-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE4n5dijQDou9mhzu83qZv95d3LNwFAl77n/QACgkQ3qZv95d3 LNz32RAAv97sAOnMaLii5ZgJtLGAHaAm6yCXbFzlfZLS75CBWG4Fy+4hTuDhVOBj 9rkRtpCDqzfvjmPZld9uSTyXSSxuPmKP0UpZTEC7Ctoz0wX1Q8SUNQQ+sPNj41Y0 k5L9Aqm7TTalu0LYl9i1BZtriO2SY27fhMbt0rJdw1GGJHQBsfCNQxX+LGF3RQaO itCY4pwl1AXHc/lRfybxEmdzSOGBqFrKS0Hda0cneDXNRevhS24qWDVjWgjgC6Ha kMygBTbsHqF7H+GR6gDc2SUYoFR/cA2A7T6Q9YQsTJpaTtZsIqsys1WMemh4zwed ctomUTjGPVMTsn5llPF+E7oJQh91sQ/hu666zHtn9O0jOrnBYwiwHc5kKeP/zh6f TuaBzZhz7dCxTGA8psBbOnUVjG2xhgDW5ZSlyWaADVPeXWO6aFFl71pjrlZJ1ezP eq5+BcTxFyMLfxzEUie3mwkBtSGFFnhwkmNsX0m4EgdNPmcx6s8VDrTgFcgwu+4l FK1ImqIpkiNp+OGwcp3V7mYYqvhHGBS0sQHnBFXX6Kv1Za76+oEMOl4VIWOU+SvF zyX+GuFk0lMZVabHEPvcUnzaQ8KG9YRGPjBTZoXflDZ6hpCja5nsiUKAAX1nO/7Z CRCti3fCyhDaW4bv5eKPLvlQSpI+FCW3BBusKuBJq9HbxedPPlg= =8zJW -----END PGP SIGNATURE----- gpgsig -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEJDfLduVEy2qz2d/TmXOSYMtstxYFAl78vu4ACgkQmXOSYMts txYQZhAAmtKHaupyiLyYJUJB8eeHysmk5KQBjahBBRC8n51E1EF49eK19MibStOU /g6ETKcFRUXDGt8gMu1y2KhOrB8jq5hkjbyYpgKNXx8LNgOW3ZN1cysXCYKPefEI 6JRZp8OmX7MP8H6jmzsvrxbLmaqSR2iweUQDmpEi4aC6WBVCBufhib3+Ydjo8UT8 YKOf5Y2fNncBFe3p7gg4n/eqr2V83+/Dtgp0XmLt+ehE5Tp8WMpKNjP6ddPhIHnd uAcsz/jXU24+JykgV2KfixLwkQxSf+pkppijArNYS5XLG07MjRbB9W70qH1ZqcwY ignCZNbyjI+5EDwl3wMGosbQPyxhTYO2ozmlNx+ANs7t0yjMnY9A5vT9zIPDEfKI oSPgqgVDvdhsxG/eKGAk9qo97NX1W/dzmSOSAr5ubM7QeegwpxpKZNSTazP3MIar DU9jSFIODphe+GVVwdRxAXm0X4VjfFfXIV+74uT5RQsCb0YJwTz5PHeTDkjpYTXD EqK7iOCYKrEjDZ5QKZzos/5OxG13VeuwrZ8a2BZ+5L0mVO1bM3rBG5Cgwp6fQmpU fW2/uFygWMSWZ1iQkFBSoQfyadcraQTDPg/tlL1axkvEme6DOpqQcJckHogUX+S7 bN8ayqgJIR9d1j7WhtQmPi36UzOb2kM4FnN4Ry3WrwnTlZUFFIY= =4FLF -----END PGP SIGNATURE----- Merge 4.4.229 into kernel.lnx.4.4.r39-rel Changes in 4.4.229: (135 commits) s390: fix syscall_get_error for compat processes clk: sunxi: Fix incorrect usage of round_down() i2c: piix4: Detect secondary SMBus controller on AMD AM4 chipsets clk: qcom: msm8916: Fix the address location of pll->config_reg ALSA: isa/wavefront: prevent out of bounds write in ioctl scsi: qla2xxx: Fix issue with adapter's stopping state i2c: pxa: clear all master action bits in i2c_pxa_stop_message() usblp: poison URBs upon disconnect ps3disk: use the default segment boundary vfio/pci: fix memory leaks in alloc_perm_bits() mfd: wm8994: Fix driver operation if loaded as modules scsi: lpfc: Fix lpfc_nodelist leak when processing unsolicited event nfsd: Fix svc_xprt refcnt leak when setup callback client failed powerpc/crashkernel: Take "mem=" option into account yam: fix possible memory leak in yam_init_driver mksysmap: Fix the mismatch of '.L' symbols in System.map scsi: sr: Fix sr_probe() missing deallocate of device minor scsi: ibmvscsi: Don't send host info in adapter info MAD after LPM ALSA: usb-audio: Improve frames size computation s390/qdio: put thinint indicator after early error tty: hvc: Fix data abort due to race in hvc_open staging: sm750fb: add missing case while setting FB_VISUAL i2c: pxa: fix i2c_pxa_scream_blue_murder() debug output serial: amba-pl011: Make sure we initialize the port.lock spinlock drivers: base: Fix NULL pointer exception in __platform_driver_probe() if a driver developer is foolish PCI/ASPM: Allow ASPM on links to PCIe-to-PCI/PCI-X Bridges power: supply: smb347-charger: IRQSTAT_D is volatile scsi: mpt3sas: Fix double free warnings dlm: remove BUG() before panic() clk: ti: composite: fix memory leak tty: n_gsm: Fix SOF skipping tty: n_gsm: Fix waking up upper tty layer when room available powerpc/pseries/ras: Fix FWNMI_VALID off by one powerpc/ps3: Fix kexec shutdown hang vfio-pci: Mask cap zero usb/ohci-platform: Fix a warning when hibernating USB: host: ehci-mxc: Add error handling in ehci_mxc_drv_probe() tty: n_gsm: Fix bogus i++ in gsm_data_kick clk: samsung: exynos5433: Add IGNORE_UNUSED flag to sclk_i2s1 watchdog: da9062: No need to ping manually before setting timeout usb: dwc2: gadget: move gadget resume after the core is in L0 state USB: gadget: udc: s3c2410_udc: Remove pointless NULL check in s3c2410_udc_nuke usb: gadget: lpc32xx_udc: don't dereference ep pointer before null check usb: gadget: fix potential double-free in m66592_probe. net: sunrpc: Fix off-by-one issues in 'rpc_ntop6' ASoC: fsl_asrc_dma: Fix dma_chan leak when config DMA channel failed openrisc: Fix issue with argument clobbering for clone/fork gfs2: Allow lock_nolock mount to specify jid=X scsi: iscsi: Fix reference count leak in iscsi_boot_create_kobj lib/zlib: remove outdated and incorrect pre-increment optimization include/linux/bitops.h: avoid clang shift-count-overflow warnings elfnote: mark all .note sections SHF_ALLOC selftests/net: in timestamping, strncpy needs to preserve null byte scsi: acornscsi: Fix an error handling path in acornscsi_probe() usb/xhci-plat: Set PM runtime as active on resume usb/ehci-platform: Set PM runtime as active on resume perf report: Fix NULL pointer dereference in hists__fprintf_nr_sample_events() bcache: fix potential deadlock problem in btree_gc_coalesce block: Fix use-after-free in blkdev_get() libata: Use per port sync for detach drm: encoder_slave: fix refcouting error for modules drm/dp_mst: Reformat drm_dp_check_act_status() a bit drm/qxl: Use correct notify port address when creating cursor ring selinux: fix double free ext4: fix partial cluster initialization when splitting extent drm/dp_mst: Increase ACT retry timeout to 3s sparc64: fix misuses of access_process_vm() in genregs32_[sg]et() block: nr_sects_write(): Disable preemption on seqcount write crypto: algboss - don't wait during notifier callback kprobes: Fix to protect kick_kprobe_optimizer() by kprobe_mutex powerpc/kprobes: Fixes for kprobe_lookup_name() on BE x86/kprobes: Avoid kretprobe recursion bug kretprobe: Prevent triggering kretprobe from within kprobe_flush_task e1000e: Do not wake up the system via WOL if device wakeup is disabled sched/rt, net: Use CONFIG_PREEMPTION.patch net: core: device_rename: Use rwsem instead of a seqcount net: Revert "pkt_sched: fq: use proper locking in fq_dump_stats()" scsi: scsi_devinfo: handle non-terminated strings l2tp: Allow duplicate session creation with UDP net: sched: export __netdev_watchdog_up() fix a braino in "sparc32: fix register window handling in genregs32_[gs]et()" net: fix memleak in register_netdevice() net: usb: ax88179_178a: fix packet alignment padding tg3: driver sleeps indefinitely when EEH errors exceed eeh_max_freezes ip_tunnel: fix use-after-free in ip_tunnel_lookup() tcp_cubic: fix spurious HYSTART_DELAY exit upon drop in min RTT ip6_gre: fix use-after-free in ip6gre_tunnel_lookup() tcp: grow window for OOO packets only for SACK flows sctp: Don't advertise IPv4 addresses if ipv6only is set on the socket net: Fix the arp error in some cases net: Do not clear the sock TX queue in sk_set_socket() net: core: reduce recursion limit value mld: fix memory leak in ipv6_mc_destroy_dev() USB: ohci-sm501: Add missed iounmap() in remove usb: dwc2: Postponed gadget registration to the udc class driver usb: add USB_QUIRK_DELAY_INIT for Logitech C922 PCI: Disable MSI for HiSilicon Hip06/Hip07 Root Ports USB: ehci: reopen solution for Synopsys HC bug usb: host: ehci-exynos: Fix error check in exynos_ehci_probe() ALSA: usb-audio: add quirk for Denon DCD-1500RE xhci: Fix incorrect EP_STATE_MASK xhci: Fix enumeration issue when setting max packet size for FS devices. cdc-acm: Add DISABLE_ECHO quirk for Microchip/SMSC chip ALSA: usb-audio: uac1: Invalidate ctl on interrupt ALSA: usb-audio: allow clock source validity interrupts ALSA: usb-audio: Clean up mixer element list traverse ALSA: usb-audio: Fix OOB access of mixer element list xhci: Poll for U0 after disabling USB2 LPM cifs/smb3: Fix data inconsistent when punch hole cifs/smb3: Fix data inconsistent when zero file range efi/esrt: Fix reference count leak in esre_create_sysfs_entry. RDMA/mad: Fix possible memory leak in ib_mad_post_receive_mads() ARM: imx5: add missing put_device() call in imx_suspend_alloc_ocram() usb: gadget: udc: Potential Oops in error handling code netfilter: ipset: fix unaligned atomic access sched/core: Fix PI boosting between RT and DEADLINE tasks net: alx: fix race condition in alx_remove kbuild: improve cc-option to clean up all temporary files blktrace: break out of blktrace setup on concurrent calls ACPI: sysfs: Fix pm_profile_attr type KVM: X86: Fix MSR range of APIC registers in X2APIC mode mm/slab: use memzero_explicit() in kzfree() ocfs2: load global_inode_alloc ocfs2: fix value of OCFS2_INVALID_SLOT ocfs2: fix panic on nfs server over ocfs2 arm64: perf: Report the PC value in REGS_ABI_32 mode tracing: Fix event trigger to accept redundant spaces drm/radeon: fix fb_div check in ni_init_smc_spll_table() sunrpc: fixed rollback in rpc_gssd_dummy_populate() SUNRPC: Properly set the @subbuf parameter of xdr_buf_subsegment() pNFS/flexfiles: Fix list corruption if the mirror count changes NFSv4 fix CLOSE not waiting for direct IO compeletion PCI: Disable MSI for HiSilicon Hip06/Hip07 only in Root Port mode ALSA: usb-audio: Fix invalid NULL check in snd_emuusb_set_samplerate() Linux 4.4.229 Signed-off-by: Nathan Chancellor <natechancellor@gmail.com> Conflicts: drivers/usb/host/xhci-plat.c
1285 lines
30 KiB
C
1285 lines
30 KiB
C
/*
|
|
* Slab allocator functions that are independent of the allocator strategy
|
|
*
|
|
* (C) 2012 Christoph Lameter <cl@linux.com>
|
|
*/
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/module.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/page.h>
|
|
#include <linux/memcontrol.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/kmem.h>
|
|
|
|
#include "slab.h"
|
|
|
|
enum slab_state slab_state;
|
|
LIST_HEAD(slab_caches);
|
|
DEFINE_MUTEX(slab_mutex);
|
|
struct kmem_cache *kmem_cache;
|
|
|
|
/*
|
|
* Set of flags that will prevent slab merging
|
|
*/
|
|
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
|
|
SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
|
|
SLAB_FAILSLAB | SLAB_KASAN)
|
|
|
|
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | SLAB_NOTRACK)
|
|
|
|
/*
|
|
* Merge control. If this is set then no merging of slab caches will occur.
|
|
* (Could be removed. This was introduced to pacify the merge skeptics.)
|
|
*/
|
|
static int slab_nomerge;
|
|
|
|
static int __init setup_slab_nomerge(char *str)
|
|
{
|
|
slab_nomerge = 1;
|
|
return 1;
|
|
}
|
|
|
|
#ifdef CONFIG_SLUB
|
|
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
|
|
#endif
|
|
|
|
__setup("slab_nomerge", setup_slab_nomerge);
|
|
|
|
/*
|
|
* Determine the size of a slab object
|
|
*/
|
|
unsigned int kmem_cache_size(struct kmem_cache *s)
|
|
{
|
|
return s->object_size;
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_size);
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
static int kmem_cache_sanity_check(const char *name, size_t size)
|
|
{
|
|
struct kmem_cache *s = NULL;
|
|
|
|
if (!name || in_interrupt() || size < sizeof(void *) ||
|
|
size > KMALLOC_MAX_SIZE) {
|
|
pr_err("kmem_cache_create(%s) integrity check failed\n", name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
list_for_each_entry(s, &slab_caches, list) {
|
|
char tmp;
|
|
int res;
|
|
|
|
/*
|
|
* This happens when the module gets unloaded and doesn't
|
|
* destroy its slab cache and no-one else reuses the vmalloc
|
|
* area of the module. Print a warning.
|
|
*/
|
|
res = probe_kernel_address(s->name, tmp);
|
|
if (res) {
|
|
pr_err("Slab cache with size %d has lost its name\n",
|
|
s->object_size);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
WARN_ON(strchr(name, ' ')); /* It confuses parsers */
|
|
return 0;
|
|
}
|
|
#else
|
|
static inline int kmem_cache_sanity_check(const char *name, size_t size)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < nr; i++)
|
|
kmem_cache_free(s, p[i]);
|
|
}
|
|
|
|
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
|
|
void **p)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
void *x = p[i] = kmem_cache_alloc(s, flags);
|
|
if (!x) {
|
|
__kmem_cache_free_bulk(s, i, p);
|
|
return 0;
|
|
}
|
|
}
|
|
return i;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMCG_KMEM
|
|
void slab_init_memcg_params(struct kmem_cache *s)
|
|
{
|
|
s->memcg_params.is_root_cache = true;
|
|
INIT_LIST_HEAD(&s->memcg_params.list);
|
|
RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
|
|
}
|
|
|
|
static int init_memcg_params(struct kmem_cache *s,
|
|
struct mem_cgroup *memcg, struct kmem_cache *root_cache)
|
|
{
|
|
struct memcg_cache_array *arr;
|
|
|
|
if (memcg) {
|
|
s->memcg_params.is_root_cache = false;
|
|
s->memcg_params.memcg = memcg;
|
|
s->memcg_params.root_cache = root_cache;
|
|
return 0;
|
|
}
|
|
|
|
slab_init_memcg_params(s);
|
|
|
|
if (!memcg_nr_cache_ids)
|
|
return 0;
|
|
|
|
arr = kzalloc(sizeof(struct memcg_cache_array) +
|
|
memcg_nr_cache_ids * sizeof(void *),
|
|
GFP_KERNEL);
|
|
if (!arr)
|
|
return -ENOMEM;
|
|
|
|
RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
|
|
return 0;
|
|
}
|
|
|
|
static void destroy_memcg_params(struct kmem_cache *s)
|
|
{
|
|
if (is_root_cache(s))
|
|
kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
|
|
}
|
|
|
|
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
|
|
{
|
|
struct memcg_cache_array *old, *new;
|
|
|
|
if (!is_root_cache(s))
|
|
return 0;
|
|
|
|
new = kzalloc(sizeof(struct memcg_cache_array) +
|
|
new_array_size * sizeof(void *), GFP_KERNEL);
|
|
if (!new)
|
|
return -ENOMEM;
|
|
|
|
old = rcu_dereference_protected(s->memcg_params.memcg_caches,
|
|
lockdep_is_held(&slab_mutex));
|
|
if (old)
|
|
memcpy(new->entries, old->entries,
|
|
memcg_nr_cache_ids * sizeof(void *));
|
|
|
|
rcu_assign_pointer(s->memcg_params.memcg_caches, new);
|
|
if (old)
|
|
kfree_rcu(old, rcu);
|
|
return 0;
|
|
}
|
|
|
|
int memcg_update_all_caches(int num_memcgs)
|
|
{
|
|
struct kmem_cache *s;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&slab_mutex);
|
|
list_for_each_entry(s, &slab_caches, list) {
|
|
ret = update_memcg_params(s, num_memcgs);
|
|
/*
|
|
* Instead of freeing the memory, we'll just leave the caches
|
|
* up to this point in an updated state.
|
|
*/
|
|
if (ret)
|
|
break;
|
|
}
|
|
mutex_unlock(&slab_mutex);
|
|
return ret;
|
|
}
|
|
#else
|
|
static inline int init_memcg_params(struct kmem_cache *s,
|
|
struct mem_cgroup *memcg, struct kmem_cache *root_cache)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void destroy_memcg_params(struct kmem_cache *s)
|
|
{
|
|
}
|
|
#endif /* CONFIG_MEMCG_KMEM */
|
|
|
|
/*
|
|
* Find a mergeable slab cache
|
|
*/
|
|
int slab_unmergeable(struct kmem_cache *s)
|
|
{
|
|
if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
|
|
return 1;
|
|
|
|
if (!is_root_cache(s))
|
|
return 1;
|
|
|
|
if (s->ctor)
|
|
return 1;
|
|
|
|
/*
|
|
* We may have set a slab to be unmergeable during bootstrap.
|
|
*/
|
|
if (s->refcount < 0)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct kmem_cache *find_mergeable(size_t size, size_t align,
|
|
unsigned long flags, const char *name, void (*ctor)(void *))
|
|
{
|
|
struct kmem_cache *s;
|
|
|
|
if (slab_nomerge)
|
|
return NULL;
|
|
|
|
if (ctor)
|
|
return NULL;
|
|
|
|
size = ALIGN(size, sizeof(void *));
|
|
align = calculate_alignment(flags, align, size);
|
|
size = ALIGN(size, align);
|
|
flags = kmem_cache_flags(size, flags, name, NULL);
|
|
|
|
if (flags & SLAB_NEVER_MERGE)
|
|
return NULL;
|
|
|
|
list_for_each_entry_reverse(s, &slab_caches, list) {
|
|
if (slab_unmergeable(s))
|
|
continue;
|
|
|
|
if (size > s->size)
|
|
continue;
|
|
|
|
if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
|
|
continue;
|
|
/*
|
|
* Check if alignment is compatible.
|
|
* Courtesy of Adrian Drzewiecki
|
|
*/
|
|
if ((s->size & ~(align - 1)) != s->size)
|
|
continue;
|
|
|
|
if (s->size - size >= sizeof(void *))
|
|
continue;
|
|
|
|
if (IS_ENABLED(CONFIG_SLAB) && align &&
|
|
(align > s->align || s->align % align))
|
|
continue;
|
|
|
|
return s;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Figure out what the alignment of the objects will be given a set of
|
|
* flags, a user specified alignment and the size of the objects.
|
|
*/
|
|
unsigned long calculate_alignment(unsigned long flags,
|
|
unsigned long align, unsigned long size)
|
|
{
|
|
/*
|
|
* If the user wants hardware cache aligned objects then follow that
|
|
* suggestion if the object is sufficiently large.
|
|
*
|
|
* The hardware cache alignment cannot override the specified
|
|
* alignment though. If that is greater then use it.
|
|
*/
|
|
if (flags & SLAB_HWCACHE_ALIGN) {
|
|
unsigned long ralign = cache_line_size();
|
|
while (size <= ralign / 2)
|
|
ralign /= 2;
|
|
align = max(align, ralign);
|
|
}
|
|
|
|
if (align < ARCH_SLAB_MINALIGN)
|
|
align = ARCH_SLAB_MINALIGN;
|
|
|
|
return ALIGN(align, sizeof(void *));
|
|
}
|
|
|
|
static struct kmem_cache *create_cache(const char *name,
|
|
size_t object_size, size_t size, size_t align,
|
|
unsigned long flags, void (*ctor)(void *),
|
|
struct mem_cgroup *memcg, struct kmem_cache *root_cache)
|
|
{
|
|
struct kmem_cache *s;
|
|
int err;
|
|
|
|
err = -ENOMEM;
|
|
s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
|
|
if (!s)
|
|
goto out;
|
|
|
|
s->name = name;
|
|
s->object_size = object_size;
|
|
s->size = size;
|
|
s->align = align;
|
|
s->ctor = ctor;
|
|
|
|
err = init_memcg_params(s, memcg, root_cache);
|
|
if (err)
|
|
goto out_free_cache;
|
|
|
|
err = __kmem_cache_create(s, flags);
|
|
if (err)
|
|
goto out_free_cache;
|
|
|
|
s->refcount = 1;
|
|
list_add(&s->list, &slab_caches);
|
|
out:
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
return s;
|
|
|
|
out_free_cache:
|
|
destroy_memcg_params(s);
|
|
kmem_cache_free(kmem_cache, s);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* kmem_cache_create - Create a cache.
|
|
* @name: A string which is used in /proc/slabinfo to identify this cache.
|
|
* @size: The size of objects to be created in this cache.
|
|
* @align: The required alignment for the objects.
|
|
* @flags: SLAB flags
|
|
* @ctor: A constructor for the objects.
|
|
*
|
|
* Returns a ptr to the cache on success, NULL on failure.
|
|
* Cannot be called within a interrupt, but can be interrupted.
|
|
* The @ctor is run when new pages are allocated by the cache.
|
|
*
|
|
* The flags are
|
|
*
|
|
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
|
|
* to catch references to uninitialised memory.
|
|
*
|
|
* %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
|
|
* for buffer overruns.
|
|
*
|
|
* %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
|
|
* cacheline. This can be beneficial if you're counting cycles as closely
|
|
* as davem.
|
|
*/
|
|
struct kmem_cache *
|
|
kmem_cache_create(const char *name, size_t size, size_t align,
|
|
unsigned long flags, void (*ctor)(void *))
|
|
{
|
|
struct kmem_cache *s = NULL;
|
|
const char *cache_name;
|
|
int err;
|
|
|
|
get_online_cpus();
|
|
get_online_mems();
|
|
memcg_get_cache_ids();
|
|
|
|
mutex_lock(&slab_mutex);
|
|
|
|
err = kmem_cache_sanity_check(name, size);
|
|
if (err) {
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Some allocators will constraint the set of valid flags to a subset
|
|
* of all flags. We expect them to define CACHE_CREATE_MASK in this
|
|
* case, and we'll just provide them with a sanitized version of the
|
|
* passed flags.
|
|
*/
|
|
flags &= CACHE_CREATE_MASK;
|
|
|
|
s = __kmem_cache_alias(name, size, align, flags, ctor);
|
|
if (s)
|
|
goto out_unlock;
|
|
|
|
cache_name = kstrdup_const(name, GFP_KERNEL);
|
|
if (!cache_name) {
|
|
err = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
s = create_cache(cache_name, size, size,
|
|
calculate_alignment(flags, align, size),
|
|
flags, ctor, NULL, NULL);
|
|
if (IS_ERR(s)) {
|
|
err = PTR_ERR(s);
|
|
kfree_const(cache_name);
|
|
}
|
|
|
|
out_unlock:
|
|
mutex_unlock(&slab_mutex);
|
|
|
|
memcg_put_cache_ids();
|
|
put_online_mems();
|
|
put_online_cpus();
|
|
|
|
if (err) {
|
|
if (flags & SLAB_PANIC)
|
|
panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
|
|
name, err);
|
|
else {
|
|
printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
|
|
name, err);
|
|
dump_stack();
|
|
}
|
|
return NULL;
|
|
}
|
|
return s;
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_create);
|
|
|
|
static int shutdown_cache(struct kmem_cache *s,
|
|
struct list_head *release, bool *need_rcu_barrier)
|
|
{
|
|
/* free asan quarantined objects */
|
|
kasan_cache_shutdown(s);
|
|
|
|
if (__kmem_cache_shutdown(s) != 0)
|
|
return -EBUSY;
|
|
|
|
if (s->flags & SLAB_DESTROY_BY_RCU)
|
|
*need_rcu_barrier = true;
|
|
|
|
list_move(&s->list, release);
|
|
return 0;
|
|
}
|
|
|
|
static void release_caches(struct list_head *release, bool need_rcu_barrier)
|
|
{
|
|
struct kmem_cache *s, *s2;
|
|
|
|
if (need_rcu_barrier)
|
|
rcu_barrier();
|
|
|
|
list_for_each_entry_safe(s, s2, release, list) {
|
|
#ifdef SLAB_SUPPORTS_SYSFS
|
|
sysfs_slab_remove(s);
|
|
#else
|
|
slab_kmem_cache_release(s);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_MEMCG_KMEM
|
|
/*
|
|
* memcg_create_kmem_cache - Create a cache for a memory cgroup.
|
|
* @memcg: The memory cgroup the new cache is for.
|
|
* @root_cache: The parent of the new cache.
|
|
*
|
|
* This function attempts to create a kmem cache that will serve allocation
|
|
* requests going from @memcg to @root_cache. The new cache inherits properties
|
|
* from its parent.
|
|
*/
|
|
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
|
|
struct kmem_cache *root_cache)
|
|
{
|
|
static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
|
|
struct cgroup_subsys_state *css = &memcg->css;
|
|
struct memcg_cache_array *arr;
|
|
struct kmem_cache *s = NULL;
|
|
char *cache_name;
|
|
int idx;
|
|
|
|
get_online_cpus();
|
|
get_online_mems();
|
|
|
|
mutex_lock(&slab_mutex);
|
|
|
|
/*
|
|
* The memory cgroup could have been deactivated while the cache
|
|
* creation work was pending.
|
|
*/
|
|
if (!memcg_kmem_is_active(memcg))
|
|
goto out_unlock;
|
|
|
|
idx = memcg_cache_id(memcg);
|
|
arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
|
|
lockdep_is_held(&slab_mutex));
|
|
|
|
/*
|
|
* Since per-memcg caches are created asynchronously on first
|
|
* allocation (see memcg_kmem_get_cache()), several threads can try to
|
|
* create the same cache, but only one of them may succeed.
|
|
*/
|
|
if (arr->entries[idx])
|
|
goto out_unlock;
|
|
|
|
cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
|
|
cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
|
|
css->serial_nr, memcg_name_buf);
|
|
if (!cache_name)
|
|
goto out_unlock;
|
|
|
|
s = create_cache(cache_name, root_cache->object_size,
|
|
root_cache->size, root_cache->align,
|
|
root_cache->flags, root_cache->ctor,
|
|
memcg, root_cache);
|
|
/*
|
|
* If we could not create a memcg cache, do not complain, because
|
|
* that's not critical at all as we can always proceed with the root
|
|
* cache.
|
|
*/
|
|
if (IS_ERR(s)) {
|
|
kfree(cache_name);
|
|
goto out_unlock;
|
|
}
|
|
|
|
list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
|
|
|
|
/*
|
|
* Since readers won't lock (see cache_from_memcg_idx()), we need a
|
|
* barrier here to ensure nobody will see the kmem_cache partially
|
|
* initialized.
|
|
*/
|
|
smp_wmb();
|
|
arr->entries[idx] = s;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&slab_mutex);
|
|
|
|
put_online_mems();
|
|
put_online_cpus();
|
|
}
|
|
|
|
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
|
|
{
|
|
int idx;
|
|
struct memcg_cache_array *arr;
|
|
struct kmem_cache *s, *c;
|
|
|
|
idx = memcg_cache_id(memcg);
|
|
|
|
get_online_cpus();
|
|
get_online_mems();
|
|
|
|
mutex_lock(&slab_mutex);
|
|
list_for_each_entry(s, &slab_caches, list) {
|
|
if (!is_root_cache(s))
|
|
continue;
|
|
|
|
arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
|
|
lockdep_is_held(&slab_mutex));
|
|
c = arr->entries[idx];
|
|
if (!c)
|
|
continue;
|
|
|
|
__kmem_cache_shrink(c, true);
|
|
arr->entries[idx] = NULL;
|
|
}
|
|
mutex_unlock(&slab_mutex);
|
|
|
|
put_online_mems();
|
|
put_online_cpus();
|
|
}
|
|
|
|
static int __shutdown_memcg_cache(struct kmem_cache *s,
|
|
struct list_head *release, bool *need_rcu_barrier)
|
|
{
|
|
BUG_ON(is_root_cache(s));
|
|
|
|
if (shutdown_cache(s, release, need_rcu_barrier))
|
|
return -EBUSY;
|
|
|
|
list_del(&s->memcg_params.list);
|
|
return 0;
|
|
}
|
|
|
|
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
|
|
{
|
|
LIST_HEAD(release);
|
|
bool need_rcu_barrier = false;
|
|
struct kmem_cache *s, *s2;
|
|
|
|
get_online_cpus();
|
|
get_online_mems();
|
|
|
|
mutex_lock(&slab_mutex);
|
|
list_for_each_entry_safe(s, s2, &slab_caches, list) {
|
|
if (is_root_cache(s) || s->memcg_params.memcg != memcg)
|
|
continue;
|
|
/*
|
|
* The cgroup is about to be freed and therefore has no charges
|
|
* left. Hence, all its caches must be empty by now.
|
|
*/
|
|
BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier));
|
|
}
|
|
mutex_unlock(&slab_mutex);
|
|
|
|
put_online_mems();
|
|
put_online_cpus();
|
|
|
|
release_caches(&release, need_rcu_barrier);
|
|
}
|
|
|
|
static int shutdown_memcg_caches(struct kmem_cache *s,
|
|
struct list_head *release, bool *need_rcu_barrier)
|
|
{
|
|
struct memcg_cache_array *arr;
|
|
struct kmem_cache *c, *c2;
|
|
LIST_HEAD(busy);
|
|
int i;
|
|
|
|
BUG_ON(!is_root_cache(s));
|
|
|
|
/*
|
|
* First, shutdown active caches, i.e. caches that belong to online
|
|
* memory cgroups.
|
|
*/
|
|
arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
|
|
lockdep_is_held(&slab_mutex));
|
|
for_each_memcg_cache_index(i) {
|
|
c = arr->entries[i];
|
|
if (!c)
|
|
continue;
|
|
if (__shutdown_memcg_cache(c, release, need_rcu_barrier))
|
|
/*
|
|
* The cache still has objects. Move it to a temporary
|
|
* list so as not to try to destroy it for a second
|
|
* time while iterating over inactive caches below.
|
|
*/
|
|
list_move(&c->memcg_params.list, &busy);
|
|
else
|
|
/*
|
|
* The cache is empty and will be destroyed soon. Clear
|
|
* the pointer to it in the memcg_caches array so that
|
|
* it will never be accessed even if the root cache
|
|
* stays alive.
|
|
*/
|
|
arr->entries[i] = NULL;
|
|
}
|
|
|
|
/*
|
|
* Second, shutdown all caches left from memory cgroups that are now
|
|
* offline.
|
|
*/
|
|
list_for_each_entry_safe(c, c2, &s->memcg_params.list,
|
|
memcg_params.list)
|
|
__shutdown_memcg_cache(c, release, need_rcu_barrier);
|
|
|
|
list_splice(&busy, &s->memcg_params.list);
|
|
|
|
/*
|
|
* A cache being destroyed must be empty. In particular, this means
|
|
* that all per memcg caches attached to it must be empty too.
|
|
*/
|
|
if (!list_empty(&s->memcg_params.list))
|
|
return -EBUSY;
|
|
return 0;
|
|
}
|
|
#else
|
|
static inline int shutdown_memcg_caches(struct kmem_cache *s,
|
|
struct list_head *release, bool *need_rcu_barrier)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_MEMCG_KMEM */
|
|
|
|
void slab_kmem_cache_release(struct kmem_cache *s)
|
|
{
|
|
destroy_memcg_params(s);
|
|
kfree_const(s->name);
|
|
kmem_cache_free(kmem_cache, s);
|
|
}
|
|
|
|
void kmem_cache_destroy(struct kmem_cache *s)
|
|
{
|
|
LIST_HEAD(release);
|
|
bool need_rcu_barrier = false;
|
|
int err;
|
|
|
|
if (unlikely(!s))
|
|
return;
|
|
|
|
get_online_cpus();
|
|
get_online_mems();
|
|
|
|
mutex_lock(&slab_mutex);
|
|
|
|
s->refcount--;
|
|
if (s->refcount)
|
|
goto out_unlock;
|
|
|
|
err = shutdown_memcg_caches(s, &release, &need_rcu_barrier);
|
|
if (!err)
|
|
err = shutdown_cache(s, &release, &need_rcu_barrier);
|
|
|
|
if (err) {
|
|
pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
|
|
s->name);
|
|
dump_stack();
|
|
}
|
|
out_unlock:
|
|
mutex_unlock(&slab_mutex);
|
|
|
|
put_online_mems();
|
|
put_online_cpus();
|
|
|
|
release_caches(&release, need_rcu_barrier);
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_destroy);
|
|
|
|
/**
|
|
* kmem_cache_shrink - Shrink a cache.
|
|
* @cachep: The cache to shrink.
|
|
*
|
|
* Releases as many slabs as possible for a cache.
|
|
* To help debugging, a zero exit status indicates all slabs were released.
|
|
*/
|
|
int kmem_cache_shrink(struct kmem_cache *cachep)
|
|
{
|
|
int ret;
|
|
|
|
get_online_cpus();
|
|
get_online_mems();
|
|
kasan_cache_shrink(cachep);
|
|
ret = __kmem_cache_shrink(cachep, false);
|
|
put_online_mems();
|
|
put_online_cpus();
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_shrink);
|
|
|
|
bool slab_is_available(void)
|
|
{
|
|
return slab_state >= UP;
|
|
}
|
|
|
|
#ifndef CONFIG_SLOB
|
|
/* Create a cache during boot when no slab services are available yet */
|
|
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
|
|
unsigned long flags)
|
|
{
|
|
int err;
|
|
|
|
s->name = name;
|
|
s->size = s->object_size = size;
|
|
s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
|
|
|
|
slab_init_memcg_params(s);
|
|
|
|
err = __kmem_cache_create(s, flags);
|
|
|
|
if (err)
|
|
panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
|
|
name, size, err);
|
|
|
|
s->refcount = -1; /* Exempt from merging for now */
|
|
}
|
|
|
|
struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
|
|
unsigned long flags)
|
|
{
|
|
struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
|
|
|
|
if (!s)
|
|
panic("Out of memory when creating slab %s\n", name);
|
|
|
|
create_boot_cache(s, name, size, flags);
|
|
list_add(&s->list, &slab_caches);
|
|
s->refcount = 1;
|
|
return s;
|
|
}
|
|
|
|
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
|
|
EXPORT_SYMBOL(kmalloc_caches);
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
|
|
EXPORT_SYMBOL(kmalloc_dma_caches);
|
|
#endif
|
|
|
|
/*
|
|
* Conversion table for small slabs sizes / 8 to the index in the
|
|
* kmalloc array. This is necessary for slabs < 192 since we have non power
|
|
* of two cache sizes there. The size of larger slabs can be determined using
|
|
* fls.
|
|
*/
|
|
static s8 size_index[24] = {
|
|
3, /* 8 */
|
|
4, /* 16 */
|
|
5, /* 24 */
|
|
5, /* 32 */
|
|
6, /* 40 */
|
|
6, /* 48 */
|
|
6, /* 56 */
|
|
6, /* 64 */
|
|
1, /* 72 */
|
|
1, /* 80 */
|
|
1, /* 88 */
|
|
1, /* 96 */
|
|
7, /* 104 */
|
|
7, /* 112 */
|
|
7, /* 120 */
|
|
7, /* 128 */
|
|
2, /* 136 */
|
|
2, /* 144 */
|
|
2, /* 152 */
|
|
2, /* 160 */
|
|
2, /* 168 */
|
|
2, /* 176 */
|
|
2, /* 184 */
|
|
2 /* 192 */
|
|
};
|
|
|
|
static inline int size_index_elem(size_t bytes)
|
|
{
|
|
return (bytes - 1) / 8;
|
|
}
|
|
|
|
/*
|
|
* Find the kmem_cache structure that serves a given size of
|
|
* allocation
|
|
*/
|
|
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
|
|
{
|
|
int index;
|
|
|
|
if (unlikely(size > KMALLOC_MAX_SIZE)) {
|
|
WARN_ON_ONCE(!(flags & __GFP_NOWARN));
|
|
return NULL;
|
|
}
|
|
|
|
if (size <= 192) {
|
|
if (!size)
|
|
return ZERO_SIZE_PTR;
|
|
|
|
index = size_index[size_index_elem(size)];
|
|
} else
|
|
index = fls(size - 1);
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
if (unlikely((flags & GFP_DMA)))
|
|
return kmalloc_dma_caches[index];
|
|
|
|
#endif
|
|
return kmalloc_caches[index];
|
|
}
|
|
|
|
/*
|
|
* kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
|
|
* kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
|
|
* kmalloc-67108864.
|
|
*/
|
|
static struct {
|
|
const char *name;
|
|
unsigned long size;
|
|
} const kmalloc_info[] __initconst = {
|
|
{NULL, 0}, {"kmalloc-96", 96},
|
|
{"kmalloc-192", 192}, {"kmalloc-8", 8},
|
|
{"kmalloc-16", 16}, {"kmalloc-32", 32},
|
|
{"kmalloc-64", 64}, {"kmalloc-128", 128},
|
|
{"kmalloc-256", 256}, {"kmalloc-512", 512},
|
|
{"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
|
|
{"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
|
|
{"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
|
|
{"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
|
|
{"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
|
|
{"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
|
|
{"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
|
|
{"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
|
|
{"kmalloc-67108864", 67108864}
|
|
};
|
|
|
|
/*
|
|
* Patch up the size_index table if we have strange large alignment
|
|
* requirements for the kmalloc array. This is only the case for
|
|
* MIPS it seems. The standard arches will not generate any code here.
|
|
*
|
|
* Largest permitted alignment is 256 bytes due to the way we
|
|
* handle the index determination for the smaller caches.
|
|
*
|
|
* Make sure that nothing crazy happens if someone starts tinkering
|
|
* around with ARCH_KMALLOC_MINALIGN
|
|
*/
|
|
void __init setup_kmalloc_cache_index_table(void)
|
|
{
|
|
int i;
|
|
|
|
BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
|
|
(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
|
|
|
|
for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
|
|
int elem = size_index_elem(i);
|
|
|
|
if (elem >= ARRAY_SIZE(size_index))
|
|
break;
|
|
size_index[elem] = KMALLOC_SHIFT_LOW;
|
|
}
|
|
|
|
if (KMALLOC_MIN_SIZE >= 64) {
|
|
/*
|
|
* The 96 byte size cache is not used if the alignment
|
|
* is 64 byte.
|
|
*/
|
|
for (i = 64 + 8; i <= 96; i += 8)
|
|
size_index[size_index_elem(i)] = 7;
|
|
|
|
}
|
|
|
|
if (KMALLOC_MIN_SIZE >= 128) {
|
|
/*
|
|
* The 192 byte sized cache is not used if the alignment
|
|
* is 128 byte. Redirect kmalloc to use the 256 byte cache
|
|
* instead.
|
|
*/
|
|
for (i = 128 + 8; i <= 192; i += 8)
|
|
size_index[size_index_elem(i)] = 8;
|
|
}
|
|
}
|
|
|
|
static void __init new_kmalloc_cache(int idx, unsigned long flags)
|
|
{
|
|
kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
|
|
kmalloc_info[idx].size, flags);
|
|
}
|
|
|
|
/*
|
|
* Create the kmalloc array. Some of the regular kmalloc arrays
|
|
* may already have been created because they were needed to
|
|
* enable allocations for slab creation.
|
|
*/
|
|
void __init create_kmalloc_caches(unsigned long flags)
|
|
{
|
|
int i;
|
|
|
|
for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
|
|
if (!kmalloc_caches[i])
|
|
new_kmalloc_cache(i, flags);
|
|
|
|
/*
|
|
* Caches that are not of the two-to-the-power-of size.
|
|
* These have to be created immediately after the
|
|
* earlier power of two caches
|
|
*/
|
|
if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
|
|
new_kmalloc_cache(1, flags);
|
|
if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
|
|
new_kmalloc_cache(2, flags);
|
|
}
|
|
|
|
/* Kmalloc array is now usable */
|
|
slab_state = UP;
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
|
|
struct kmem_cache *s = kmalloc_caches[i];
|
|
|
|
if (s) {
|
|
int size = kmalloc_size(i);
|
|
char *n = kasprintf(GFP_NOWAIT,
|
|
"dma-kmalloc-%d", size);
|
|
|
|
BUG_ON(!n);
|
|
kmalloc_dma_caches[i] = create_kmalloc_cache(n,
|
|
size, SLAB_CACHE_DMA | flags);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
#endif /* !CONFIG_SLOB */
|
|
|
|
/*
|
|
* To avoid unnecessary overhead, we pass through large allocation requests
|
|
* directly to the page allocator. We use __GFP_COMP, because we will need to
|
|
* know the allocation order to free the pages properly in kfree.
|
|
*/
|
|
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
|
|
{
|
|
void *ret;
|
|
struct page *page;
|
|
|
|
flags |= __GFP_COMP;
|
|
page = alloc_kmem_pages(flags, order);
|
|
ret = page ? page_address(page) : NULL;
|
|
kmemleak_alloc(ret, size, 1, flags);
|
|
kasan_kmalloc_large(ret, size, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(kmalloc_order);
|
|
|
|
#ifdef CONFIG_TRACING
|
|
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
|
|
{
|
|
void *ret = kmalloc_order(size, flags, order);
|
|
trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(kmalloc_order_trace);
|
|
#endif
|
|
|
|
#ifdef CONFIG_SLABINFO
|
|
|
|
#ifdef CONFIG_SLAB
|
|
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
|
|
#else
|
|
#define SLABINFO_RIGHTS S_IRUSR
|
|
#endif
|
|
|
|
static void print_slabinfo_header(struct seq_file *m)
|
|
{
|
|
/*
|
|
* Output format version, so at least we can change it
|
|
* without _too_ many complaints.
|
|
*/
|
|
#ifdef CONFIG_DEBUG_SLAB
|
|
seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
|
|
#else
|
|
seq_puts(m, "slabinfo - version: 2.1\n");
|
|
#endif
|
|
seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
|
|
seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
|
|
seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
|
|
#ifdef CONFIG_DEBUG_SLAB
|
|
seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
|
|
seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
|
|
#endif
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
void *slab_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
mutex_lock(&slab_mutex);
|
|
return seq_list_start(&slab_caches, *pos);
|
|
}
|
|
|
|
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
|
|
{
|
|
return seq_list_next(p, &slab_caches, pos);
|
|
}
|
|
|
|
void slab_stop(struct seq_file *m, void *p)
|
|
{
|
|
mutex_unlock(&slab_mutex);
|
|
}
|
|
|
|
static void
|
|
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
|
|
{
|
|
struct kmem_cache *c;
|
|
struct slabinfo sinfo;
|
|
|
|
if (!is_root_cache(s))
|
|
return;
|
|
|
|
for_each_memcg_cache(c, s) {
|
|
memset(&sinfo, 0, sizeof(sinfo));
|
|
get_slabinfo(c, &sinfo);
|
|
|
|
info->active_slabs += sinfo.active_slabs;
|
|
info->num_slabs += sinfo.num_slabs;
|
|
info->shared_avail += sinfo.shared_avail;
|
|
info->active_objs += sinfo.active_objs;
|
|
info->num_objs += sinfo.num_objs;
|
|
}
|
|
}
|
|
|
|
static void cache_show(struct kmem_cache *s, struct seq_file *m)
|
|
{
|
|
struct slabinfo sinfo;
|
|
|
|
memset(&sinfo, 0, sizeof(sinfo));
|
|
get_slabinfo(s, &sinfo);
|
|
|
|
memcg_accumulate_slabinfo(s, &sinfo);
|
|
|
|
seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
|
|
cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
|
|
sinfo.objects_per_slab, (1 << sinfo.cache_order));
|
|
|
|
seq_printf(m, " : tunables %4u %4u %4u",
|
|
sinfo.limit, sinfo.batchcount, sinfo.shared);
|
|
seq_printf(m, " : slabdata %6lu %6lu %6lu",
|
|
sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
|
|
slabinfo_show_stats(m, s);
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
static int slab_show(struct seq_file *m, void *p)
|
|
{
|
|
struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
|
|
|
|
if (p == slab_caches.next)
|
|
print_slabinfo_header(m);
|
|
if (is_root_cache(s))
|
|
cache_show(s, m);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMCG_KMEM
|
|
int memcg_slab_show(struct seq_file *m, void *p)
|
|
{
|
|
struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
|
|
struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
|
|
|
|
if (p == slab_caches.next)
|
|
print_slabinfo_header(m);
|
|
if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
|
|
cache_show(s, m);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* slabinfo_op - iterator that generates /proc/slabinfo
|
|
*
|
|
* Output layout:
|
|
* cache-name
|
|
* num-active-objs
|
|
* total-objs
|
|
* object size
|
|
* num-active-slabs
|
|
* total-slabs
|
|
* num-pages-per-slab
|
|
* + further values on SMP and with statistics enabled
|
|
*/
|
|
static const struct seq_operations slabinfo_op = {
|
|
.start = slab_start,
|
|
.next = slab_next,
|
|
.stop = slab_stop,
|
|
.show = slab_show,
|
|
};
|
|
|
|
static int slabinfo_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &slabinfo_op);
|
|
}
|
|
|
|
static const struct file_operations proc_slabinfo_operations = {
|
|
.open = slabinfo_open,
|
|
.read = seq_read,
|
|
.write = slabinfo_write,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
static int __init slab_proc_init(void)
|
|
{
|
|
proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
|
|
&proc_slabinfo_operations);
|
|
return 0;
|
|
}
|
|
module_init(slab_proc_init);
|
|
#endif /* CONFIG_SLABINFO */
|
|
|
|
static __always_inline void *__do_krealloc(const void *p, size_t new_size,
|
|
gfp_t flags)
|
|
{
|
|
void *ret;
|
|
size_t ks = 0;
|
|
|
|
if (p)
|
|
ks = ksize(p);
|
|
|
|
if (ks >= new_size) {
|
|
kasan_krealloc((void *)p, new_size, flags);
|
|
return (void *)p;
|
|
}
|
|
|
|
ret = kmalloc_track_caller(new_size, flags);
|
|
if (ret && p)
|
|
memcpy(ret, p, ks);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* __krealloc - like krealloc() but don't free @p.
|
|
* @p: object to reallocate memory for.
|
|
* @new_size: how many bytes of memory are required.
|
|
* @flags: the type of memory to allocate.
|
|
*
|
|
* This function is like krealloc() except it never frees the originally
|
|
* allocated buffer. Use this if you don't want to free the buffer immediately
|
|
* like, for example, with RCU.
|
|
*/
|
|
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
|
|
{
|
|
if (unlikely(!new_size))
|
|
return ZERO_SIZE_PTR;
|
|
|
|
return __do_krealloc(p, new_size, flags);
|
|
|
|
}
|
|
EXPORT_SYMBOL(__krealloc);
|
|
|
|
/**
|
|
* krealloc - reallocate memory. The contents will remain unchanged.
|
|
* @p: object to reallocate memory for.
|
|
* @new_size: how many bytes of memory are required.
|
|
* @flags: the type of memory to allocate.
|
|
*
|
|
* The contents of the object pointed to are preserved up to the
|
|
* lesser of the new and old sizes. If @p is %NULL, krealloc()
|
|
* behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
|
|
* %NULL pointer, the object pointed to is freed.
|
|
*/
|
|
void *krealloc(const void *p, size_t new_size, gfp_t flags)
|
|
{
|
|
void *ret;
|
|
|
|
if (unlikely(!new_size)) {
|
|
kfree(p);
|
|
return ZERO_SIZE_PTR;
|
|
}
|
|
|
|
ret = __do_krealloc(p, new_size, flags);
|
|
if (ret && p != ret)
|
|
kfree(p);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(krealloc);
|
|
|
|
/**
|
|
* kzfree - like kfree but zero memory
|
|
* @p: object to free memory of
|
|
*
|
|
* The memory of the object @p points to is zeroed before freed.
|
|
* If @p is %NULL, kzfree() does nothing.
|
|
*
|
|
* Note: this function zeroes the whole allocated buffer which can be a good
|
|
* deal bigger than the requested buffer size passed to kmalloc(). So be
|
|
* careful when using this function in performance sensitive code.
|
|
*/
|
|
void kzfree(const void *p)
|
|
{
|
|
size_t ks;
|
|
void *mem = (void *)p;
|
|
|
|
if (unlikely(ZERO_OR_NULL_PTR(mem)))
|
|
return;
|
|
ks = ksize(mem);
|
|
memzero_explicit(mem, ks);
|
|
kfree(mem);
|
|
}
|
|
EXPORT_SYMBOL(kzfree);
|
|
|
|
/* Tracepoints definitions. */
|
|
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
|
|
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
|
|
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
|
|
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
|
|
EXPORT_TRACEPOINT_SYMBOL(kfree);
|
|
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
|