbc, __writepage, mapping);
|
|
blk_finish_plug(&plug);
|
|
return ret;
|
|
}
|
|
|
|
EXPORT_SYMBOL(generic_writepages);
|
|
|
|
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
|
|
{
|
|
int ret;
|
|
|
|
if (wbc->nr_to_write <= 0)
|
|
return 0;
|
|
if (mapping->a_ops->writepages)
|
|
ret = mapping->a_ops->writepages(mapping, wbc);
|
|
else
|
|
ret = generic_writepages(mapping, wbc);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* write_one_page - write out a single page and optionally wait on I/O
|
|
* @page: the page to write
|
|
* @wait: if true, wait on writeout
|
|
*
|
|
* The page must be locked by the caller and will be unlocked upon return.
|
|
*
|
|
* write_one_page() returns a negative error code if I/O failed.
|
|
*/
|
|
int write_one_page(struct page *page, int wait)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
int ret = 0;
|
|
struct writeback_control wbc = {
|
|
.sync_mode = WB_SYNC_ALL,
|
|
.nr_to_write = 1,
|
|
};
|
|
|
|
BUG_ON(!PageLocked(page));
|
|
|
|
if (wait)
|
|
wait_on_page_writeback(page);
|
|
|
|
if (clear_page_dirty_for_io(page)) {
|
|
page_cache_get(page);
|
|
ret = mapping->a_ops->writepage(page, &wbc);
|
|
if (ret == 0 && wait) {
|
|
wait_on_page_writeback(page);
|
|
if (PageError(page))
|
|
ret = -EIO;
|
|
}
|
|
page_cache_release(page);
|
|
} else {
|
|
unlock_page(page);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(write_one_page);
|
|
|
|
/*
|
|
* For address_spaces which do not use buffers nor write back.
|
|
*/
|
|
int __set_page_dirty_no_writeback(struct page *page)
|
|
{
|
|
if (!PageDirty(page))
|
|
return !TestSetPageDirty(page);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Helper function for set_page_dirty family.
|
|
*
|
|
* Caller must hold mem_cgroup_begin_page_stat().
|
|
*
|
|
* NOTE: This relies on being atomic wrt interrupts.
|
|
*/
|
|
void account_page_dirtied(struct page *page, struct address_space *mapping,
|
|
struct mem_cgroup *memcg)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
|
|
trace_writeback_dirty_page(page, mapping);
|
|
|
|
if (mapping_cap_account_dirty(mapping)) {
|
|
struct bdi_writeback *wb;
|
|
|
|
inode_attach_wb(inode, page);
|
|
wb = inode_to_wb(inode);
|
|
|
|
mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
|
|
__inc_zone_page_state(page, NR_FILE_DIRTY);
|
|
__inc_zone_page_state(page, NR_DIRTIED);
|
|
__inc_wb_stat(wb, WB_RECLAIMABLE);
|
|
__inc_wb_stat(wb, WB_DIRTIED);
|
|
task_io_account_write(PAGE_CACHE_SIZE);
|
|
current->nr_dirtied++;
|
|
this_cpu_inc(bdp_ratelimits);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(account_page_dirtied);
|
|
|
|
/*
|
|
* Helper function for deaccounting dirty page without writeback.
|
|
*
|
|
* Caller must hold mem_cgroup_begin_page_stat().
|
|
*/
|
|
void account_page_cleaned(struct page *page, struct address_space *mapping,
|
|
struct mem_cgroup *memcg, struct bdi_writeback *wb)
|
|
{
|
|
if (mapping_cap_account_dirty(mapping)) {
|
|
mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
|
|
dec_zone_page_state(page, NR_FILE_DIRTY);
|
|
dec_wb_stat(wb, WB_RECLAIMABLE);
|
|
task_io_account_cancelled_write(PAGE_CACHE_SIZE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For address_spaces which do not use buffers. Just tag the page as dirty in
|
|
* its radix tree.
|
|
*
|
|
* This is also used when a single buffer is being dirtied: we want to set the
|
|
* page dirty in that case, but not all the buffers. This is a "bottom-up"
|
|
* dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
|
|
*
|
|
* The caller must ensure this doesn't race with truncation. Most will simply
|
|
* hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
|
|
* the pte lock held, which also locks out truncation.
|
|
*/
|
|
int __set_page_dirty_nobuffers(struct page *page)
|
|
{
|
|
struct mem_cgroup *memcg;
|
|
|
|
memcg = mem_cgroup_begin_page_stat(page);
|
|
if (!TestSetPageDirty(page)) {
|
|
struct address_space *mapping = page_mapping(page);
|
|
unsigned long flags;
|
|
|
|
if (!mapping) {
|
|
mem_cgroup_end_page_stat(memcg);
|
|
return 1;
|
|
}
|
|
|
|
spin_lock_irqsave(&mapping->tree_lock, flags);
|
|
BUG_ON(page_mapping(page) != mapping);
|
|
WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
|
|
account_page_dirtied(page, mapping, memcg);
|
|
radix_tree_tag_set(&mapping->page_tree, page_index(page),
|
|
PAGECACHE_TAG_DIRTY);
|
|
spin_unlock_irqrestore(&mapping->tree_lock, flags);
|
|
mem_cgroup_end_page_stat(memcg);
|
|
|
|
if (mapping->host) {
|
|
/* !PageAnon && !swapper_space */
|
|
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
|
|
}
|
|
return 1;
|
|
}
|
|
mem_cgroup_end_page_stat(memcg);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(__set_page_dirty_nobuffers);
|
|
|
|
/*
|
|
* Call this whenever redirtying a page, to de-account the dirty counters
|
|
* (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
|
|
* counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
|
|
* systematic errors in balanced_dirty_ratelimit and the dirty pages position
|
|
* control.
|
|
*/
|
|
void account_page_redirty(struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
|
|
if (mapping && mapping_cap_account_dirty(mapping)) {
|
|
struct inode *inode = mapping->host;
|
|
struct bdi_writeback *wb;
|
|
struct wb_lock_cookie cookie = {};
|
|
|
|
wb = unlocked_inode_to_wb_begin(inode, &cookie);
|
|
current->nr_dirtied--;
|
|
dec_zone_page_state(page, NR_DIRTIED);
|
|
dec_wb_stat(wb, WB_DIRTIED);
|
|
unlocked_inode_to_wb_end(inode, &cookie);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(account_page_redirty);
|
|
|
|
/*
|
|
* When a writepage implementation decides that it doesn't want to write this
|
|
* page for some reason, it should redirty the locked page via
|
|
* redirty_page_for_writepage() and it should then unlock the page and return 0
|
|
*/
|
|
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
|
|
{
|
|
int ret;
|
|
|
|
wbc->pages_skipped++;
|
|
ret = __set_page_dirty_nobuffers(page);
|
|
account_page_redirty(page);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(redirty_page_for_writepage);
|
|
|
|
/*
|
|
* Dirty a page.
|
|
*
|
|
* For pages with a mapping this should be done under the page lock
|
|
* for the benefit of asynchronous memory errors who prefer a consistent
|
|
* dirty state. This rule can be broken in some special cases,
|
|
* but should be better not to.
|
|
*
|
|
* If the mapping doesn't provide a set_page_dirty a_op, then
|
|
* just fall through and assume that it wants buffer_heads.
|
|
*/
|
|
int set_page_dirty(struct page *page)
|
|
{
|
|
struct address_space *mapping = page_mapping(page);
|
|
|
|
if (likely(mapping)) {
|
|
int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
|
|
/*
|
|
* readahead/lru_deactivate_page could remain
|
|
* PG_readahead/PG_reclaim due to race with end_page_writeback
|
|
* About readahead, if the page is written, the flags would be
|
|
* reset. So no problem.
|
|
* About lru_deactivate_page, if the page is redirty, the flag
|
|
* will be reset. So no problem. but if the page is used by readahead
|
|
* it will confuse readahead and make it restart the size rampup
|
|
* process. But it's a trivial problem.
|
|
*/
|
|
if (PageReclaim(page))
|
|
ClearPageReclaim(page);
|
|
#ifdef CONFIG_BLOCK
|
|
if (!spd)
|
|
spd = __set_page_dirty_buffers;
|
|
#endif
|
|
return (*spd)(page);
|
|
}
|
|
if (!PageDirty(page)) {
|
|
if (!TestSetPageDirty(page))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(set_page_dirty);
|
|
|
|
/*
|
|
* set_page_dirty() is racy if the caller has no reference against
|
|
* page->mapping->host, and if the page is unlocked. This is because another
|
|
* CPU could truncate the page off the mapping and then free the mapping.
|
|
*
|
|
* Usually, the page _is_ locked, or the caller is a user-space process which
|
|
* holds a reference on the inode by having an open file.
|
|
*
|
|
* In other cases, the page should be locked before running set_page_dirty().
|
|
*/
|
|
int set_page_dirty_lock(struct page *page)
|
|
{
|
|
int ret;
|
|
|
|
lock_page(page);
|
|
ret = set_page_dirty(page);
|
|
unlock_page(page);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(set_page_dirty_lock);
|
|
|
|
/*
|
|
* This cancels just the dirty bit on the kernel page itself, it does NOT
|
|
* actually remove dirty bits on any mmap's that may be around. It also
|
|
* leaves the page tagged dirty, so any sync activity will still find it on
|
|
* the dirty lists, and in particular, clear_page_dirty_for_io() will still
|
|
* look at the dirty bits in the VM.
|
|
*
|
|
* Doing this should *normally* only ever be done when a page is truncated,
|
|
* and is not actually mapped anywhere at all. However, fs/buffer.c does
|
|
* this when it notices that somebody has cleaned out all the buffers on a
|
|
* page without actually doing it through the VM. Can you say "ext3 is
|
|
* horribly ugly"? Thought you could.
|
|
*/
|
|
void cancel_dirty_page(struct page *page)
|
|
{
|
|
struct address_space *mapping = page_mapping(page);
|
|
|
|
if (mapping_cap_account_dirty(mapping)) {
|
|
struct inode *inode = mapping->host;
|
|
struct bdi_writeback *wb;
|
|
struct mem_cgroup *memcg;
|
|
struct wb_lock_cookie cookie = {};
|
|
|
|
memcg = mem_cgroup_begin_page_stat(page);
|
|
wb = unlocked_inode_to_wb_begin(inode, &cookie);
|
|
|
|
if (TestClearPageDirty(page))
|
|
account_page_cleaned(page, mapping, memcg, wb);
|
|
|
|
unlocked_inode_to_wb_end(inode, &cookie);
|
|
mem_cgroup_end_page_stat(memcg);
|
|
} else {
|
|
ClearPageDirty(page);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(cancel_dirty_page);
|
|
|
|
/*
|
|
* Clear a page's dirty flag, while caring for dirty memory accounting.
|
|
* Returns true if the page was previously dirty.
|
|
*
|
|
* This is for preparing to put the page under writeout. We leave the page
|
|
* tagged as dirty in the radix tree so that a concurrent write-for-sync
|
|
* can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
|
|
* implementation will run either set_page_writeback() or set_page_dirty(),
|
|
* at which stage we bring the page's dirty flag and radix-tree dirty tag
|
|
* back into sync.
|
|
*
|
|
* This incoherency between the page's dirty flag and radix-tree tag is
|
|
* unfortunate, but it only exists while the page is locked.
|
|
*/
|
|
int clear_page_dirty_for_io(struct page *page)
|
|
{
|
|
struct address_space *mapping = page_mapping(page);
|
|
int ret = 0;
|
|
|
|
BUG_ON(!PageLocked(page));
|
|
|
|
if (mapping && mapping_cap_account_dirty(mapping)) {
|
|
struct inode *inode = mapping->host;
|
|
struct bdi_writeback *wb;
|
|
struct mem_cgroup *memcg;
|
|
struct wb_lock_cookie cookie = {};
|
|
|
|
/*
|
|
* Yes, Virginia, this is indeed insane.
|
|
*
|
|
* We use this sequence to make sure that
|
|
* (a) we account for dirty stats properly
|
|
* (b) we tell the low-level filesystem to
|
|
* mark the whole page dirty if it was
|
|
* dirty in a pagetable. Only to then
|
|
* (c) clean the page again and return 1 to
|
|
* cause the writeback.
|
|
*
|
|
* This way we avoid all nasty races with the
|
|
* dirty bit in multiple places and clearing
|
|
* them concurrently from different threads.
|
|
*
|
|
* Note! Normally the "set_page_dirty(page)"
|
|
* has no effect on the actual dirty bit - since
|
|
* that will already usually be set. But we
|
|
* need the side effects, and it can help us
|
|
* avoid races.
|
|
*
|
|
* We basically use the page "master dirty bit"
|
|
* as a serialization point for all the different
|
|
* threads doing their things.
|
|
*/
|
|
if (page_mkclean(page))
|
|
set_page_dirty(page);
|
|
/*
|
|
* We carefully synchronise fault handlers against
|
|
* installing a dirty pte and marking the page dirty
|
|
* at this point. We do this by having them hold the
|
|
* page lock while dirtying the page, and pages are
|
|
* always locked coming in here, so we get the desired
|
|
* exclusion.
|
|
*/
|
|
memcg = mem_cgroup_begin_page_stat(page);
|
|
wb = unlocked_inode_to_wb_begin(inode, &cookie);
|
|
if (TestClearPageDirty(page)) {
|
|
mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
|
|
dec_zone_page_state(page, NR_FILE_DIRTY);
|
|
dec_wb_stat(wb, WB_RECLAIMABLE);
|
|
ret = 1;
|
|
}
|
|
unlocked_inode_to_wb_end(inode, &cookie);
|
|
mem_cgroup_end_page_stat(memcg);
|
|
return ret;
|
|
}
|
|
return TestClearPageDirty(page);
|
|
}
|
|
EXPORT_SYMBOL(clear_page_dirty_for_io);
|
|
|
|
int test_clear_page_writeback(struct page *page)
|
|
{
|
|
struct address_space *mapping = page_mapping(page);
|
|
struct mem_cgroup *memcg;
|
|
int ret;
|
|
|
|
memcg = mem_cgroup_begin_page_stat(page);
|
|
if (mapping) {
|
|
struct inode *inode = mapping->host;
|
|
struct backing_dev_info *bdi = inode_to_bdi(inode);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&mapping->tree_lock, flags);
|
|
ret = TestClearPageWriteback(page);
|
|
if (ret) {
|
|
radix_tree_tag_clear(&mapping->page_tree,
|
|
page_index(page),
|
|
PAGECACHE_TAG_WRITEBACK);
|
|
if (bdi_cap_account_writeback(bdi)) {
|
|
struct bdi_writeback *wb = inode_to_wb(inode);
|
|
|
|
__dec_wb_stat(wb, WB_WRITEBACK);
|
|
__wb_writeout_inc(wb);
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&mapping->tree_lock, flags);
|
|
} else {
|
|
ret = TestClearPageWriteback(page);
|
|
}
|
|
if (ret) {
|
|
mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
|
|
dec_zone_page_state(page, NR_WRITEBACK);
|
|
inc_zone_page_state(page, NR_WRITTEN);
|
|
}
|
|
mem_cgroup_end_page_stat(memcg);
|
|
return ret;
|
|
}
|
|
|
|
int __test_set_page_writeback(struct page *page, bool keep_write)
|
|
{
|
|
struct address_space *mapping = page_mapping(page);
|
|
struct mem_cgroup *memcg;
|
|
int ret;
|
|
|
|
memcg = mem_cgroup_begin_page_stat(page);
|
|
if (mapping) {
|
|
struct inode *inode = mapping->host;
|
|
struct backing_dev_info *bdi = inode_to_bdi(inode);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&mapping->tree_lock, flags);
|
|
ret = TestSetPageWriteback(page);
|
|
if (!ret) {
|
|
radix_tree_tag_set(&mapping->page_tree,
|
|
page_index(page),
|
|
PAGECACHE_TAG_WRITEBACK);
|
|
if (bdi_cap_account_writeback(bdi))
|
|
__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
|
|
}
|
|
if (!PageDirty(page))
|
|
radix_tree_tag_clear(&mapping->page_tree,
|
|
page_index(page),
|
|
PAGECACHE_TAG_DIRTY);
|
|
if (!keep_write)
|
|
radix_tree_tag_clear(&mapping->page_tree,
|
|
page_index(page),
|
|
PAGECACHE_TAG_TOWRITE);
|
|
spin_unlock_irqrestore(&mapping->tree_lock, flags);
|
|
} else {
|
|
ret = TestSetPageWriteback(page);
|
|
}
|
|
if (!ret) {
|
|
mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
|
|
inc_zone_page_state(page, NR_WRITEBACK);
|
|
}
|
|
mem_cgroup_end_page_stat(memcg);
|
|
return ret;
|
|
|
|
}
|
|
EXPORT_SYMBOL(__test_set_page_writeback);
|
|
|
|
/*
|
|
* Return true if any of the pages in the mapping are marked with the
|
|
* passed tag.
|
|
*/
|
|
int mapping_tagged(struct address_space *mapping, int tag)
|
|
{
|
|
return radix_tree_tagged(&mapping->page_tree, tag);
|
|
}
|
|
EXPORT_SYMBOL(mapping_tagged);
|
|
|
|
/**
|
|
* wait_for_stable_page() - wait for writeback to finish, if necessary.
|
|
* @page: The page to wait on.
|
|
*
|
|
* This function determines if the given page is related to a backing device
|
|
* that requires page contents to be held stable during writeback. If so, then
|
|
* it will wait for any pending writeback to complete.
|
|
*/
|
|
void wait_for_stable_page(struct page *page)
|
|
{
|
|
if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
|
|
wait_on_page_writeback(page);
|
|
}
|
|
EXPORT_SYMBOL_GPL(wait_for_stable_page);
|