LineageOS 16.0 (v4.4.153) kernel with Halium 9 patches
Find a file
Greg Kroah-Hartman 40ef73d67a This is the 4.4.203 stable release
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAl3b60UACgkQONu9yGCS
 aT7SHA//a75vH8zxZnVvNaDBbpw6GdvWAXiDuwFiaikG/UHOLFjv08aE/+QiuJz/
 AX94klb25jHsXVvMEk79lyDanQYGrrbfuXR6XxY+Q4N8dEdVmp+fBmM+Q/sktdOA
 M6BsAYuim0Ttz/Rv1Vb+dm8U5KlSpqBmqGs/aBSvpVMGCb9AKGbUNF3k4jB42xOU
 zHhyfG2u3K2YU7MbH9b6bktV7Q7ZpqQYD0qDT9aa9Mx1A1z9/mB4CVWjpCvhKPD7
 Dsjuz+/1+lBfvElLKxV1J9Xg+RI4kaqkv42gBydWP/PpsNKvZorZ5X1oFy/a5JSB
 qj4C6FkpTJmvJ0QLISS6s+vC6bEn2G+ojUT4UkgUKlsORyjQBV4twJTVUnX71vNC
 BVOgd/KNBUtu919JRL8Jr39ZTEUkpkhF6XbMjuCiKtoyDN46z13gi9ul54T+Go6S
 npyOBxK2QRbOfo+5b1XSqswfcbOOSTEk4WkSXtYO6XLojl7XRFsCYnxVm50Rc201
 U8nA/Mkk3FunSS21lGbm4e2SCPsVjiyewtolqc5J/4BY/l2y6vkYCEqVMJNelIP+
 cwN81i0Ugwp3v1Zj05dTlxFB8RduZoIIJmJdtrFczdg6gT44qtZR2GsIBMlBaxR/
 PaIYg2MSkWv8ednnPS05d1shgZXczr4aVI3pkj0e5mESu7Q8cRA=
 =NAKA
 -----END PGP SIGNATURE-----

Merge 4.4.203 into android-4.4-p

Changes in 4.4.203
	slip: Fix memory leak in slip_open error path
	ax88172a: fix information leak on short answers
	ALSA: usb-audio: Fix missing error check at mixer resolution test
	ALSA: usb-audio: not submit urb for stopped endpoint
	Input: ff-memless - kill timer in destroy()
	ecryptfs_lookup_interpose(): lower_dentry->d_inode is not stable
	ecryptfs_lookup_interpose(): lower_dentry->d_parent is not stable either
	iommu/vt-d: Fix QI_DEV_IOTLB_PFSID and QI_DEV_EIOTLB_PFSID macros
	mm: memcg: switch to css_tryget() in get_mem_cgroup_from_mm()
	mm: hugetlb: switch to css_tryget() in hugetlb_cgroup_charge_cgroup()
	mmc: sdhci-of-at91: fix quirk2 overwrite
	iio: dac: mcp4922: fix error handling in mcp4922_write_raw
	ALSA: pcm: signedness bug in snd_pcm_plug_alloc()
	ARM: dts: at91/trivial: Fix USART1 definition for at91sam9g45
	ALSA: seq: Do error checks at creating system ports
	gfs2: Don't set GFS2_RDF_UPTODATE when the lvb is updated
	ASoC: dpcm: Properly initialise hw->rate_max
	MIPS: BCM47XX: Enable USB power on Netgear WNDR3400v3
	ARM: dts: exynos: Fix sound in Snow-rev5 Chromebook
	i40e: use correct length for strncpy
	i40e: hold the rtnl lock on clearing interrupt scheme
	i40e: Prevent deleting MAC address from VF when set by PF
	ARM: dts: pxa: fix power i2c base address
	rtl8187: Fix warning generated when strncpy() destination length matches the sixe argument
	net: lan78xx: Bail out if lan78xx_get_endpoints fails
	ASoC: sgtl5000: avoid division by zero if lo_vag is zero
	ath10k: wmi: disable softirq's while calling ieee80211_rx
	mips: txx9: fix iounmap related issue
	of: make PowerMac cache node search conditional on CONFIG_PPC_PMAC
	ARM: dts: omap3-gta04: give spi_lcd node a label so that we can overwrite in other DTS files
	ARM: dts: omap3-gta04: tvout: enable as display1 alias
	ARM: dts: omap3-gta04: make NAND partitions compatible with recent U-Boot
	ARM: dts: omap3-gta04: keep vpll2 always on
	dmaengine: dma-jz4780: Further residue status fix
	signal: Always ignore SIGKILL and SIGSTOP sent to the global init
	signal: Properly deliver SIGILL from uprobes
	signal: Properly deliver SIGSEGV from x86 uprobes
	scsi: sym53c8xx: fix NULL pointer dereference panic in sym_int_sir()
	ARM: imx6: register pm_power_off handler if "fsl,pmic-stby-poweroff" is set
	scsi: pm80xx: Corrected dma_unmap_sg() parameter
	scsi: pm80xx: Fixed system hang issue during kexec boot
	kprobes: Don't call BUG_ON() if there is a kprobe in use on free list
	nvmem: core: return error code instead of NULL from nvmem_device_get
	media: fix: media: pci: meye: validate offset to avoid arbitrary access
	ALSA: intel8x0m: Register irq handler after register initializations
	pinctrl: at91-pio4: fix has_config check in atmel_pctl_dt_subnode_to_map()
	llc: avoid blocking in llc_sap_close()
	powerpc/vdso: Correct call frame information
	ARM: dts: socfpga: Fix I2C bus unit-address error
	pinctrl: at91: don't use the same irqchip with multiple gpiochips
	cxgb4: Fix endianness issue in t4_fwcache()
	power: supply: ab8500_fg: silence uninitialized variable warnings
	power: supply: max8998-charger: Fix platform data retrieval
	kernfs: Fix range checks in kernfs_get_target_path
	s390/qeth: invoke softirqs after napi_schedule()
	PCI/ACPI: Correct error message for ASPM disabling
	serial: mxs-auart: Fix potential infinite loop
	powerpc/iommu: Avoid derefence before pointer check
	powerpc/64s/hash: Fix stab_rr off by one initialization
	powerpc/pseries: Disable CPU hotplug across migrations
	libfdt: Ensure INT_MAX is defined in libfdt_env.h
	power: supply: twl4030_charger: fix charging current out-of-bounds
	power: supply: twl4030_charger: disable eoc interrupt on linear charge
	net: toshiba: fix return type of ndo_start_xmit function
	net: xilinx: fix return type of ndo_start_xmit function
	net: broadcom: fix return type of ndo_start_xmit function
	net: amd: fix return type of ndo_start_xmit function
	usb: chipidea: Fix otg event handler
	ARM: dts: am335x-evm: fix number of cpsw
	ARM: dts: ux500: Correct SCU unit address
	ARM: dts: ux500: Fix LCDA clock line muxing
	ARM: dts: ste: Fix SPI controller node names
	cpufeature: avoid warning when compiling with clang
	bnx2x: Ignore bandwidth attention in single function mode
	net: micrel: fix return type of ndo_start_xmit function
	x86/CPU: Use correct macros for Cyrix calls
	MIPS: kexec: Relax memory restriction
	media: pci: ivtv: Fix a sleep-in-atomic-context bug in ivtv_yuv_init()
	media: davinci: Fix implicit enum conversion warning
	usb: gadget: uvc: configfs: Drop leaked references to config items
	usb: gadget: uvc: configfs: Prevent format changes after linking header
	usb: gadget: uvc: Factor out video USB request queueing
	usb: gadget: uvc: Only halt video streaming endpoint in bulk mode
	misc: kgdbts: Fix restrict error
	misc: genwqe: should return proper error value.
	vfio/pci: Fix potential memory leak in vfio_msi_cap_len
	scsi: libsas: always unregister the old device if going to discover new
	ARM: dts: tegra30: fix xcvr-setup-use-fuses
	ARM: tegra: apalis_t30: fix mmc1 cmd pull-up
	net: smsc: fix return type of ndo_start_xmit function
	EDAC: Raise the maximum number of memory controllers
	Bluetooth: L2CAP: Detect if remote is not able to use the whole MPS
	arm64: dts: amd: Fix SPI bus warnings
	fuse: use READ_ONCE on congestion_threshold and max_background
	Bluetooth: hci_ldisc: Fix null pointer derefence in case of early data
	Bluetooth: hci_ldisc: Postpone HCI_UART_PROTO_READY bit set in hci_uart_set_proto()
	memfd: Use radix_tree_deref_slot_protected to avoid the warning.
	slcan: Fix memory leak in error path
	net: cdc_ncm: Signedness bug in cdc_ncm_set_dgram_size()
	x86/atomic: Fix smp_mb__{before,after}_atomic()
	apparmor: fix uninitialized lsm_audit member
	apparmor: fix update the mtime of the profile file on replacement
	apparmor: fix module parameters can be changed after policy is locked
	kprobes/x86: Prohibit probing on exception masking instructions
	uprobes/x86: Prohibit probing on MOV SS instruction
	fbdev: Remove unused SH-Mobile HDMI driver
	fbdev: Ditch fb_edid_add_monspecs
	block: introduce blk_rq_is_passthrough
	libata: have ata_scsi_rw_xlat() fail invalid passthrough requests
	net: ovs: fix return type of ndo_start_xmit function
	f2fs: return correct errno in f2fs_gc
	SUNRPC: Fix priority queue fairness
	ath10k: fix vdev-start timeout on error
	ath9k: fix reporting calculated new FFT upper max
	usb: gadget: udc: fotg210-udc: Fix a sleep-in-atomic-context bug in fotg210_get_status()
	nl80211: Fix a GET_KEY reply attribute
	dmaengine: ep93xx: Return proper enum in ep93xx_dma_chan_direction
	dmaengine: timb_dma: Use proper enum in td_prep_slave_sg
	mei: samples: fix a signedness bug in amt_host_if_call()
	cxgb4: Use proper enum in cxgb4_dcb_handle_fw_update
	cxgb4: Use proper enum in IEEE_FAUX_SYNC
	powerpc/pseries: Fix DTL buffer registration
	powerpc/pseries: Fix how we iterate over the DTL entries
	mtd: rawnand: sh_flctl: Use proper enum for flctl_dma_fifo0_transfer
	ixgbe: Fix crash with VFs and flow director on interface flap
	IB/mthca: Fix error return code in __mthca_init_one()
	ata: ep93xx: Use proper enums for directions
	ALSA: hda/sigmatel - Disable automute for Elo VuPoint
	KVM: PPC: Book3S PR: Exiting split hack mode needs to fixup both PC and LR
	USB: serial: cypress_m8: fix interrupt-out transfer length
	mtd: physmap_of: Release resources on error
	brcmfmac: fix full timeout waiting for action frame on-channel tx
	NFSv4.x: fix lock recovery during delegation recall
	dmaengine: ioat: fix prototype of ioat_enumerate_channels
	Input: st1232 - set INPUT_PROP_DIRECT property
	x86/olpc: Fix build error with CONFIG_MFD_CS5535=m
	crypto: mxs-dcp - Fix SHA null hashes and output length
	crypto: mxs-dcp - Fix AES issues
	ACPI / SBS: Fix rare oops when removing modules
	fbdev: sbuslib: use checked version of put_user()
	fbdev: sbuslib: integer overflow in sbusfb_ioctl_helper()
	bcache: recal cached_dev_sectors on detach
	proc/vmcore: Fix i386 build error of missing copy_oldmem_page_encrypted()
	backlight: lm3639: Unconditionally call led_classdev_unregister
	printk: Give error on attempt to set log buffer length to over 2G
	media: isif: fix a NULL pointer dereference bug
	GFS2: Flush the GFS2 delete workqueue before stopping the kernel threads
	media: cx231xx: fix potential sign-extension overflow on large shift
	x86/kexec: Correct KEXEC_BACKUP_SRC_END off-by-one error
	gpio: syscon: Fix possible NULL ptr usage
	spi: spidev: Fix OF tree warning logic
	ARM: 8802/1: Call syscall_trace_exit even when system call skipped
	hwmon: (pwm-fan) Silence error on probe deferral
	mac80211: minstrel: fix CCK rate group streams value
	spi: rockchip: initialize dma_slave_config properly
	arm64: uaccess: Ensure PAN is re-enabled after unhandled uaccess fault
	Linux 4.4.203

Change-Id: Icba08e9fbb6f47274ee6fcf1023a1469cd8550d3
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
2019-11-25 17:44:35 +01:00
android/configs
arch This is the 4.4.203 stable release 2019-11-25 17:44:35 +01:00
block This is the 4.4.189 stable release 2019-08-11 15:42:33 +02:00
certs
crypto This is the 4.4.187 stable release 2019-08-04 09:53:45 +02:00
Documentation This is the 4.4.203 stable release 2019-11-25 17:44:35 +01:00
drivers This is the 4.4.203 stable release 2019-11-25 17:44:35 +01:00
firmware
fs This is the 4.4.203 stable release 2019-11-25 17:44:35 +01:00
include This is the 4.4.203 stable release 2019-11-25 17:44:35 +01:00
init ANDROID: sched: Disallow WALT with CFS bandwidth control 2019-09-02 11:00:15 +00:00
ipc This is the 4.4.188 stable release 2019-08-06 18:36:03 +02:00
kernel This is the 4.4.203 stable release 2019-11-25 17:44:35 +01:00
lib This is the 4.4.201 stable release 2019-11-14 14:39:48 +08:00
mm This is the 4.4.203 stable release 2019-11-25 17:44:35 +01:00
net This is the 4.4.203 stable release 2019-11-25 17:44:35 +01:00
samples samples, bpf: fix to change the buffer size for read() 2019-07-21 09:07:06 +02:00
scripts This is the 4.4.199 stable release 2019-11-06 12:50:36 +01:00
security This is the 4.4.203 stable release 2019-11-25 17:44:35 +01:00
sound ALSA: hda/sigmatel - Disable automute for Elo VuPoint 2019-11-25 15:54:37 +01:00
tools This is the 4.4.201 stable release 2019-11-14 14:39:48 +08:00
usr
virt KVM: coalesced_mmio: add bounds checking 2019-09-21 07:12:47 +02:00
.get_maintainer.ignore
.gitignore kbuild: Add support to generate LLVM assembly files 2018-11-27 16:07:58 +01:00
.mailmap
build.config.aarch64 ANDROID: refactor build.config files to remove duplication 2019-10-22 18:45:34 -07:00
build.config.common ANDROID: clang: update to 9.0.8 based on r365631c 2019-10-23 21:26:23 +00:00
build.config.cuttlefish.aarch64 ANDROID: refactor build.config files to remove duplication 2019-10-22 18:45:34 -07:00
build.config.cuttlefish.x86_64 ANDROID: refactor build.config files to remove duplication 2019-10-22 18:45:34 -07:00
build.config.goldfish.arm ANDROID: build.config: enforce trace_printk check 2018-05-07 23:47:03 +00:00
build.config.goldfish.arm64 ANDROID: build.config: enforce trace_printk check 2018-05-07 23:47:03 +00:00
build.config.goldfish.mips ANDROID: build.config: enforce trace_printk check 2018-05-07 23:47:03 +00:00
build.config.goldfish.mips64 ANDROID: build.config: enforce trace_printk check 2018-05-07 23:47:03 +00:00
build.config.goldfish.x86 ANDROID: build.config: enforce trace_printk check 2018-05-07 23:47:03 +00:00
build.config.goldfish.x86_64 ANDROID: build.config: enforce trace_printk check 2018-05-07 23:47:03 +00:00
build.config.x86_64 ANDROID: refactor build.config files to remove duplication 2019-10-22 18:45:34 -07:00
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS This is the 4.4.197 stable release 2019-10-17 18:13:43 -07:00
Makefile This is the 4.4.203 stable release 2019-11-25 17:44:35 +01:00
README
REPORTING-BUGS
verity_dev_keys.x509 x86_64_cuttlefish_defconfig: enable verity cert 2018-07-26 18:25:43 +00:00

        Linux kernel release 4.x <http://kernel.org/>

These are the release notes for Linux version 4.  Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong. 

WHAT IS LINUX?

  Linux is a clone of the operating system Unix, written from scratch by
  Linus Torvalds with assistance from a loosely-knit team of hackers across
  the Net. It aims towards POSIX and Single UNIX Specification compliance.

  It has all the features you would expect in a modern fully-fledged Unix,
  including true multitasking, virtual memory, shared libraries, demand
  loading, shared copy-on-write executables, proper memory management,
  and multistack networking including IPv4 and IPv6.

  It is distributed under the GNU General Public License - see the
  accompanying COPYING file for more details. 

ON WHAT HARDWARE DOES IT RUN?

  Although originally developed first for 32-bit x86-based PCs (386 or higher),
  today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
  UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
  IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS,
  Xtensa, Tilera TILE, AVR32, ARC and Renesas M32R architectures.

  Linux is easily portable to most general-purpose 32- or 64-bit architectures
  as long as they have a paged memory management unit (PMMU) and a port of the
  GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
  also been ported to a number of architectures without a PMMU, although
  functionality is then obviously somewhat limited.
  Linux has also been ported to itself. You can now run the kernel as a
  userspace application - this is called UserMode Linux (UML).

DOCUMENTATION:

 - There is a lot of documentation available both in electronic form on
   the Internet and in books, both Linux-specific and pertaining to
   general UNIX questions.  I'd recommend looking into the documentation
   subdirectories on any Linux FTP site for the LDP (Linux Documentation
   Project) books.  This README is not meant to be documentation on the
   system: there are much better sources available.

 - There are various README files in the Documentation/ subdirectory:
   these typically contain kernel-specific installation notes for some 
   drivers for example. See Documentation/00-INDEX for a list of what
   is contained in each file.  Please read the Changes file, as it
   contains information about the problems, which may result by upgrading
   your kernel.

 - The Documentation/DocBook/ subdirectory contains several guides for
   kernel developers and users.  These guides can be rendered in a
   number of formats:  PostScript (.ps), PDF, HTML, & man-pages, among others.
   After installation, "make psdocs", "make pdfdocs", "make htmldocs",
   or "make mandocs" will render the documentation in the requested format.

INSTALLING the kernel source:

 - If you install the full sources, put the kernel tarball in a
   directory where you have permissions (eg. your home directory) and
   unpack it:

     xz -cd linux-4.X.tar.xz | tar xvf -

   Replace "X" with the version number of the latest kernel.

   Do NOT use the /usr/src/linux area! This area has a (usually
   incomplete) set of kernel headers that are used by the library header
   files.  They should match the library, and not get messed up by
   whatever the kernel-du-jour happens to be.

 - You can also upgrade between 4.x releases by patching.  Patches are
   distributed in the xz format.  To install by patching, get all the
   newer patch files, enter the top level directory of the kernel source
   (linux-4.X) and execute:

     xz -cd ../patch-4.x.xz | patch -p1

   Replace "x" for all versions bigger than the version "X" of your current
   source tree, _in_order_, and you should be ok.  You may want to remove
   the backup files (some-file-name~ or some-file-name.orig), and make sure
   that there are no failed patches (some-file-name# or some-file-name.rej).
   If there are, either you or I have made a mistake.

   Unlike patches for the 4.x kernels, patches for the 4.x.y kernels
   (also known as the -stable kernels) are not incremental but instead apply
   directly to the base 4.x kernel.  For example, if your base kernel is 4.0
   and you want to apply the 4.0.3 patch, you must not first apply the 4.0.1
   and 4.0.2 patches. Similarly, if you are running kernel version 4.0.2 and
   want to jump to 4.0.3, you must first reverse the 4.0.2 patch (that is,
   patch -R) _before_ applying the 4.0.3 patch. You can read more on this in
   Documentation/applying-patches.txt

   Alternatively, the script patch-kernel can be used to automate this
   process.  It determines the current kernel version and applies any
   patches found.

     linux/scripts/patch-kernel linux

   The first argument in the command above is the location of the
   kernel source.  Patches are applied from the current directory, but
   an alternative directory can be specified as the second argument.

 - Make sure you have no stale .o files and dependencies lying around:

     cd linux
     make mrproper

   You should now have the sources correctly installed.

SOFTWARE REQUIREMENTS

   Compiling and running the 4.x kernels requires up-to-date
   versions of various software packages.  Consult
   Documentation/Changes for the minimum version numbers required
   and how to get updates for these packages.  Beware that using
   excessively old versions of these packages can cause indirect
   errors that are very difficult to track down, so don't assume that
   you can just update packages when obvious problems arise during
   build or operation.

BUILD directory for the kernel:

   When compiling the kernel, all output files will per default be
   stored together with the kernel source code.
   Using the option "make O=output/dir" allow you to specify an alternate
   place for the output files (including .config).
   Example:

     kernel source code: /usr/src/linux-4.X
     build directory:    /home/name/build/kernel

   To configure and build the kernel, use:

     cd /usr/src/linux-4.X
     make O=/home/name/build/kernel menuconfig
     make O=/home/name/build/kernel
     sudo make O=/home/name/build/kernel modules_install install

   Please note: If the 'O=output/dir' option is used, then it must be
   used for all invocations of make.

CONFIGURING the kernel:

   Do not skip this step even if you are only upgrading one minor
   version.  New configuration options are added in each release, and
   odd problems will turn up if the configuration files are not set up
   as expected.  If you want to carry your existing configuration to a
   new version with minimal work, use "make oldconfig", which will
   only ask you for the answers to new questions.

 - Alternative configuration commands are:

     "make config"      Plain text interface.

     "make menuconfig"  Text based color menus, radiolists & dialogs.

     "make nconfig"     Enhanced text based color menus.

     "make xconfig"     X windows (Qt) based configuration tool.

     "make gconfig"     X windows (GTK+) based configuration tool.

     "make oldconfig"   Default all questions based on the contents of
                        your existing ./.config file and asking about
                        new config symbols.

     "make silentoldconfig"
                        Like above, but avoids cluttering the screen
                        with questions already answered.
                        Additionally updates the dependencies.

     "make olddefconfig"
                        Like above, but sets new symbols to their default
                        values without prompting.

     "make defconfig"   Create a ./.config file by using the default
                        symbol values from either arch/$ARCH/defconfig
                        or arch/$ARCH/configs/${PLATFORM}_defconfig,
                        depending on the architecture.

     "make ${PLATFORM}_defconfig"
                        Create a ./.config file by using the default
                        symbol values from
                        arch/$ARCH/configs/${PLATFORM}_defconfig.
                        Use "make help" to get a list of all available
                        platforms of your architecture.

     "make allyesconfig"
                        Create a ./.config file by setting symbol
                        values to 'y' as much as possible.

     "make allmodconfig"
                        Create a ./.config file by setting symbol
                        values to 'm' as much as possible.

     "make allnoconfig" Create a ./.config file by setting symbol
                        values to 'n' as much as possible.

     "make randconfig"  Create a ./.config file by setting symbol
                        values to random values.

     "make localmodconfig" Create a config based on current config and
                           loaded modules (lsmod). Disables any module
                           option that is not needed for the loaded modules.

                           To create a localmodconfig for another machine,
                           store the lsmod of that machine into a file
                           and pass it in as a LSMOD parameter.

                   target$ lsmod > /tmp/mylsmod
                   target$ scp /tmp/mylsmod host:/tmp

                   host$ make LSMOD=/tmp/mylsmod localmodconfig

                           The above also works when cross compiling.

     "make localyesconfig" Similar to localmodconfig, except it will convert
                           all module options to built in (=y) options.

   You can find more information on using the Linux kernel config tools
   in Documentation/kbuild/kconfig.txt.

 - NOTES on "make config":

    - Having unnecessary drivers will make the kernel bigger, and can
      under some circumstances lead to problems: probing for a
      nonexistent controller card may confuse your other controllers

    - Compiling the kernel with "Processor type" set higher than 386
      will result in a kernel that does NOT work on a 386.  The
      kernel will detect this on bootup, and give up.

    - A kernel with math-emulation compiled in will still use the
      coprocessor if one is present: the math emulation will just
      never get used in that case.  The kernel will be slightly larger,
      but will work on different machines regardless of whether they
      have a math coprocessor or not.

    - The "kernel hacking" configuration details usually result in a
      bigger or slower kernel (or both), and can even make the kernel
      less stable by configuring some routines to actively try to
      break bad code to find kernel problems (kmalloc()).  Thus you
      should probably answer 'n' to the questions for "development",
      "experimental", or "debugging" features.

COMPILING the kernel:

 - Make sure you have at least gcc 3.2 available.
   For more information, refer to Documentation/Changes.

   Please note that you can still run a.out user programs with this kernel.

 - Do a "make" to create a compressed kernel image. It is also
   possible to do "make install" if you have lilo installed to suit the
   kernel makefiles, but you may want to check your particular lilo setup first.

   To do the actual install, you have to be root, but none of the normal
   build should require that. Don't take the name of root in vain.

 - If you configured any of the parts of the kernel as `modules', you
   will also have to do "make modules_install".

 - Verbose kernel compile/build output:

   Normally, the kernel build system runs in a fairly quiet mode (but not
   totally silent).  However, sometimes you or other kernel developers need
   to see compile, link, or other commands exactly as they are executed.
   For this, use "verbose" build mode.  This is done by inserting
   "V=1" in the "make" command.  E.g.:

     make V=1 all

   To have the build system also tell the reason for the rebuild of each
   target, use "V=2".  The default is "V=0".

 - Keep a backup kernel handy in case something goes wrong.  This is 
   especially true for the development releases, since each new release
   contains new code which has not been debugged.  Make sure you keep a
   backup of the modules corresponding to that kernel, as well.  If you
   are installing a new kernel with the same version number as your
   working kernel, make a backup of your modules directory before you
   do a "make modules_install".

   Alternatively, before compiling, use the kernel config option
   "LOCALVERSION" to append a unique suffix to the regular kernel version.
   LOCALVERSION can be set in the "General Setup" menu.

 - In order to boot your new kernel, you'll need to copy the kernel
   image (e.g. .../linux/arch/i386/boot/bzImage after compilation)
   to the place where your regular bootable kernel is found. 

 - Booting a kernel directly from a floppy without the assistance of a
   bootloader such as LILO, is no longer supported.

   If you boot Linux from the hard drive, chances are you use LILO, which
   uses the kernel image as specified in the file /etc/lilo.conf.  The
   kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
   /boot/bzImage.  To use the new kernel, save a copy of the old image
   and copy the new image over the old one.  Then, you MUST RERUN LILO
   to update the loading map!! If you don't, you won't be able to boot
   the new kernel image.

   Reinstalling LILO is usually a matter of running /sbin/lilo. 
   You may wish to edit /etc/lilo.conf to specify an entry for your
   old kernel image (say, /vmlinux.old) in case the new one does not
   work.  See the LILO docs for more information. 

   After reinstalling LILO, you should be all set.  Shutdown the system,
   reboot, and enjoy!

   If you ever need to change the default root device, video mode,
   ramdisk size, etc.  in the kernel image, use the 'rdev' program (or
   alternatively the LILO boot options when appropriate).  No need to
   recompile the kernel to change these parameters. 

 - Reboot with the new kernel and enjoy. 

IF SOMETHING GOES WRONG:

 - If you have problems that seem to be due to kernel bugs, please check
   the file MAINTAINERS to see if there is a particular person associated
   with the part of the kernel that you are having trouble with. If there
   isn't anyone listed there, then the second best thing is to mail
   them to me (torvalds@linux-foundation.org), and possibly to any other
   relevant mailing-list or to the newsgroup.

 - In all bug-reports, *please* tell what kernel you are talking about,
   how to duplicate the problem, and what your setup is (use your common
   sense).  If the problem is new, tell me so, and if the problem is
   old, please try to tell me when you first noticed it.

 - If the bug results in a message like

     unable to handle kernel paging request at address C0000010
     Oops: 0002
     EIP:   0010:XXXXXXXX
     eax: xxxxxxxx   ebx: xxxxxxxx   ecx: xxxxxxxx   edx: xxxxxxxx
     esi: xxxxxxxx   edi: xxxxxxxx   ebp: xxxxxxxx
     ds: xxxx  es: xxxx  fs: xxxx  gs: xxxx
     Pid: xx, process nr: xx
     xx xx xx xx xx xx xx xx xx xx

   or similar kernel debugging information on your screen or in your
   system log, please duplicate it *exactly*.  The dump may look
   incomprehensible to you, but it does contain information that may
   help debugging the problem.  The text above the dump is also
   important: it tells something about why the kernel dumped code (in
   the above example, it's due to a bad kernel pointer). More information
   on making sense of the dump is in Documentation/oops-tracing.txt

 - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
   as is, otherwise you will have to use the "ksymoops" program to make
   sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred).
   This utility can be downloaded from
   ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops/ .
   Alternatively, you can do the dump lookup by hand:

 - In debugging dumps like the above, it helps enormously if you can
   look up what the EIP value means.  The hex value as such doesn't help
   me or anybody else very much: it will depend on your particular
   kernel setup.  What you should do is take the hex value from the EIP
   line (ignore the "0010:"), and look it up in the kernel namelist to
   see which kernel function contains the offending address.

   To find out the kernel function name, you'll need to find the system
   binary associated with the kernel that exhibited the symptom.  This is
   the file 'linux/vmlinux'.  To extract the namelist and match it against
   the EIP from the kernel crash, do:

     nm vmlinux | sort | less

   This will give you a list of kernel addresses sorted in ascending
   order, from which it is simple to find the function that contains the
   offending address.  Note that the address given by the kernel
   debugging messages will not necessarily match exactly with the
   function addresses (in fact, that is very unlikely), so you can't
   just 'grep' the list: the list will, however, give you the starting
   point of each kernel function, so by looking for the function that
   has a starting address lower than the one you are searching for but
   is followed by a function with a higher address you will find the one
   you want.  In fact, it may be a good idea to include a bit of
   "context" in your problem report, giving a few lines around the
   interesting one. 

   If you for some reason cannot do the above (you have a pre-compiled
   kernel image or similar), telling me as much about your setup as
   possible will help.  Please read the REPORTING-BUGS document for details.

 - Alternatively, you can use gdb on a running kernel. (read-only; i.e. you
   cannot change values or set break points.) To do this, first compile the
   kernel with -g; edit arch/i386/Makefile appropriately, then do a "make
   clean". You'll also need to enable CONFIG_PROC_FS (via "make config").

   After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore".
   You can now use all the usual gdb commands. The command to look up the
   point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes
   with the EIP value.)

   gdb'ing a non-running kernel currently fails because gdb (wrongly)
   disregards the starting offset for which the kernel is compiled.