android_kernel_oneplus_msm8998/drivers/gpu/msm/kgsl_pool.c
Deepak Kumar a68123258a msm: kgsl: Return supported page size based on available memory pools
In case memory pools are supported return the page size as
supported only if corresponding memory pool is available.
This will increase the usage of memory pool and will reduce the
overall allocation time.

Change-Id: Iea84a4259b38fe9cb546419dfcbaf0a9666e7ca9
Signed-off-by: Deepak Kumar <dkumar@codeaurora.org>
2017-09-01 06:00:48 -07:00

569 lines
13 KiB
C

/* Copyright (c) 2016-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/vmalloc.h>
#include <asm/cacheflush.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/version.h>
#include "kgsl.h"
#include "kgsl_device.h"
#include "kgsl_pool.h"
#define KGSL_MAX_POOLS 4
#define KGSL_MAX_POOL_ORDER 8
#define KGSL_MAX_RESERVED_PAGES 4096
/**
* struct kgsl_page_pool - Structure to hold information for the pool
* @pool_order: Page order describing the size of the page
* @page_count: Number of pages currently present in the pool
* @reserved_pages: Number of pages reserved at init for the pool
* @allocation_allowed: Tells if reserved pool gets exhausted, can we allocate
* from system memory
* @list_lock: Spinlock for page list in the pool
* @page_list: List of pages held/reserved in this pool
*/
struct kgsl_page_pool {
unsigned int pool_order;
int page_count;
unsigned int reserved_pages;
bool allocation_allowed;
spinlock_t list_lock;
struct list_head page_list;
};
static struct kgsl_page_pool kgsl_pools[KGSL_MAX_POOLS];
static int kgsl_num_pools;
static int kgsl_pool_max_pages;
/* Returns KGSL pool corresponding to input page order*/
static struct kgsl_page_pool *
_kgsl_get_pool_from_order(unsigned int order)
{
int i;
for (i = 0; i < kgsl_num_pools; i++) {
if (kgsl_pools[i].pool_order == order)
return &kgsl_pools[i];
}
return NULL;
}
/* Map the page into kernel and zero it out */
static void
_kgsl_pool_zero_page(struct page *p)
{
void *addr = kmap_atomic(p);
memset(addr, 0, PAGE_SIZE);
dmac_flush_range(addr, addr + PAGE_SIZE);
kunmap_atomic(addr);
}
/* Add a page to specified pool */
static void
_kgsl_pool_add_page(struct kgsl_page_pool *pool, struct page *p)
{
spin_lock(&pool->list_lock);
list_add_tail(&p->lru, &pool->page_list);
pool->page_count++;
spin_unlock(&pool->list_lock);
}
/* Returns a page from specified pool */
static struct page *
_kgsl_pool_get_page(struct kgsl_page_pool *pool)
{
struct page *p = NULL;
spin_lock(&pool->list_lock);
if (pool->page_count) {
p = list_first_entry(&pool->page_list, struct page, lru);
pool->page_count--;
list_del(&p->lru);
}
spin_unlock(&pool->list_lock);
return p;
}
/* Returns the number of pages in specified pool */
static int
kgsl_pool_size(struct kgsl_page_pool *kgsl_pool)
{
int size;
spin_lock(&kgsl_pool->list_lock);
size = kgsl_pool->page_count * (1 << kgsl_pool->pool_order);
spin_unlock(&kgsl_pool->list_lock);
return size;
}
/* Returns the number of pages in all kgsl page pools */
static int kgsl_pool_size_total(void)
{
int i;
int total = 0;
for (i = 0; i < kgsl_num_pools; i++)
total += kgsl_pool_size(&kgsl_pools[i]);
return total;
}
/*
* This will shrink the specified pool by num_pages or its pool_size,
* whichever is smaller.
*/
static unsigned int
_kgsl_pool_shrink(struct kgsl_page_pool *pool, int num_pages)
{
int j;
unsigned int pcount = 0;
if (pool == NULL || num_pages <= 0)
return pcount;
for (j = 0; j < num_pages >> pool->pool_order; j++) {
struct page *page = _kgsl_pool_get_page(pool);
if (page != NULL) {
__free_pages(page, pool->pool_order);
pcount += (1 << pool->pool_order);
} else {
/* Break as this pool is empty */
break;
}
}
return pcount;
}
/*
* This function reduces the total pool size
* to number of pages specified by target_pages.
*
* If target_pages are greater than current pool size
* nothing needs to be done otherwise remove
* (current_pool_size - target_pages) pages from pool
* starting from higher order pool.
*/
static unsigned long
kgsl_pool_reduce(unsigned int target_pages, bool exit)
{
int total_pages = 0;
int i;
int nr_removed;
struct kgsl_page_pool *pool;
unsigned long pcount = 0;
total_pages = kgsl_pool_size_total();
for (i = (kgsl_num_pools - 1); i >= 0; i--) {
pool = &kgsl_pools[i];
/*
* Only reduce the pool sizes for pools which are allowed to
* allocate memory unless we are at close, in which case the
* reserved memory for all pools needs to be freed
*/
if (!pool->allocation_allowed && !exit)
continue;
total_pages -= pcount;
nr_removed = total_pages - target_pages;
if (nr_removed <= 0)
return pcount;
/* Round up to integral number of pages in this pool */
nr_removed = ALIGN(nr_removed, 1 << pool->pool_order);
/* Remove nr_removed pages from this pool*/
pcount += _kgsl_pool_shrink(pool, nr_removed);
}
return pcount;
}
/**
* kgsl_pool_free_sgt() - Free scatter-gather list
* @sgt: pointer of the sg list
*
* Free the sg list by collapsing any physical adjacent pages.
* Pages are added back to the pool, if pool has sufficient space
* otherwise they are given back to system.
*/
void kgsl_pool_free_sgt(struct sg_table *sgt)
{
int i;
struct scatterlist *sg;
for_each_sg(sgt->sgl, sg, sgt->nents, i) {
/*
* sg_alloc_table_from_pages() will collapse any physically
* adjacent pages into a single scatterlist entry. We cannot
* just call __free_pages() on the entire set since we cannot
* ensure that the size is a whole order. Instead, free each
* page or compound page group individually.
*/
struct page *p = sg_page(sg), *next;
unsigned int count;
unsigned int j = 0;
while (j < (sg->length/PAGE_SIZE)) {
count = 1 << compound_order(p);
next = nth_page(p, count);
kgsl_pool_free_page(p);
p = next;
j += count;
}
}
}
/**
* kgsl_pool_free_pages() - Free pages in the pages array
* @pages: pointer of the pages array
*
* Free the pages by collapsing any physical adjacent pages.
* Pages are added back to the pool, if pool has sufficient space
* otherwise they are given back to system.
*/
void kgsl_pool_free_pages(struct page **pages, unsigned int pcount)
{
int i;
if (pages == NULL || pcount == 0)
return;
for (i = 0; i < pcount;) {
/*
* Free each page or compound page group individually.
*/
struct page *p = pages[i];
i += 1 << compound_order(p);
kgsl_pool_free_page(p);
}
}
static int kgsl_pool_idx_lookup(unsigned int order)
{
int i;
for (i = 0; i < kgsl_num_pools; i++)
if (order == kgsl_pools[i].pool_order)
return i;
return -ENOMEM;
}
static int kgsl_pool_get_retry_order(unsigned int order)
{
int i;
for (i = kgsl_num_pools-1; i > 0; i--)
if (order >= kgsl_pools[i].pool_order)
return kgsl_pools[i].pool_order;
return 0;
}
/**
* kgsl_pool_alloc_page() - Allocate a page of requested size
* @page_size: Size of the page to be allocated
* @pages: pointer to hold list of pages, should be big enough to hold
* requested page
* @len: Length of array pages.
*
* Return total page count on success and negative value on failure
*/
int kgsl_pool_alloc_page(int *page_size, struct page **pages,
unsigned int pages_len, unsigned int *align)
{
int j;
int pcount = 0;
struct kgsl_page_pool *pool;
struct page *page = NULL;
struct page *p = NULL;
int order = get_order(*page_size);
int pool_idx;
size_t size = 0;
if ((pages == NULL) || pages_len < (*page_size >> PAGE_SHIFT))
return -EINVAL;
/* If the pool is not configured get pages from the system */
if (!kgsl_num_pools) {
gfp_t gfp_mask = kgsl_gfp_mask(order);
page = alloc_pages(gfp_mask, order);
if (page == NULL) {
/* Retry with lower order pages */
if (order > 0) {
size = PAGE_SIZE << --order;
goto eagain;
} else
return -ENOMEM;
}
goto done;
}
pool = _kgsl_get_pool_from_order(order);
if (pool == NULL) {
/* Retry with lower order pages */
if (order > 0) {
size = PAGE_SIZE << kgsl_pool_get_retry_order(order);
goto eagain;
} else {
/*
* Fall back to direct allocation in case
* pool with zero order is not present
*/
gfp_t gfp_mask = kgsl_gfp_mask(order);
page = alloc_pages(gfp_mask, order);
if (page == NULL)
return -ENOMEM;
goto done;
}
}
pool_idx = kgsl_pool_idx_lookup(order);
page = _kgsl_pool_get_page(pool);
/* Allocate a new page if not allocated from pool */
if (page == NULL) {
gfp_t gfp_mask = kgsl_gfp_mask(order);
/* Only allocate non-reserved memory for certain pools */
if (!pool->allocation_allowed && pool_idx > 0) {
size = PAGE_SIZE <<
kgsl_pools[pool_idx-1].pool_order;
goto eagain;
}
page = alloc_pages(gfp_mask, order);
if (!page) {
if (pool_idx > 0) {
/* Retry with lower order pages */
size = PAGE_SIZE <<
kgsl_pools[pool_idx-1].pool_order;
goto eagain;
} else
return -ENOMEM;
}
}
done:
for (j = 0; j < (*page_size >> PAGE_SHIFT); j++) {
p = nth_page(page, j);
_kgsl_pool_zero_page(p);
pages[pcount] = p;
pcount++;
}
return pcount;
eagain:
*page_size = kgsl_get_page_size(size,
ilog2(size));
*align = ilog2(*page_size);
return -EAGAIN;
}
void kgsl_pool_free_page(struct page *page)
{
struct kgsl_page_pool *pool;
int page_order;
if (page == NULL)
return;
page_order = compound_order(page);
if (!kgsl_pool_max_pages ||
(kgsl_pool_size_total() < kgsl_pool_max_pages)) {
pool = _kgsl_get_pool_from_order(page_order);
if (pool != NULL) {
_kgsl_pool_add_page(pool, page);
return;
}
}
/* Give back to system as not added to pool */
__free_pages(page, page_order);
}
/*
* Return true if the pool of specified page size is supported
* or no pools are supported otherwise return false.
*/
bool kgsl_pool_avaialable(int page_size)
{
int i;
if (!kgsl_num_pools)
return true;
for (i = 0; i < kgsl_num_pools; i++)
if (ilog2(page_size >> PAGE_SHIFT) == kgsl_pools[i].pool_order)
return true;
return false;
}
static void kgsl_pool_reserve_pages(void)
{
int i, j;
for (i = 0; i < kgsl_num_pools; i++) {
struct page *page;
for (j = 0; j < kgsl_pools[i].reserved_pages; j++) {
int order = kgsl_pools[i].pool_order;
gfp_t gfp_mask = kgsl_gfp_mask(order);
page = alloc_pages(gfp_mask, order);
if (page != NULL)
_kgsl_pool_add_page(&kgsl_pools[i], page);
}
}
}
/* Functions for the shrinker */
static unsigned long
kgsl_pool_shrink_scan_objects(struct shrinker *shrinker,
struct shrink_control *sc)
{
/* nr represents number of pages to be removed*/
int nr = sc->nr_to_scan;
int total_pages = kgsl_pool_size_total();
/* Target pages represents new pool size */
int target_pages = (nr > total_pages) ? 0 : (total_pages - nr);
/* Reduce pool size to target_pages */
return kgsl_pool_reduce(target_pages, false);
}
static unsigned long
kgsl_pool_shrink_count_objects(struct shrinker *shrinker,
struct shrink_control *sc)
{
/* Return total pool size as everything in pool can be freed */
return kgsl_pool_size_total();
}
/* Shrinker callback data*/
static struct shrinker kgsl_pool_shrinker = {
.count_objects = kgsl_pool_shrink_count_objects,
.scan_objects = kgsl_pool_shrink_scan_objects,
.seeks = DEFAULT_SEEKS,
.batch = 0,
};
static void kgsl_pool_config(unsigned int order, unsigned int reserved_pages,
bool allocation_allowed)
{
#ifdef CONFIG_ALLOC_BUFFERS_IN_4K_CHUNKS
if (order > 0) {
pr_info("%s: Pool order:%d not supprted.!!\n", __func__, order);
return;
}
#endif
if ((order > KGSL_MAX_POOL_ORDER) ||
(reserved_pages > KGSL_MAX_RESERVED_PAGES))
return;
kgsl_pools[kgsl_num_pools].pool_order = order;
kgsl_pools[kgsl_num_pools].reserved_pages = reserved_pages;
kgsl_pools[kgsl_num_pools].allocation_allowed = allocation_allowed;
spin_lock_init(&kgsl_pools[kgsl_num_pools].list_lock);
INIT_LIST_HEAD(&kgsl_pools[kgsl_num_pools].page_list);
kgsl_num_pools++;
}
static void kgsl_of_parse_mempools(struct device_node *node)
{
struct device_node *child;
unsigned int page_size, reserved_pages = 0;
bool allocation_allowed;
for_each_child_of_node(node, child) {
unsigned int index;
if (of_property_read_u32(child, "reg", &index))
return;
if (index >= KGSL_MAX_POOLS)
continue;
if (of_property_read_u32(child, "qcom,mempool-page-size",
&page_size))
return;
of_property_read_u32(child, "qcom,mempool-reserved",
&reserved_pages);
allocation_allowed = of_property_read_bool(child,
"qcom,mempool-allocate");
kgsl_pool_config(ilog2(page_size >> PAGE_SHIFT), reserved_pages,
allocation_allowed);
}
}
static void kgsl_of_get_mempools(struct device_node *parent)
{
struct device_node *node;
node = of_find_compatible_node(parent, NULL, "qcom,gpu-mempools");
if (node != NULL) {
/* Get Max pages limit for mempool */
of_property_read_u32(node, "qcom,mempool-max-pages",
&kgsl_pool_max_pages);
kgsl_of_parse_mempools(node);
}
}
void kgsl_init_page_pools(struct platform_device *pdev)
{
/* Get GPU mempools data and configure pools */
kgsl_of_get_mempools(pdev->dev.of_node);
/* Reserve the appropriate number of pages for each pool */
kgsl_pool_reserve_pages();
/* Initialize shrinker */
register_shrinker(&kgsl_pool_shrinker);
}
void kgsl_exit_page_pools(void)
{
/* Release all pages in pools, if any.*/
kgsl_pool_reduce(0, true);
/* Unregister shrinker */
unregister_shrinker(&kgsl_pool_shrinker);
}