Reference count is maintained to track the usage of file key. This is required to avoid invalidate operation while a file key is in active usage. Change-Id: I8f6f562ec9a006e585503413c2196685535a5098 Signed-off-by: Neeraj Soni <neersoni@codeaurora.org>
899 lines
20 KiB
C
899 lines
20 KiB
C
/*
|
|
* Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 and
|
|
* only version 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
/*
|
|
* PFK Key Cache
|
|
*
|
|
* Key Cache used internally in PFK.
|
|
* The purpose of the cache is to save access time to QSEE when loading keys.
|
|
* Currently the cache is the same size as the total number of keys that can
|
|
* be loaded to ICE. Since this number is relatively small, the algorithms for
|
|
* cache eviction are simple, linear and based on last usage timestamp, i.e
|
|
* the node that will be evicted is the one with the oldest timestamp.
|
|
* Empty entries always have the oldest timestamp.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/spinlock.h>
|
|
#include <crypto/ice.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include "pfk_kc.h"
|
|
#include "pfk_ice.h"
|
|
|
|
|
|
/** the first available index in ice engine */
|
|
#define PFK_KC_STARTING_INDEX 2
|
|
|
|
/** currently the only supported key and salt sizes */
|
|
#define PFK_KC_KEY_SIZE 32
|
|
#define PFK_KC_SALT_SIZE 32
|
|
|
|
/** Table size */
|
|
/* TODO replace by some constant from ice.h */
|
|
#define PFK_KC_TABLE_SIZE ((32) - (PFK_KC_STARTING_INDEX))
|
|
|
|
/** The maximum key and salt size */
|
|
#define PFK_MAX_KEY_SIZE PFK_KC_KEY_SIZE
|
|
#define PFK_MAX_SALT_SIZE PFK_KC_SALT_SIZE
|
|
#define PFK_UFS "ufs"
|
|
|
|
static DEFINE_SPINLOCK(kc_lock);
|
|
static unsigned long flags;
|
|
static bool kc_ready;
|
|
static char *s_type = "sdcc";
|
|
|
|
/**
|
|
* enum pfk_kc_entry_state - state of the entry inside kc table
|
|
*
|
|
* @FREE: entry is free
|
|
* @ACTIVE_ICE_PRELOAD: entry is actively used by ICE engine
|
|
and cannot be used by others. SCM call
|
|
to load key to ICE is pending to be performed
|
|
* @ACTIVE_ICE_LOADED: entry is actively used by ICE engine and
|
|
cannot be used by others. SCM call to load the
|
|
key to ICE was successfully executed and key is
|
|
now loaded
|
|
* @INACTIVE_INVALIDATING: entry is being invalidated during file close
|
|
and cannot be used by others until invalidation
|
|
is complete
|
|
* @INACTIVE: entry's key is already loaded, but is not
|
|
currently being used. It can be re-used for
|
|
optimization and to avoid SCM call cost or
|
|
it can be taken by another key if there are
|
|
no FREE entries
|
|
* @SCM_ERROR: error occurred while scm call was performed to
|
|
load the key to ICE
|
|
*/
|
|
enum pfk_kc_entry_state {
|
|
FREE,
|
|
ACTIVE_ICE_PRELOAD,
|
|
ACTIVE_ICE_LOADED,
|
|
INACTIVE_INVALIDATING,
|
|
INACTIVE,
|
|
SCM_ERROR
|
|
};
|
|
|
|
struct kc_entry {
|
|
unsigned char key[PFK_MAX_KEY_SIZE];
|
|
size_t key_size;
|
|
|
|
unsigned char salt[PFK_MAX_SALT_SIZE];
|
|
size_t salt_size;
|
|
|
|
u64 time_stamp;
|
|
u32 key_index;
|
|
|
|
struct task_struct *thread_pending;
|
|
|
|
enum pfk_kc_entry_state state;
|
|
|
|
/* ref count for the number of requests in the HW queue for this key */
|
|
int loaded_ref_cnt;
|
|
int scm_error;
|
|
};
|
|
|
|
static struct kc_entry kc_table[PFK_KC_TABLE_SIZE];
|
|
|
|
/**
|
|
* kc_is_ready() - driver is initialized and ready.
|
|
*
|
|
* Return: true if the key cache is ready.
|
|
*/
|
|
static inline bool kc_is_ready(void)
|
|
{
|
|
return kc_ready;
|
|
}
|
|
|
|
static inline void kc_spin_lock(void)
|
|
{
|
|
spin_lock_irqsave(&kc_lock, flags);
|
|
}
|
|
|
|
static inline void kc_spin_unlock(void)
|
|
{
|
|
spin_unlock_irqrestore(&kc_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* kc_entry_is_available() - checks whether the entry is available
|
|
*
|
|
* Return true if it is , false otherwise or if invalid
|
|
* Should be invoked under spinlock
|
|
*/
|
|
static bool kc_entry_is_available(const struct kc_entry *entry)
|
|
{
|
|
if (!entry)
|
|
return false;
|
|
|
|
return (entry->state == FREE || entry->state == INACTIVE);
|
|
}
|
|
|
|
/**
|
|
* kc_entry_wait_till_available() - waits till entry is available
|
|
*
|
|
* Returns 0 in case of success or -ERESTARTSYS if the wait was interrupted
|
|
* by signal
|
|
*
|
|
* Should be invoked under spinlock
|
|
*/
|
|
static int kc_entry_wait_till_available(struct kc_entry *entry)
|
|
{
|
|
int res = 0;
|
|
|
|
while (!kc_entry_is_available(entry)) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
if (signal_pending(current)) {
|
|
res = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
/* assuming only one thread can try to invalidate
|
|
* the same entry
|
|
*/
|
|
entry->thread_pending = current;
|
|
kc_spin_unlock();
|
|
schedule();
|
|
kc_spin_lock();
|
|
}
|
|
set_current_state(TASK_RUNNING);
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* kc_entry_start_invalidating() - moves entry to state
|
|
* INACTIVE_INVALIDATING
|
|
* If entry is in use, waits till
|
|
* it gets available
|
|
* @entry: pointer to entry
|
|
*
|
|
* Return 0 in case of success, otherwise error
|
|
* Should be invoked under spinlock
|
|
*/
|
|
static int kc_entry_start_invalidating(struct kc_entry *entry)
|
|
{
|
|
int res;
|
|
|
|
res = kc_entry_wait_till_available(entry);
|
|
if (res)
|
|
return res;
|
|
|
|
entry->state = INACTIVE_INVALIDATING;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kc_entry_finish_invalidating() - moves entry to state FREE
|
|
* wakes up all the tasks waiting
|
|
* on it
|
|
*
|
|
* @entry: pointer to entry
|
|
*
|
|
* Return 0 in case of success, otherwise error
|
|
* Should be invoked under spinlock
|
|
*/
|
|
static void kc_entry_finish_invalidating(struct kc_entry *entry)
|
|
{
|
|
if (!entry)
|
|
return;
|
|
|
|
if (entry->state != INACTIVE_INVALIDATING)
|
|
return;
|
|
|
|
entry->state = FREE;
|
|
}
|
|
|
|
/**
|
|
* kc_min_entry() - compare two entries to find one with minimal time
|
|
* @a: ptr to the first entry. If NULL the other entry will be returned
|
|
* @b: pointer to the second entry
|
|
*
|
|
* Return the entry which timestamp is the minimal, or b if a is NULL
|
|
*/
|
|
static inline struct kc_entry *kc_min_entry(struct kc_entry *a,
|
|
struct kc_entry *b)
|
|
{
|
|
if (!a)
|
|
return b;
|
|
|
|
if (time_before64(b->time_stamp, a->time_stamp))
|
|
return b;
|
|
|
|
return a;
|
|
}
|
|
|
|
/**
|
|
* kc_entry_at_index() - return entry at specific index
|
|
* @index: index of entry to be accessed
|
|
*
|
|
* Return entry
|
|
* Should be invoked under spinlock
|
|
*/
|
|
static struct kc_entry *kc_entry_at_index(int index)
|
|
{
|
|
return &(kc_table[index]);
|
|
}
|
|
|
|
/**
|
|
* kc_find_key_at_index() - find kc entry starting at specific index
|
|
* @key: key to look for
|
|
* @key_size: the key size
|
|
* @salt: salt to look for
|
|
* @salt_size: the salt size
|
|
* @sarting_index: index to start search with, if entry found, updated with
|
|
* index of that entry
|
|
*
|
|
* Return entry or NULL in case of error
|
|
* Should be invoked under spinlock
|
|
*/
|
|
static struct kc_entry *kc_find_key_at_index(const unsigned char *key,
|
|
size_t key_size, const unsigned char *salt, size_t salt_size,
|
|
int *starting_index)
|
|
{
|
|
struct kc_entry *entry = NULL;
|
|
int i = 0;
|
|
|
|
for (i = *starting_index; i < PFK_KC_TABLE_SIZE; i++) {
|
|
entry = kc_entry_at_index(i);
|
|
|
|
if (NULL != salt) {
|
|
if (entry->salt_size != salt_size)
|
|
continue;
|
|
|
|
if (0 != memcmp(entry->salt, salt, salt_size))
|
|
continue;
|
|
}
|
|
|
|
if (entry->key_size != key_size)
|
|
continue;
|
|
|
|
if (0 == memcmp(entry->key, key, key_size)) {
|
|
*starting_index = i;
|
|
return entry;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* kc_find_key() - find kc entry
|
|
* @key: key to look for
|
|
* @key_size: the key size
|
|
* @salt: salt to look for
|
|
* @salt_size: the salt size
|
|
*
|
|
* Return entry or NULL in case of error
|
|
* Should be invoked under spinlock
|
|
*/
|
|
static struct kc_entry *kc_find_key(const unsigned char *key, size_t key_size,
|
|
const unsigned char *salt, size_t salt_size)
|
|
{
|
|
int index = 0;
|
|
|
|
return kc_find_key_at_index(key, key_size, salt, salt_size, &index);
|
|
}
|
|
|
|
/**
|
|
* kc_find_oldest_entry_non_locked() - finds the entry with minimal timestamp
|
|
* that is not locked
|
|
*
|
|
* Returns entry with minimal timestamp. Empty entries have timestamp
|
|
* of 0, therefore they are returned first.
|
|
* If all the entries are locked, will return NULL
|
|
* Should be invoked under spin lock
|
|
*/
|
|
static struct kc_entry *kc_find_oldest_entry_non_locked(void)
|
|
{
|
|
struct kc_entry *curr_min_entry = NULL;
|
|
struct kc_entry *entry = NULL;
|
|
int i = 0;
|
|
|
|
for (i = 0; i < PFK_KC_TABLE_SIZE; i++) {
|
|
entry = kc_entry_at_index(i);
|
|
|
|
if (entry->state == FREE)
|
|
return entry;
|
|
|
|
if (entry->state == INACTIVE)
|
|
curr_min_entry = kc_min_entry(curr_min_entry, entry);
|
|
}
|
|
|
|
return curr_min_entry;
|
|
}
|
|
|
|
/**
|
|
* kc_update_timestamp() - updates timestamp of entry to current
|
|
*
|
|
* @entry: entry to update
|
|
*
|
|
*/
|
|
static void kc_update_timestamp(struct kc_entry *entry)
|
|
{
|
|
if (!entry)
|
|
return;
|
|
|
|
entry->time_stamp = get_jiffies_64();
|
|
}
|
|
|
|
/**
|
|
* kc_clear_entry() - clear the key from entry and mark entry not in use
|
|
*
|
|
* @entry: pointer to entry
|
|
*
|
|
* Should be invoked under spinlock
|
|
*/
|
|
static void kc_clear_entry(struct kc_entry *entry)
|
|
{
|
|
if (!entry)
|
|
return;
|
|
|
|
memset(entry->key, 0, entry->key_size);
|
|
memset(entry->salt, 0, entry->salt_size);
|
|
|
|
entry->key_size = 0;
|
|
entry->salt_size = 0;
|
|
|
|
entry->time_stamp = 0;
|
|
entry->scm_error = 0;
|
|
}
|
|
|
|
/**
|
|
* kc_update_entry() - replaces the key in given entry and
|
|
* loads the new key to ICE
|
|
*
|
|
* @entry: entry to replace key in
|
|
* @key: key
|
|
* @key_size: key_size
|
|
* @salt: salt
|
|
* @salt_size: salt_size
|
|
*
|
|
* The previous key is securely released and wiped, the new one is loaded
|
|
* to ICE.
|
|
* Should be invoked under spinlock
|
|
*/
|
|
static int kc_update_entry(struct kc_entry *entry, const unsigned char *key,
|
|
size_t key_size, const unsigned char *salt, size_t salt_size)
|
|
{
|
|
int ret;
|
|
|
|
kc_clear_entry(entry);
|
|
|
|
memcpy(entry->key, key, key_size);
|
|
entry->key_size = key_size;
|
|
|
|
memcpy(entry->salt, salt, salt_size);
|
|
entry->salt_size = salt_size;
|
|
|
|
/* Mark entry as no longer free before releasing the lock */
|
|
entry->state = ACTIVE_ICE_PRELOAD;
|
|
kc_spin_unlock();
|
|
|
|
ret = qti_pfk_ice_set_key(entry->key_index, entry->key,
|
|
entry->salt, s_type);
|
|
|
|
kc_spin_lock();
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* pfk_kc_init() - init function
|
|
*
|
|
* Return 0 in case of success, error otherwise
|
|
*/
|
|
int pfk_kc_init(void)
|
|
{
|
|
int i = 0;
|
|
struct kc_entry *entry = NULL;
|
|
|
|
kc_spin_lock();
|
|
for (i = 0; i < PFK_KC_TABLE_SIZE; i++) {
|
|
entry = kc_entry_at_index(i);
|
|
entry->key_index = PFK_KC_STARTING_INDEX + i;
|
|
}
|
|
kc_ready = true;
|
|
kc_spin_unlock();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pfk_kc_denit() - deinit function
|
|
*
|
|
* Return 0 in case of success, error otherwise
|
|
*/
|
|
int pfk_kc_deinit(void)
|
|
{
|
|
int res = pfk_kc_clear();
|
|
kc_ready = false;
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* pfk_kc_load_key_start() - retrieve the key from cache or add it if
|
|
* it's not there and return the ICE hw key index in @key_index.
|
|
* @key: pointer to the key
|
|
* @key_size: the size of the key
|
|
* @salt: pointer to the salt
|
|
* @salt_size: the size of the salt
|
|
* @key_index: the pointer to key_index where the output will be stored
|
|
* @async: whether scm calls are allowed in the caller context
|
|
*
|
|
* If key is present in cache, than the key_index will be retrieved from cache.
|
|
* If it is not present, the oldest entry from kc table will be evicted,
|
|
* the key will be loaded to ICE via QSEE to the index that is the evicted
|
|
* entry number and stored in cache.
|
|
* Entry that is going to be used is marked as being used, it will mark
|
|
* as not being used when ICE finishes using it and pfk_kc_load_key_end
|
|
* will be invoked.
|
|
* As QSEE calls can only be done from a non-atomic context, when @async flag
|
|
* is set to 'false', it specifies that it is ok to make the calls in the
|
|
* current context. Otherwise, when @async is set, the caller should retry the
|
|
* call again from a different context, and -EAGAIN error will be returned.
|
|
*
|
|
* Return 0 in case of success, error otherwise
|
|
*/
|
|
int pfk_kc_load_key_start(const unsigned char *key, size_t key_size,
|
|
const unsigned char *salt, size_t salt_size, u32 *key_index,
|
|
bool async)
|
|
{
|
|
int ret = 0;
|
|
struct kc_entry *entry = NULL;
|
|
bool entry_exists = false;
|
|
|
|
if (!kc_is_ready())
|
|
return -ENODEV;
|
|
|
|
if (!key || !salt || !key_index)
|
|
return -EINVAL;
|
|
|
|
if (key_size != PFK_KC_KEY_SIZE) {
|
|
pr_err("unsupported key size %zu\n", key_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (salt_size != PFK_KC_SALT_SIZE) {
|
|
pr_err("unsupported salt size %zu\n", salt_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
kc_spin_lock();
|
|
|
|
entry = kc_find_key(key, key_size, salt, salt_size);
|
|
if (!entry) {
|
|
if (async) {
|
|
pr_debug("found empty entry, a separate task will populate it\n");
|
|
kc_spin_unlock();
|
|
return -EAGAIN;
|
|
}
|
|
|
|
entry = kc_find_oldest_entry_non_locked();
|
|
if (!entry) {
|
|
/* could not find a single non locked entry,
|
|
* return EBUSY to upper layers so that the
|
|
* request will be rescheduled
|
|
*/
|
|
kc_spin_unlock();
|
|
return -EBUSY;
|
|
}
|
|
} else {
|
|
entry_exists = true;
|
|
}
|
|
|
|
pr_debug("entry with index %d is in state %d\n",
|
|
entry->key_index, entry->state);
|
|
|
|
switch (entry->state) {
|
|
case (INACTIVE):
|
|
if (entry_exists) {
|
|
kc_update_timestamp(entry);
|
|
entry->state = ACTIVE_ICE_LOADED;
|
|
|
|
if (!strcmp(s_type, (char *)PFK_UFS)) {
|
|
if (async)
|
|
entry->loaded_ref_cnt++;
|
|
} else {
|
|
entry->loaded_ref_cnt++;
|
|
}
|
|
break;
|
|
}
|
|
case (FREE):
|
|
ret = kc_update_entry(entry, key, key_size, salt, salt_size);
|
|
if (ret) {
|
|
entry->state = SCM_ERROR;
|
|
entry->scm_error = ret;
|
|
pr_err("%s: key load error (%d)\n", __func__, ret);
|
|
} else {
|
|
kc_update_timestamp(entry);
|
|
entry->state = ACTIVE_ICE_LOADED;
|
|
|
|
/*
|
|
* In case of UFS only increase ref cnt for async calls,
|
|
* sync calls from within work thread do not pass
|
|
* requests further to HW
|
|
*/
|
|
if (!strcmp(s_type, (char *)PFK_UFS)) {
|
|
if (async)
|
|
entry->loaded_ref_cnt++;
|
|
} else {
|
|
entry->loaded_ref_cnt++;
|
|
}
|
|
}
|
|
break;
|
|
case (ACTIVE_ICE_PRELOAD):
|
|
case (INACTIVE_INVALIDATING):
|
|
ret = -EAGAIN;
|
|
break;
|
|
case (ACTIVE_ICE_LOADED):
|
|
kc_update_timestamp(entry);
|
|
|
|
if (!strcmp(s_type, (char *)PFK_UFS)) {
|
|
if (async)
|
|
entry->loaded_ref_cnt++;
|
|
} else {
|
|
entry->loaded_ref_cnt++;
|
|
}
|
|
break;
|
|
case(SCM_ERROR):
|
|
ret = entry->scm_error;
|
|
kc_clear_entry(entry);
|
|
entry->state = FREE;
|
|
break;
|
|
default:
|
|
pr_err("invalid state %d for entry with key index %d\n",
|
|
entry->state, entry->key_index);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
*key_index = entry->key_index;
|
|
kc_spin_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* pfk_kc_load_key_end() - finish the process of key loading that was started
|
|
* by pfk_kc_load_key_start
|
|
* by marking the entry as not
|
|
* being in use
|
|
* @key: pointer to the key
|
|
* @key_size: the size of the key
|
|
* @salt: pointer to the salt
|
|
* @salt_size: the size of the salt
|
|
*
|
|
*/
|
|
void pfk_kc_load_key_end(const unsigned char *key, size_t key_size,
|
|
const unsigned char *salt, size_t salt_size)
|
|
{
|
|
struct kc_entry *entry = NULL;
|
|
struct task_struct *tmp_pending = NULL;
|
|
int ref_cnt = 0;
|
|
|
|
if (!kc_is_ready())
|
|
return;
|
|
|
|
if (!key || !salt)
|
|
return;
|
|
|
|
if (key_size != PFK_KC_KEY_SIZE)
|
|
return;
|
|
|
|
if (salt_size != PFK_KC_SALT_SIZE)
|
|
return;
|
|
|
|
kc_spin_lock();
|
|
|
|
entry = kc_find_key(key, key_size, salt, salt_size);
|
|
if (!entry) {
|
|
kc_spin_unlock();
|
|
pr_err("internal error, there should an entry to unlock\n");
|
|
|
|
return;
|
|
}
|
|
ref_cnt = --entry->loaded_ref_cnt;
|
|
|
|
if (ref_cnt < 0)
|
|
pr_err("internal error, ref count should never be negative\n");
|
|
|
|
if (!ref_cnt) {
|
|
entry->state = INACTIVE;
|
|
/*
|
|
* wake-up invalidation if it's waiting
|
|
* for the entry to be released
|
|
*/
|
|
if (entry->thread_pending) {
|
|
tmp_pending = entry->thread_pending;
|
|
entry->thread_pending = NULL;
|
|
|
|
kc_spin_unlock();
|
|
wake_up_process(tmp_pending);
|
|
return;
|
|
}
|
|
}
|
|
|
|
kc_spin_unlock();
|
|
}
|
|
|
|
/**
|
|
* pfk_kc_remove_key() - remove the key from cache and from ICE engine
|
|
* @key: pointer to the key
|
|
* @key_size: the size of the key
|
|
* @salt: pointer to the key
|
|
* @salt_size: the size of the key
|
|
*
|
|
* Return 0 in case of success, error otherwise (also in case of non
|
|
* (existing key)
|
|
*/
|
|
int pfk_kc_remove_key_with_salt(const unsigned char *key, size_t key_size,
|
|
const unsigned char *salt, size_t salt_size)
|
|
{
|
|
struct kc_entry *entry = NULL;
|
|
int res = 0;
|
|
|
|
if (!kc_is_ready())
|
|
return -ENODEV;
|
|
|
|
if (!key)
|
|
return -EINVAL;
|
|
|
|
if (!salt)
|
|
return -EINVAL;
|
|
|
|
if (key_size != PFK_KC_KEY_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (salt_size != PFK_KC_SALT_SIZE)
|
|
return -EINVAL;
|
|
|
|
kc_spin_lock();
|
|
|
|
entry = kc_find_key(key, key_size, salt, salt_size);
|
|
if (!entry) {
|
|
pr_debug("%s: key does not exist\n", __func__);
|
|
kc_spin_unlock();
|
|
return -EINVAL;
|
|
}
|
|
|
|
res = kc_entry_start_invalidating(entry);
|
|
if (res != 0) {
|
|
kc_spin_unlock();
|
|
return res;
|
|
}
|
|
kc_clear_entry(entry);
|
|
|
|
kc_spin_unlock();
|
|
|
|
qti_pfk_ice_invalidate_key(entry->key_index, s_type);
|
|
|
|
kc_spin_lock();
|
|
kc_entry_finish_invalidating(entry);
|
|
kc_spin_unlock();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pfk_kc_remove_key() - remove the key from cache and from ICE engine
|
|
* when no salt is available. Will only search key part, if there are several,
|
|
* all will be removed
|
|
*
|
|
* @key: pointer to the key
|
|
* @key_size: the size of the key
|
|
*
|
|
* Return 0 in case of success, error otherwise (also for non-existing key)
|
|
*/
|
|
int pfk_kc_remove_key(const unsigned char *key, size_t key_size)
|
|
{
|
|
struct kc_entry *entry = NULL;
|
|
int index = 0;
|
|
int temp_indexes[PFK_KC_TABLE_SIZE] = {0};
|
|
int temp_indexes_size = 0;
|
|
int i = 0;
|
|
int res = 0;
|
|
|
|
if (!kc_is_ready())
|
|
return -ENODEV;
|
|
|
|
if (!key)
|
|
return -EINVAL;
|
|
|
|
if (key_size != PFK_KC_KEY_SIZE)
|
|
return -EINVAL;
|
|
|
|
memset(temp_indexes, -1, sizeof(temp_indexes));
|
|
|
|
kc_spin_lock();
|
|
|
|
entry = kc_find_key_at_index(key, key_size, NULL, 0, &index);
|
|
if (!entry) {
|
|
pr_err("%s: key does not exist\n", __func__);
|
|
kc_spin_unlock();
|
|
return -EINVAL;
|
|
}
|
|
|
|
res = kc_entry_start_invalidating(entry);
|
|
if (res != 0) {
|
|
kc_spin_unlock();
|
|
return res;
|
|
}
|
|
|
|
temp_indexes[temp_indexes_size++] = index;
|
|
kc_clear_entry(entry);
|
|
|
|
/* let's clean additional entries with the same key if there are any */
|
|
do {
|
|
index++;
|
|
entry = kc_find_key_at_index(key, key_size, NULL, 0, &index);
|
|
if (!entry)
|
|
break;
|
|
|
|
res = kc_entry_start_invalidating(entry);
|
|
if (res != 0) {
|
|
kc_spin_unlock();
|
|
goto out;
|
|
}
|
|
|
|
temp_indexes[temp_indexes_size++] = index;
|
|
|
|
kc_clear_entry(entry);
|
|
|
|
|
|
} while (true);
|
|
|
|
kc_spin_unlock();
|
|
|
|
temp_indexes_size--;
|
|
for (i = temp_indexes_size; i >= 0 ; i--)
|
|
qti_pfk_ice_invalidate_key(
|
|
kc_entry_at_index(temp_indexes[i])->key_index,
|
|
s_type);
|
|
|
|
/* fall through */
|
|
res = 0;
|
|
|
|
out:
|
|
kc_spin_lock();
|
|
for (i = temp_indexes_size; i >= 0 ; i--)
|
|
kc_entry_finish_invalidating(
|
|
kc_entry_at_index(temp_indexes[i]));
|
|
kc_spin_unlock();
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* pfk_kc_clear() - clear the table and remove all keys from ICE
|
|
*
|
|
* Return 0 on success, error otherwise
|
|
*
|
|
*/
|
|
int pfk_kc_clear(void)
|
|
{
|
|
struct kc_entry *entry = NULL;
|
|
int i = 0;
|
|
int res = 0;
|
|
|
|
if (!kc_is_ready())
|
|
return -ENODEV;
|
|
|
|
kc_spin_lock();
|
|
for (i = 0; i < PFK_KC_TABLE_SIZE; i++) {
|
|
entry = kc_entry_at_index(i);
|
|
res = kc_entry_start_invalidating(entry);
|
|
if (res != 0) {
|
|
kc_spin_unlock();
|
|
goto out;
|
|
}
|
|
kc_clear_entry(entry);
|
|
}
|
|
kc_spin_unlock();
|
|
|
|
for (i = 0; i < PFK_KC_TABLE_SIZE; i++)
|
|
qti_pfk_ice_invalidate_key(kc_entry_at_index(i)->key_index,
|
|
s_type);
|
|
|
|
/* fall through */
|
|
res = 0;
|
|
out:
|
|
kc_spin_lock();
|
|
for (i = 0; i < PFK_KC_TABLE_SIZE; i++)
|
|
kc_entry_finish_invalidating(kc_entry_at_index(i));
|
|
kc_spin_unlock();
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* pfk_kc_clear_on_reset() - clear the table and remove all keys from ICE
|
|
* The assumption is that at this point we don't have any pending transactions
|
|
* Also, there is no need to clear keys from ICE
|
|
*
|
|
* Return 0 on success, error otherwise
|
|
*
|
|
*/
|
|
void pfk_kc_clear_on_reset(void)
|
|
{
|
|
struct kc_entry *entry = NULL;
|
|
int i = 0;
|
|
|
|
if (!kc_is_ready())
|
|
return;
|
|
|
|
kc_spin_lock();
|
|
for (i = 0; i < PFK_KC_TABLE_SIZE; i++) {
|
|
entry = kc_entry_at_index(i);
|
|
kc_clear_entry(entry);
|
|
}
|
|
kc_spin_unlock();
|
|
}
|
|
|
|
static int pfk_kc_find_storage_type(char **device)
|
|
{
|
|
char boot[20] = {'\0'};
|
|
char *match = (char *)strnstr(saved_command_line,
|
|
"androidboot.bootdevice=",
|
|
strlen(saved_command_line));
|
|
if (match) {
|
|
memcpy(boot, (match + strlen("androidboot.bootdevice=")),
|
|
sizeof(boot) - 1);
|
|
if (strnstr(boot, PFK_UFS, strlen(boot)))
|
|
*device = PFK_UFS;
|
|
|
|
return 0;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int __init pfk_kc_pre_init(void)
|
|
{
|
|
return pfk_kc_find_storage_type(&s_type);
|
|
}
|
|
|
|
static void __exit pfk_kc_exit(void)
|
|
{
|
|
s_type = NULL;
|
|
}
|
|
|
|
module_init(pfk_kc_pre_init);
|
|
module_exit(pfk_kc_exit);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("Per-File-Key-KC driver");
|