Structures in shared memory that can be modified by remote processors may have untrusted values, they should be validated before use. Adding proper validation before using fields of shared structures. CRs-Fixed: 2421602 Change-Id: I947ed5b0fe5705e5223d75b0ea8aafb36113ca5a Signed-off-by: Deepak Kumar Singh <deesin@codeaurora.org>
1663 lines
46 KiB
C
1663 lines
46 KiB
C
/* Copyright (c) 2013-2019, The Linux Foundation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 and
|
|
* only version 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/ipc_logging.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/stat.h>
|
|
#include <soc/qcom/subsystem_notif.h>
|
|
#include <soc/qcom/subsystem_restart.h>
|
|
#include <soc/qcom/ramdump.h>
|
|
#include <soc/qcom/scm.h>
|
|
|
|
#include <soc/qcom/smem.h>
|
|
|
|
|
|
#include "smem_private.h"
|
|
|
|
#define MODEM_SBL_VERSION_INDEX 7
|
|
#define SMEM_VERSION_INFO_SIZE (32 * 4)
|
|
#define SMEM_VERSION 0x000B
|
|
|
|
enum {
|
|
MSM_SMEM_DEBUG = 1U << 0,
|
|
MSM_SMEM_INFO = 1U << 1,
|
|
};
|
|
|
|
static int msm_smem_debug_mask = MSM_SMEM_INFO;
|
|
module_param_named(debug_mask, msm_smem_debug_mask,
|
|
int, S_IRUGO | S_IWUSR | S_IWGRP);
|
|
static void *smem_ipc_log_ctx;
|
|
#define NUM_LOG_PAGES 4
|
|
|
|
#define IPC_LOG(x...) do { \
|
|
if (smem_ipc_log_ctx) \
|
|
ipc_log_string(smem_ipc_log_ctx, x); \
|
|
} while (0)
|
|
|
|
|
|
#define LOG_ERR(x...) do { \
|
|
pr_err(x); \
|
|
IPC_LOG(x); \
|
|
} while (0)
|
|
#define SMEM_DBG(x...) do { \
|
|
if (msm_smem_debug_mask & MSM_SMEM_DEBUG) \
|
|
IPC_LOG(x); \
|
|
} while (0)
|
|
#define SMEM_INFO(x...) do { \
|
|
if (msm_smem_debug_mask & MSM_SMEM_INFO) \
|
|
IPC_LOG(x); \
|
|
} while (0)
|
|
|
|
#define SMEM_SPINLOCK_SMEM_ALLOC "S:3"
|
|
|
|
static void *smem_ram_base;
|
|
static resource_size_t smem_ram_size;
|
|
static phys_addr_t smem_ram_phys;
|
|
static remote_spinlock_t remote_spinlock;
|
|
static uint32_t num_smem_areas;
|
|
static struct smem_area *smem_areas;
|
|
static struct ramdump_segment *smem_ramdump_segments;
|
|
static int spinlocks_initialized;
|
|
static void *smem_ramdump_dev;
|
|
static DEFINE_MUTEX(spinlock_init_lock);
|
|
static DEFINE_SPINLOCK(smem_init_check_lock);
|
|
static struct device *smem_dev;
|
|
static int smem_module_inited;
|
|
static RAW_NOTIFIER_HEAD(smem_module_init_notifier_list);
|
|
static DEFINE_MUTEX(smem_module_init_notifier_lock);
|
|
static bool probe_done;
|
|
uint32_t smem_max_items;
|
|
|
|
/* smem security feature components */
|
|
#define SMEM_TOC_IDENTIFIER 0x434f5424 /* "$TOC" */
|
|
#define SMEM_TOC_MAX_EXCLUSIONS 4
|
|
#define SMEM_PART_HDR_IDENTIFIER 0x54525024 /* "$PRT" */
|
|
#define SMEM_ALLOCATION_CANARY 0xa5a5
|
|
|
|
struct smem_toc_entry {
|
|
uint32_t offset;
|
|
uint32_t size;
|
|
uint32_t flags;
|
|
uint16_t host0;
|
|
uint16_t host1;
|
|
uint32_t size_cacheline;
|
|
uint32_t reserved[3];
|
|
uint32_t exclusion_sizes[SMEM_TOC_MAX_EXCLUSIONS];
|
|
};
|
|
|
|
struct smem_toc {
|
|
/* Identifier is a constant, set to SMEM_TOC_IDENTIFIER. */
|
|
uint32_t identifier;
|
|
uint32_t version;
|
|
uint32_t num_entries;
|
|
uint32_t reserved[5];
|
|
struct smem_toc_entry entry[];
|
|
};
|
|
|
|
struct smem_partition_header {
|
|
/* Identifier is a constant, set to SMEM_PART_HDR_IDENTIFIER. */
|
|
uint32_t identifier;
|
|
uint16_t host0;
|
|
uint16_t host1;
|
|
uint32_t size;
|
|
uint32_t offset_free_uncached;
|
|
uint32_t offset_free_cached;
|
|
uint32_t reserved[3];
|
|
};
|
|
|
|
struct smem_partition_allocation_header {
|
|
/* Canary is a constant, set to SMEM_ALLOCATION_CANARY */
|
|
uint16_t canary;
|
|
uint16_t smem_type;
|
|
uint32_t size; /* includes padding bytes */
|
|
uint16_t padding_data;
|
|
uint16_t padding_hdr;
|
|
uint32_t reserved[1];
|
|
};
|
|
|
|
struct smem_partition_info {
|
|
uint32_t partition_num;
|
|
uint32_t offset;
|
|
uint32_t size_cacheline;
|
|
};
|
|
|
|
static struct smem_partition_info partitions[NUM_SMEM_SUBSYSTEMS];
|
|
|
|
#define SMEM_COMM_PART_VERSION 0x000C
|
|
#define SMEM_COMM_HOST 0xFFFE
|
|
static bool use_comm_partition;
|
|
static struct smem_partition_info comm_partition;
|
|
/* end smem security feature components */
|
|
|
|
/* Identifier for the SMEM target info struct. */
|
|
#define SMEM_TARG_INFO_IDENTIFIER 0x49494953 /* "SIII" in little-endian. */
|
|
|
|
struct smem_targ_info_type {
|
|
/* Identifier is a constant, set to SMEM_TARG_INFO_IDENTIFIER. */
|
|
uint32_t identifier;
|
|
uint32_t size;
|
|
phys_addr_t phys_base_addr;
|
|
uint32_t max_items;
|
|
};
|
|
|
|
struct restart_notifier_block {
|
|
unsigned processor;
|
|
char *name;
|
|
struct notifier_block nb;
|
|
};
|
|
|
|
static int restart_notifier_cb(struct notifier_block *this,
|
|
unsigned long code,
|
|
void *data);
|
|
|
|
static struct restart_notifier_block restart_notifiers[] = {
|
|
{SMEM_MODEM, "modem", .nb.notifier_call = restart_notifier_cb},
|
|
{SMEM_Q6, "lpass", .nb.notifier_call = restart_notifier_cb},
|
|
{SMEM_WCNSS, "wcnss", .nb.notifier_call = restart_notifier_cb},
|
|
{SMEM_DSPS, "dsps", .nb.notifier_call = restart_notifier_cb},
|
|
{SMEM_MODEM, "gss", .nb.notifier_call = restart_notifier_cb},
|
|
{SMEM_Q6, "adsp", .nb.notifier_call = restart_notifier_cb},
|
|
{SMEM_DSPS, "slpi", .nb.notifier_call = restart_notifier_cb},
|
|
};
|
|
|
|
static int init_smem_remote_spinlock(void);
|
|
|
|
/**
|
|
* smem_get_toc() - Used for getting partitions TOC
|
|
*
|
|
* @return - Base address off partitions TOC
|
|
*
|
|
* Helper function to get base address of partition TOC,
|
|
* that is present in top 4K of first smem region.
|
|
*/
|
|
static struct smem_toc __iomem *smem_get_toc(void)
|
|
{
|
|
return smem_areas[0].virt_addr +
|
|
smem_areas[0].size - 4 * 1024;
|
|
}
|
|
|
|
/**
|
|
* is_probe_done() - Did the probe function successfully complete
|
|
*
|
|
* @return - true if probe successfully completed, false if otherwise
|
|
*
|
|
* Helper function for EPROBE_DEFER support. If this function returns false,
|
|
* the calling function should immediately return -EPROBE_DEFER.
|
|
*/
|
|
static bool is_probe_done(void)
|
|
{
|
|
return probe_done;
|
|
}
|
|
|
|
/**
|
|
* smem_phys_to_virt() - Convert a physical base and offset to virtual address
|
|
*
|
|
* @base: physical base address to check
|
|
* @offset: offset from the base to get the final address
|
|
* @returns: virtual SMEM address; NULL for failure
|
|
*
|
|
* Takes a physical address and an offset and checks if the resulting physical
|
|
* address would fit into one of the smem regions. If so, returns the
|
|
* corresponding virtual address. Otherwise returns NULL.
|
|
*/
|
|
static void *smem_phys_to_virt(phys_addr_t base, unsigned offset)
|
|
{
|
|
int i;
|
|
phys_addr_t phys_addr;
|
|
resource_size_t size;
|
|
|
|
if (OVERFLOW_ADD_UNSIGNED(phys_addr_t, base, offset))
|
|
return NULL;
|
|
|
|
if (!smem_areas) {
|
|
/*
|
|
* Early boot - no area configuration yet, so default
|
|
* to using the main memory region.
|
|
*
|
|
* To remove the MSM_SHARED_RAM_BASE and the static
|
|
* mapping of SMEM in the future, add dump_stack()
|
|
* to identify the early callers of smem_get_entry()
|
|
* (which calls this function) and replace those calls
|
|
* with a new function that knows how to lookup the
|
|
* SMEM base address before SMEM has been probed.
|
|
*/
|
|
phys_addr = smem_ram_phys;
|
|
size = smem_ram_size;
|
|
|
|
if (base >= phys_addr && base + offset < phys_addr + size) {
|
|
if (OVERFLOW_ADD_UNSIGNED(uintptr_t,
|
|
(uintptr_t)smem_ram_base, offset)) {
|
|
SMEM_INFO("%s: overflow %p %x\n", __func__,
|
|
smem_ram_base, offset);
|
|
return NULL;
|
|
}
|
|
|
|
return smem_ram_base + offset;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < num_smem_areas; ++i) {
|
|
phys_addr = smem_areas[i].phys_addr;
|
|
size = smem_areas[i].size;
|
|
|
|
if (base < phys_addr || base + offset >= phys_addr + size)
|
|
continue;
|
|
|
|
if (OVERFLOW_ADD_UNSIGNED(uintptr_t,
|
|
(uintptr_t)smem_areas[i].virt_addr, offset)) {
|
|
SMEM_INFO("%s: overflow %p %x\n", __func__,
|
|
smem_areas[i].virt_addr, offset);
|
|
return NULL;
|
|
}
|
|
|
|
return smem_areas[i].virt_addr + offset;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* smem_virt_to_phys() - Convert SMEM address to physical address.
|
|
*
|
|
* @smem_address: Address of SMEM item (returned by smem_alloc(), etc)
|
|
* @returns: Physical address (or NULL if there is a failure)
|
|
*
|
|
* This function should only be used if an SMEM item needs to be handed
|
|
* off to a DMA engine. This function will not return a version of EPROBE_DEFER
|
|
* if the driver is not ready since the caller should obtain @smem_address from
|
|
* one of the other public APIs and get EPROBE_DEFER at that time, if
|
|
* applicable.
|
|
*/
|
|
phys_addr_t smem_virt_to_phys(void *smem_address)
|
|
{
|
|
phys_addr_t phys_addr = 0;
|
|
int i;
|
|
void *vend;
|
|
|
|
if (!smem_areas)
|
|
return phys_addr;
|
|
|
|
for (i = 0; i < num_smem_areas; ++i) {
|
|
vend = (void *)(smem_areas[i].virt_addr + smem_areas[i].size);
|
|
|
|
if (smem_address >= smem_areas[i].virt_addr &&
|
|
smem_address < vend) {
|
|
phys_addr = smem_address - smem_areas[i].virt_addr;
|
|
phys_addr += smem_areas[i].phys_addr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return phys_addr;
|
|
}
|
|
EXPORT_SYMBOL(smem_virt_to_phys);
|
|
|
|
/**
|
|
* __smem_get_entry_nonsecure - Get pointer and size of existing SMEM item
|
|
*
|
|
* @id: ID of SMEM item
|
|
* @size: Pointer to size variable for storing the result
|
|
* @skip_init_check: True means do not verify that SMEM has been initialized
|
|
* @use_rspinlock: True to use the remote spinlock
|
|
* @returns: Pointer to SMEM item or NULL if it doesn't exist
|
|
*/
|
|
static void *__smem_get_entry_nonsecure(unsigned id, unsigned *size,
|
|
bool skip_init_check, bool use_rspinlock)
|
|
{
|
|
struct smem_shared *shared = smem_ram_base;
|
|
struct smem_heap_entry *toc = shared->heap_toc;
|
|
int use_spinlocks = spinlocks_initialized && use_rspinlock;
|
|
void *ret = 0;
|
|
unsigned long flags = 0;
|
|
uint32_t e_size;
|
|
int rc;
|
|
|
|
if (!skip_init_check && !smem_initialized_check())
|
|
return ret;
|
|
|
|
if (id >= smem_max_items)
|
|
return ret;
|
|
|
|
if (use_spinlocks) {
|
|
do {
|
|
rc = remote_spin_trylock_irqsave(&remote_spinlock,
|
|
flags);
|
|
} while (!rc);
|
|
}
|
|
/* toc is in device memory and cannot be speculatively accessed */
|
|
if (toc[id].allocated) {
|
|
phys_addr_t phys_base;
|
|
|
|
e_size = toc[id].size;
|
|
if (e_size > smem_ram_size)
|
|
return ret;
|
|
*size = e_size;
|
|
|
|
barrier();
|
|
|
|
phys_base = toc[id].reserved & BASE_ADDR_MASK;
|
|
if (!phys_base)
|
|
phys_base = smem_ram_phys;
|
|
ret = smem_phys_to_virt(phys_base, toc[id].offset);
|
|
} else {
|
|
*size = 0;
|
|
}
|
|
if (use_spinlocks)
|
|
remote_spin_unlock_irqrestore(&remote_spinlock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* __smem_get_entry_secure - Get pointer and size of existing SMEM item with
|
|
* security support
|
|
*
|
|
* @id: ID of SMEM item
|
|
* @size: Pointer to size variable for storing the result
|
|
* @to_proc: SMEM host that shares the item with apps
|
|
* @flags: Item attribute flags
|
|
* @skip_init_check: True means do not verify that SMEM has been initialized
|
|
* @use_rspinlock: True to use the remote spinlock
|
|
* @returns: Pointer to SMEM item or NULL if it doesn't exist
|
|
*/
|
|
static void *__smem_get_entry_secure(unsigned id,
|
|
unsigned *size,
|
|
unsigned to_proc,
|
|
unsigned flags,
|
|
bool skip_init_check,
|
|
bool use_rspinlock)
|
|
{
|
|
struct smem_partition_allocation_header *alloc_hdr;
|
|
struct smem_partition_header *hdr;
|
|
uint32_t offset_free_uncached;
|
|
struct smem_toc __iomem *toc;
|
|
uint32_t offset_free_cached;
|
|
unsigned long lflags = 0;
|
|
uint32_t partition_size;
|
|
uint32_t partition_num;
|
|
uint32_t padding_data;
|
|
uint32_t padding_hdr;
|
|
uint32_t a_hdr_size;
|
|
uint32_t item_size;
|
|
void *item = NULL;
|
|
int rc;
|
|
|
|
SMEM_DBG("%s(%u, %u, %u, %d, %d)\n", __func__, id, to_proc,
|
|
flags, skip_init_check, use_rspinlock);
|
|
|
|
if (!skip_init_check && !smem_initialized_check())
|
|
return NULL;
|
|
|
|
if (id >= smem_max_items) {
|
|
SMEM_INFO("%s: invalid id %d\n", __func__, id);
|
|
return NULL;
|
|
}
|
|
|
|
if (!(flags & SMEM_ANY_HOST_FLAG) && to_proc >= NUM_SMEM_SUBSYSTEMS) {
|
|
SMEM_INFO("%s: id %u invalid to_proc %d\n", __func__, id,
|
|
to_proc);
|
|
return NULL;
|
|
}
|
|
|
|
toc = smem_get_toc();
|
|
|
|
if (flags & SMEM_ANY_HOST_FLAG || !partitions[to_proc].offset) {
|
|
if (use_comm_partition) {
|
|
partition_num = comm_partition.partition_num;
|
|
partition_size =
|
|
readl_relaxed(&toc->entry[partition_num].size);
|
|
hdr = smem_areas[0].virt_addr + comm_partition.offset;
|
|
} else {
|
|
return __smem_get_entry_nonsecure(id, size,
|
|
skip_init_check, use_rspinlock);
|
|
}
|
|
} else {
|
|
partition_num = partitions[to_proc].partition_num;
|
|
partition_size = readl_relaxed(&toc->entry[partition_num].size);
|
|
hdr = smem_areas[0].virt_addr + partitions[to_proc].offset;
|
|
}
|
|
if (unlikely(!spinlocks_initialized)) {
|
|
rc = init_smem_remote_spinlock();
|
|
if (unlikely(rc)) {
|
|
SMEM_INFO(
|
|
"%s: id:%u remote spinlock init failed %d\n",
|
|
__func__, id, rc);
|
|
return NULL;
|
|
}
|
|
}
|
|
if (use_rspinlock) {
|
|
do {
|
|
rc = remote_spin_trylock_irqsave(&remote_spinlock,
|
|
lflags);
|
|
} while (!rc);
|
|
}
|
|
if (hdr->identifier != SMEM_PART_HDR_IDENTIFIER) {
|
|
LOG_ERR(
|
|
"%s: SMEM corruption detected. Partition %d to %d at %p\n",
|
|
__func__,
|
|
partition_num,
|
|
to_proc,
|
|
hdr);
|
|
BUG();
|
|
}
|
|
|
|
if (flags & SMEM_ITEM_CACHED_FLAG) {
|
|
a_hdr_size = ALIGN(sizeof(*alloc_hdr),
|
|
partitions[to_proc].size_cacheline);
|
|
offset_free_cached = hdr->offset_free_cached;
|
|
if (WARN_ON(offset_free_cached > partition_size))
|
|
return NULL;
|
|
|
|
for (alloc_hdr = (void *)(hdr) + partition_size - a_hdr_size;
|
|
(void *)(alloc_hdr) > (void *)(hdr) +
|
|
offset_free_cached;
|
|
alloc_hdr = (void *)(alloc_hdr) -
|
|
item_size - a_hdr_size) {
|
|
item_size = alloc_hdr->size;
|
|
padding_data = alloc_hdr->padding_data;
|
|
if (WARN_ON(padding_data > item_size
|
|
|| item_size > partition_size))
|
|
return NULL;
|
|
if (alloc_hdr->canary != SMEM_ALLOCATION_CANARY) {
|
|
LOG_ERR(
|
|
"%s: SMEM corruption detected. Partition %d to %d at %p\n",
|
|
__func__,
|
|
partition_num,
|
|
to_proc,
|
|
alloc_hdr);
|
|
BUG();
|
|
|
|
}
|
|
if (alloc_hdr->smem_type == id) {
|
|
/* 8 byte alignment to match legacy */
|
|
*size = ALIGN(item_size - padding_data, 8);
|
|
item = (void *)(alloc_hdr) - item_size;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
offset_free_uncached = hdr->offset_free_uncached;
|
|
if (WARN_ON(offset_free_uncached > partition_size))
|
|
return NULL;
|
|
|
|
for (alloc_hdr = (void *)(hdr) + sizeof(*hdr);
|
|
(void *)(alloc_hdr) < (void *)(hdr) +
|
|
offset_free_uncached;
|
|
alloc_hdr = (void *)(alloc_hdr) +
|
|
sizeof(*alloc_hdr) +
|
|
padding_hdr +
|
|
item_size) {
|
|
padding_hdr = alloc_hdr->padding_hdr;
|
|
padding_data = alloc_hdr->padding_data;
|
|
item_size = alloc_hdr->size;
|
|
if (WARN_ON(padding_hdr > partition_size
|
|
|| item_size > partition_size
|
|
|| padding_data > item_size))
|
|
return NULL;
|
|
if (alloc_hdr->canary != SMEM_ALLOCATION_CANARY) {
|
|
LOG_ERR(
|
|
"%s: SMEM corruption detected. Partition %d to %d at %p\n",
|
|
__func__,
|
|
partition_num,
|
|
to_proc,
|
|
alloc_hdr);
|
|
BUG();
|
|
|
|
}
|
|
if (alloc_hdr->smem_type == id) {
|
|
/* 8 byte alignment to match legacy */
|
|
*size = ALIGN(item_size - padding_data, 8);
|
|
item = (void *)(alloc_hdr) +
|
|
sizeof(*alloc_hdr) +
|
|
padding_hdr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (use_rspinlock)
|
|
remote_spin_unlock_irqrestore(&remote_spinlock, lflags);
|
|
|
|
return item;
|
|
}
|
|
|
|
static void *__smem_find(unsigned id, unsigned size_in, bool skip_init_check)
|
|
{
|
|
unsigned size;
|
|
void *ptr;
|
|
|
|
ptr = __smem_get_entry_nonsecure(id, &size, skip_init_check, true);
|
|
if (!ptr)
|
|
return 0;
|
|
|
|
size_in = ALIGN(size_in, 8);
|
|
if (size_in != size) {
|
|
SMEM_INFO("smem_find(%u, %u): wrong size %u\n",
|
|
id, size_in, size);
|
|
return 0;
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
/**
|
|
* smem_find - Find existing item with security support
|
|
*
|
|
* @id: ID of SMEM item
|
|
* @size_in: Size of the SMEM item
|
|
* @to_proc: SMEM host that shares the item with apps
|
|
* @flags: Item attribute flags
|
|
* @returns: Pointer to SMEM item, NULL if it doesn't exist, or -EPROBE_DEFER
|
|
* if the driver is not ready
|
|
*/
|
|
void *smem_find(unsigned id, unsigned size_in, unsigned to_proc, unsigned flags)
|
|
{
|
|
unsigned size;
|
|
void *ptr;
|
|
|
|
SMEM_DBG("%s(%u, %u, %u, %u)\n", __func__, id, size_in, to_proc,
|
|
flags);
|
|
|
|
/*
|
|
* Handle the circular dependecy between SMEM and software implemented
|
|
* remote spinlocks. SMEM must initialize the remote spinlocks in
|
|
* probe() before it is done. EPROBE_DEFER handling will not resolve
|
|
* this code path, so we must be intellegent to know that the spinlock
|
|
* item is a special case.
|
|
*/
|
|
if (!is_probe_done() && id != SMEM_SPINLOCK_ARRAY)
|
|
return ERR_PTR(-EPROBE_DEFER);
|
|
|
|
ptr = smem_get_entry(id, &size, to_proc, flags);
|
|
if (!ptr)
|
|
return 0;
|
|
|
|
size_in = ALIGN(size_in, 8);
|
|
if (size_in != size) {
|
|
SMEM_INFO("smem_find(%u, %u, %u, %u): wrong size %u\n",
|
|
id, size_in, to_proc, flags, size);
|
|
return 0;
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
EXPORT_SYMBOL(smem_find);
|
|
|
|
/**
|
|
* alloc_item_nonsecure - Allocate an SMEM item in the nonsecure partition
|
|
*
|
|
* @id: ID of SMEM item
|
|
* @size_in: Size to allocate
|
|
* @returns: Pointer to SMEM item or NULL for error
|
|
*
|
|
* Assumes the id parameter is valid and does not already exist. Assumes
|
|
* size_in is already adjusted for alignment, if necessary. Requires the
|
|
* remote spinlock to already be locked.
|
|
*/
|
|
static void *alloc_item_nonsecure(unsigned id, unsigned size_in)
|
|
{
|
|
void *smem_base = smem_ram_base;
|
|
struct smem_shared *shared = smem_base;
|
|
struct smem_heap_entry *toc = shared->heap_toc;
|
|
uint32_t free_offset, heap_remaining;
|
|
void *ret = NULL;
|
|
|
|
heap_remaining = shared->heap_info.heap_remaining;
|
|
free_offset = shared->heap_info.free_offset;
|
|
if (WARN_ON(heap_remaining > smem_ram_size
|
|
|| free_offset > smem_ram_size))
|
|
return NULL;
|
|
|
|
if (heap_remaining >= size_in) {
|
|
toc[id].offset = free_offset;
|
|
toc[id].size = size_in;
|
|
/*
|
|
* wmb() is necessary to ensure the allocation data is
|
|
* consistent before setting the allocated flag to prevent race
|
|
* conditions with remote processors
|
|
*/
|
|
wmb();
|
|
toc[id].allocated = 1;
|
|
|
|
shared->heap_info.free_offset += size_in;
|
|
shared->heap_info.heap_remaining -= size_in;
|
|
ret = smem_base + free_offset;
|
|
/*
|
|
* wmb() is necessary to ensure the heap data is consistent
|
|
* before continuing to prevent race conditions with remote
|
|
* processors
|
|
*/
|
|
wmb();
|
|
} else {
|
|
SMEM_INFO("%s: id %u not enough memory %u (required %u)\n",
|
|
__func__, id, shared->heap_info.heap_remaining,
|
|
size_in);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* alloc_item_secure - Allocate an SMEM item in a secure partition
|
|
*
|
|
* @id: ID of SMEM item
|
|
* @size_in: Size to allocate
|
|
* @to_proc: SMEM host that shares the item with apps
|
|
* @flags: Item attribute flags
|
|
* @returns: Pointer to SMEM item or NULL for error
|
|
*
|
|
* Assumes the id parameter is valid and does not already exist. Assumes
|
|
* size_in is the raw size requested by the client. Assumes to_proc is a valid
|
|
* host, and a valid partition to that host exists. Requires the remote
|
|
* spinlock to already be locked.
|
|
*/
|
|
static void *alloc_item_secure(unsigned id, unsigned size_in, unsigned to_proc,
|
|
unsigned flags)
|
|
{
|
|
void *smem_base = smem_ram_base;
|
|
struct smem_partition_header *hdr;
|
|
struct smem_partition_allocation_header *alloc_hdr;
|
|
uint32_t offset_free_uncached;
|
|
struct smem_toc __iomem *toc;
|
|
uint32_t offset_free_cached;
|
|
uint32_t partition_size;
|
|
uint32_t partition_num;
|
|
uint32_t a_hdr_size;
|
|
uint32_t a_data_size;
|
|
uint32_t size_cacheline;
|
|
uint32_t free_space;
|
|
void *ret = NULL;
|
|
|
|
if (to_proc == SMEM_COMM_HOST) {
|
|
hdr = smem_base + comm_partition.offset;
|
|
partition_num = comm_partition.partition_num;
|
|
size_cacheline = comm_partition.size_cacheline;
|
|
} else if (to_proc < NUM_SMEM_SUBSYSTEMS) {
|
|
hdr = smem_base + partitions[to_proc].offset;
|
|
partition_num = partitions[to_proc].partition_num;
|
|
size_cacheline = partitions[to_proc].size_cacheline;
|
|
} else {
|
|
SMEM_INFO("%s: invalid to_proc %u for id %u\n", __func__,
|
|
to_proc, id);
|
|
return NULL;
|
|
}
|
|
|
|
if (hdr->identifier != SMEM_PART_HDR_IDENTIFIER) {
|
|
LOG_ERR(
|
|
"%s: SMEM corruption detected. Partition %d to %d at %p\n",
|
|
__func__,
|
|
partition_num,
|
|
to_proc,
|
|
hdr);
|
|
BUG();
|
|
}
|
|
|
|
toc = smem_get_toc();
|
|
partition_size = readl_relaxed(&toc->entry[partition_num].size);
|
|
|
|
offset_free_cached = hdr->offset_free_cached;
|
|
offset_free_uncached = hdr->offset_free_uncached;
|
|
if (WARN_ON(offset_free_uncached > offset_free_cached
|
|
|| offset_free_cached > partition_size))
|
|
return NULL;
|
|
|
|
free_space = offset_free_cached - offset_free_uncached;
|
|
|
|
if (flags & SMEM_ITEM_CACHED_FLAG) {
|
|
a_hdr_size = ALIGN(sizeof(*alloc_hdr), size_cacheline);
|
|
a_data_size = ALIGN(size_in, size_cacheline);
|
|
if (free_space < a_hdr_size + a_data_size
|
|
|| free_space < size_in) {
|
|
SMEM_INFO(
|
|
"%s: id %u not enough memory %u (required %u), (size_in %u)\n",
|
|
__func__, id, free_space,
|
|
a_hdr_size + a_data_size, size_in);
|
|
return ret;
|
|
}
|
|
alloc_hdr = (void *)(hdr) + offset_free_cached - a_hdr_size;
|
|
alloc_hdr->canary = SMEM_ALLOCATION_CANARY;
|
|
alloc_hdr->smem_type = id;
|
|
alloc_hdr->size = a_data_size;
|
|
alloc_hdr->padding_data = a_data_size - size_in;
|
|
alloc_hdr->padding_hdr = a_hdr_size - sizeof(*alloc_hdr);
|
|
hdr->offset_free_cached = offset_free_cached -
|
|
a_hdr_size - a_data_size;
|
|
ret = (void *)(alloc_hdr) - a_data_size;
|
|
/*
|
|
* The SMEM protocol currently does not support cacheable
|
|
* areas within the smem region, but if it ever does in the
|
|
* future, then cache management needs to be done here.
|
|
* The area of memory this item is allocated from will need to
|
|
* be dynamically made cachable, and a cache flush of the
|
|
* allocation header using __cpuc_flush_dcache_area and
|
|
* outer_flush_area will need to be done.
|
|
*/
|
|
} else {
|
|
a_hdr_size = sizeof(*alloc_hdr);
|
|
a_data_size = ALIGN(size_in, 8);
|
|
if (free_space < a_hdr_size + a_data_size
|
|
|| free_space < size_in) {
|
|
SMEM_INFO(
|
|
"%s: id %u not enough memory %u (required %u) (size_in %u)\n",
|
|
__func__, id, free_space,
|
|
a_hdr_size + a_data_size, size_in);
|
|
return ret;
|
|
}
|
|
alloc_hdr = (void *)(hdr) + offset_free_uncached;
|
|
alloc_hdr->canary = SMEM_ALLOCATION_CANARY;
|
|
alloc_hdr->smem_type = id;
|
|
alloc_hdr->size = a_data_size;
|
|
alloc_hdr->padding_data = a_data_size - size_in;
|
|
alloc_hdr->padding_hdr = a_hdr_size - sizeof(*alloc_hdr);
|
|
hdr->offset_free_uncached = offset_free_uncached +
|
|
a_hdr_size + a_data_size;
|
|
ret = alloc_hdr + 1;
|
|
}
|
|
/*
|
|
* wmb() is necessary to ensure the heap and allocation data is
|
|
* consistent before continuing to prevent race conditions with remote
|
|
* processors
|
|
*/
|
|
wmb();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* smem_alloc - Find an existing item, otherwise allocate it with security
|
|
* support
|
|
*
|
|
* @id: ID of SMEM item
|
|
* @size_in: Size of the SMEM item
|
|
* @to_proc: SMEM host that shares the item with apps
|
|
* @flags: Item attribute flags
|
|
* @returns: Pointer to SMEM item, NULL if it couldn't be found/allocated,
|
|
* or -EPROBE_DEFER if the driver is not ready
|
|
*/
|
|
void *smem_alloc(unsigned id, unsigned size_in, unsigned to_proc,
|
|
unsigned flags)
|
|
{
|
|
unsigned long lflags;
|
|
void *ret = NULL;
|
|
int rc;
|
|
unsigned size_out;
|
|
unsigned a_size_in;
|
|
|
|
SMEM_DBG("%s(%u, %u, %u, %u)\n", __func__, id, size_in, to_proc,
|
|
flags);
|
|
|
|
if (!is_probe_done())
|
|
return ERR_PTR(-EPROBE_DEFER);
|
|
|
|
if (!smem_initialized_check())
|
|
return NULL;
|
|
|
|
if (id >= smem_max_items) {
|
|
SMEM_INFO("%s: invalid id %u\n", __func__, id);
|
|
return NULL;
|
|
}
|
|
|
|
if (!(flags & SMEM_ANY_HOST_FLAG) && to_proc >= NUM_SMEM_SUBSYSTEMS) {
|
|
SMEM_INFO("%s: invalid to_proc %u for id %u\n", __func__,
|
|
to_proc, id);
|
|
return NULL;
|
|
}
|
|
|
|
if (unlikely(!spinlocks_initialized)) {
|
|
rc = init_smem_remote_spinlock();
|
|
if (unlikely(rc)) {
|
|
SMEM_INFO("%s: id:%u remote spinlock init failed %d\n",
|
|
__func__, id, rc);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
a_size_in = ALIGN(size_in, 8);
|
|
do {
|
|
rc = remote_spin_trylock_irqsave(&remote_spinlock, lflags);
|
|
} while (!rc);
|
|
|
|
ret = __smem_get_entry_secure(id, &size_out, to_proc, flags, true,
|
|
false);
|
|
if (ret) {
|
|
SMEM_INFO("%s: %u already allocated\n", __func__, id);
|
|
if (a_size_in == size_out) {
|
|
remote_spin_unlock_irqrestore(&remote_spinlock, lflags);
|
|
return ret;
|
|
} else {
|
|
remote_spin_unlock_irqrestore(&remote_spinlock, lflags);
|
|
SMEM_INFO("%s: id %u wrong size %u (expected %u)\n",
|
|
__func__, id, size_out, a_size_in);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (id > SMEM_FIXED_ITEM_LAST) {
|
|
SMEM_INFO("%s: allocating %u size %u to_proc %u flags %u\n",
|
|
__func__, id, size_in, to_proc, flags);
|
|
if (flags & SMEM_ANY_HOST_FLAG
|
|
|| !partitions[to_proc].offset) {
|
|
if (use_comm_partition)
|
|
ret = alloc_item_secure(id, size_in,
|
|
SMEM_COMM_HOST, flags);
|
|
else
|
|
ret = alloc_item_nonsecure(id, a_size_in);
|
|
} else {
|
|
ret = alloc_item_secure(id, size_in, to_proc, flags);
|
|
}
|
|
} else {
|
|
SMEM_INFO("%s: attempted to allocate non-dynamic item %u\n",
|
|
__func__, id);
|
|
}
|
|
|
|
remote_spin_unlock_irqrestore(&remote_spinlock, lflags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(smem_alloc);
|
|
|
|
/**
|
|
* smem_get_entry - Get existing item with security support
|
|
*
|
|
* @id: ID of SMEM item
|
|
* @size: Pointer to size variable for storing the result
|
|
* @to_proc: SMEM host that shares the item with apps
|
|
* @flags: Item attribute flags
|
|
* @returns: Pointer to SMEM item, NULL if it doesn't exist, or -EPROBE_DEFER
|
|
* if the driver isn't ready
|
|
*/
|
|
void *smem_get_entry(unsigned id, unsigned *size, unsigned to_proc,
|
|
unsigned flags)
|
|
{
|
|
SMEM_DBG("%s(%u, %u, %u)\n", __func__, id, to_proc, flags);
|
|
|
|
/*
|
|
* Handle the circular dependecy between SMEM and software implemented
|
|
* remote spinlocks. SMEM must initialize the remote spinlocks in
|
|
* probe() before it is done. EPROBE_DEFER handling will not resolve
|
|
* this code path, so we must be intellegent to know that the spinlock
|
|
* item is a special case.
|
|
*/
|
|
if (!is_probe_done() && id != SMEM_SPINLOCK_ARRAY)
|
|
return ERR_PTR(-EPROBE_DEFER);
|
|
|
|
return __smem_get_entry_secure(id, size, to_proc, flags, false, true);
|
|
}
|
|
EXPORT_SYMBOL(smem_get_entry);
|
|
|
|
/**
|
|
* smem_get_entry_no_rlock - Get existing item without using remote spinlock
|
|
*
|
|
* @id: ID of SMEM item
|
|
* @size_out: Pointer to size variable for storing the result
|
|
* @to_proc: SMEM host that shares the item with apps
|
|
* @flags: Item attribute flags
|
|
* @returns: Pointer to SMEM item, NULL if it doesn't exist, or -EPROBE_DEFER
|
|
* if the driver isn't ready
|
|
*
|
|
* This function does not lock the remote spinlock and should only be used in
|
|
* failure-recover cases such as retrieving the subsystem failure reason during
|
|
* subsystem restart.
|
|
*/
|
|
void *smem_get_entry_no_rlock(unsigned id, unsigned *size_out, unsigned to_proc,
|
|
unsigned flags)
|
|
{
|
|
if (!is_probe_done())
|
|
return ERR_PTR(-EPROBE_DEFER);
|
|
|
|
return __smem_get_entry_secure(id, size_out, to_proc, flags, false,
|
|
false);
|
|
}
|
|
EXPORT_SYMBOL(smem_get_entry_no_rlock);
|
|
|
|
/**
|
|
* smem_get_remote_spinlock - Remote spinlock pointer for unit testing.
|
|
*
|
|
* @returns: pointer to SMEM remote spinlock
|
|
*/
|
|
remote_spinlock_t *smem_get_remote_spinlock(void)
|
|
{
|
|
if (unlikely(!spinlocks_initialized))
|
|
init_smem_remote_spinlock();
|
|
return &remote_spinlock;
|
|
}
|
|
EXPORT_SYMBOL(smem_get_remote_spinlock);
|
|
|
|
/**
|
|
* smem_get_free_space() - Get the available allocation free space for a
|
|
* partition
|
|
*
|
|
* @to_proc: remote SMEM host. Determines the applicable partition
|
|
* @returns: size in bytes available to allocate
|
|
*
|
|
* Helper function for SMD so that SMD only scans the channel allocation
|
|
* table for a partition when it is reasonably certain that a channel has
|
|
* actually been created, because scanning can be expensive. Creating a channel
|
|
* will consume some of the free space in a partition, so SMD can compare the
|
|
* last free space size against the current free space size to determine if
|
|
* a channel may have been created. SMD can't do this directly, because the
|
|
* necessary partition internals are restricted to just SMEM.
|
|
*/
|
|
unsigned smem_get_free_space(unsigned to_proc)
|
|
{
|
|
struct smem_partition_header *hdr;
|
|
struct smem_shared *shared;
|
|
uint32_t offset_free_uncached;
|
|
struct smem_toc __iomem *toc;
|
|
uint32_t offset_free_cached;
|
|
uint32_t heap_remaining;
|
|
uint32_t p_size;
|
|
uint32_t p_num;
|
|
|
|
if (to_proc >= NUM_SMEM_SUBSYSTEMS) {
|
|
pr_err("%s: invalid to_proc:%d\n", __func__, to_proc);
|
|
return UINT_MAX;
|
|
}
|
|
|
|
if (partitions[to_proc].offset) {
|
|
if (unlikely(OVERFLOW_ADD_UNSIGNED(uintptr_t,
|
|
(uintptr_t)smem_areas[0].virt_addr,
|
|
partitions[to_proc].offset))) {
|
|
pr_err("%s: unexpected overflow detected\n", __func__);
|
|
return UINT_MAX;
|
|
}
|
|
hdr = smem_areas[0].virt_addr + partitions[to_proc].offset;
|
|
offset_free_cached = hdr->offset_free_cached;
|
|
offset_free_uncached = hdr->offset_free_uncached;
|
|
|
|
toc = smem_get_toc();
|
|
p_num = partitions[to_proc].partition_num;
|
|
p_size = readl_relaxed(&toc->entry[p_num].size);
|
|
if (WARN_ON(offset_free_uncached > offset_free_cached
|
|
|| offset_free_cached > p_size))
|
|
return -EINVAL;
|
|
|
|
return offset_free_cached - offset_free_uncached;
|
|
}
|
|
shared = smem_ram_base;
|
|
heap_remaining = shared->heap_info.heap_remaining;
|
|
if (WARN_ON(heap_remaining > smem_ram_size))
|
|
return -EINVAL;
|
|
|
|
return heap_remaining;
|
|
}
|
|
EXPORT_SYMBOL(smem_get_free_space);
|
|
|
|
/**
|
|
* smem_get_version() - Get the smem user version number
|
|
*
|
|
* @idx: SMEM user idx in SMEM_VERSION_INFO table.
|
|
* @returns: smem version number if success otherwise zero.
|
|
*/
|
|
unsigned smem_get_version(unsigned idx)
|
|
{
|
|
int *version_array;
|
|
struct smem_shared *smem = smem_ram_base;
|
|
|
|
if (idx > 32) {
|
|
pr_err("%s: invalid idx:%d\n", __func__, idx);
|
|
return 0;
|
|
}
|
|
|
|
if (use_comm_partition)
|
|
version_array = smem->version;
|
|
else
|
|
version_array = __smem_find(SMEM_VERSION_INFO,
|
|
SMEM_VERSION_INFO_SIZE, true);
|
|
if (version_array == NULL)
|
|
return 0;
|
|
|
|
return version_array[idx];
|
|
}
|
|
EXPORT_SYMBOL(smem_get_version);
|
|
|
|
/**
|
|
* init_smem_remote_spinlock - Reentrant remote spinlock initialization
|
|
*
|
|
* @returns: success or error code for failure
|
|
*/
|
|
static int init_smem_remote_spinlock(void)
|
|
{
|
|
int rc = 0;
|
|
|
|
/*
|
|
* Optimistic locking. Init only needs to be done once by the first
|
|
* caller. After that, serializing inits between different callers
|
|
* is unnecessary. The second check after the lock ensures init
|
|
* wasn't previously completed by someone else before the lock could
|
|
* be grabbed.
|
|
*/
|
|
if (!spinlocks_initialized) {
|
|
mutex_lock(&spinlock_init_lock);
|
|
if (!spinlocks_initialized) {
|
|
rc = remote_spin_lock_init(&remote_spinlock,
|
|
SMEM_SPINLOCK_SMEM_ALLOC);
|
|
if (!rc)
|
|
spinlocks_initialized = 1;
|
|
}
|
|
mutex_unlock(&spinlock_init_lock);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* smem_initialized_check - Reentrant check that smem has been initialized
|
|
*
|
|
* @returns: true if initialized, false if not.
|
|
*/
|
|
bool smem_initialized_check(void)
|
|
{
|
|
static int checked;
|
|
static int is_inited;
|
|
unsigned long flags;
|
|
struct smem_shared *smem;
|
|
unsigned ver;
|
|
|
|
if (likely(checked)) {
|
|
if (unlikely(!is_inited))
|
|
LOG_ERR("%s: smem not initialized\n", __func__);
|
|
return is_inited;
|
|
}
|
|
|
|
spin_lock_irqsave(&smem_init_check_lock, flags);
|
|
if (checked) {
|
|
spin_unlock_irqrestore(&smem_init_check_lock, flags);
|
|
if (unlikely(!is_inited))
|
|
LOG_ERR("%s: smem not initialized\n", __func__);
|
|
return is_inited;
|
|
}
|
|
|
|
smem = smem_ram_base;
|
|
|
|
if (smem->heap_info.initialized != 1)
|
|
goto failed;
|
|
if (smem->heap_info.reserved != 0)
|
|
goto failed;
|
|
|
|
/*
|
|
* The Modem SBL is now the Master SBL version and is required to
|
|
* pre-initialize SMEM and fill in any necessary configuration
|
|
* structures. Without the extra configuration data, the SMEM driver
|
|
* cannot be properly initialized.
|
|
*/
|
|
ver = smem->version[MODEM_SBL_VERSION_INDEX];
|
|
if (ver == SMEM_COMM_PART_VERSION << 16) {
|
|
use_comm_partition = true;
|
|
} else if (ver != SMEM_VERSION << 16) {
|
|
pr_err("%s: SBL version not correct 0x%x\n",
|
|
__func__, smem->version[7]);
|
|
goto failed;
|
|
}
|
|
|
|
is_inited = 1;
|
|
checked = 1;
|
|
spin_unlock_irqrestore(&smem_init_check_lock, flags);
|
|
return is_inited;
|
|
|
|
failed:
|
|
is_inited = 0;
|
|
checked = 1;
|
|
spin_unlock_irqrestore(&smem_init_check_lock, flags);
|
|
LOG_ERR(
|
|
"%s: shared memory needs to be initialized by SBL before booting\n",
|
|
__func__);
|
|
return is_inited;
|
|
}
|
|
EXPORT_SYMBOL(smem_initialized_check);
|
|
|
|
static int restart_notifier_cb(struct notifier_block *this,
|
|
unsigned long code,
|
|
void *data)
|
|
{
|
|
struct restart_notifier_block *notifier;
|
|
struct notif_data *notifdata = data;
|
|
int ret;
|
|
|
|
switch (code) {
|
|
|
|
case SUBSYS_AFTER_SHUTDOWN:
|
|
notifier = container_of(this,
|
|
struct restart_notifier_block, nb);
|
|
SMEM_INFO("%s: ssrestart for processor %d ('%s')\n",
|
|
__func__, notifier->processor,
|
|
notifier->name);
|
|
remote_spin_release(&remote_spinlock, notifier->processor);
|
|
remote_spin_release_all(notifier->processor);
|
|
break;
|
|
case SUBSYS_SOC_RESET:
|
|
if (!(smem_ramdump_dev && notifdata->enable_mini_ramdumps))
|
|
break;
|
|
case SUBSYS_RAMDUMP_NOTIFICATION:
|
|
if (!(smem_ramdump_dev && (notifdata->enable_mini_ramdumps
|
|
|| notifdata->enable_ramdump)))
|
|
break;
|
|
SMEM_DBG("%s: saving ramdump\n", __func__);
|
|
/*
|
|
* XPU protection does not currently allow the
|
|
* auxiliary memory regions to be dumped. If this
|
|
* changes, then num_smem_areas + 1 should be passed
|
|
* into do_elf_ramdump() to dump all regions.
|
|
*/
|
|
ret = do_elf_ramdump(smem_ramdump_dev,
|
|
smem_ramdump_segments, 1);
|
|
if (ret < 0)
|
|
LOG_ERR("%s: unable to dump smem %d\n", __func__, ret);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static __init int modem_restart_late_init(void)
|
|
{
|
|
int i;
|
|
void *handle;
|
|
struct restart_notifier_block *nb;
|
|
|
|
if (scm_is_secure_device()) {
|
|
if (smem_dev)
|
|
smem_ramdump_dev = create_ramdump_device("smem",
|
|
smem_dev);
|
|
if (IS_ERR_OR_NULL(smem_ramdump_dev)) {
|
|
LOG_ERR("%s: Unable to create smem ramdump device.\n",
|
|
__func__);
|
|
smem_ramdump_dev = NULL;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(restart_notifiers); i++) {
|
|
nb = &restart_notifiers[i];
|
|
handle = subsys_notif_register_notifier(nb->name, &nb->nb);
|
|
SMEM_DBG("%s: registering notif for '%s', handle=%p\n",
|
|
__func__, nb->name, handle);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
late_initcall(modem_restart_late_init);
|
|
|
|
int smem_module_init_notifier_register(struct notifier_block *nb)
|
|
{
|
|
int ret;
|
|
if (!nb)
|
|
return -EINVAL;
|
|
mutex_lock(&smem_module_init_notifier_lock);
|
|
ret = raw_notifier_chain_register(&smem_module_init_notifier_list, nb);
|
|
if (smem_module_inited)
|
|
nb->notifier_call(nb, 0, NULL);
|
|
mutex_unlock(&smem_module_init_notifier_lock);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(smem_module_init_notifier_register);
|
|
|
|
int smem_module_init_notifier_unregister(struct notifier_block *nb)
|
|
{
|
|
int ret;
|
|
if (!nb)
|
|
return -EINVAL;
|
|
mutex_lock(&smem_module_init_notifier_lock);
|
|
ret = raw_notifier_chain_unregister(&smem_module_init_notifier_list,
|
|
nb);
|
|
mutex_unlock(&smem_module_init_notifier_lock);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(smem_module_init_notifier_unregister);
|
|
|
|
static void smem_module_init_notify(uint32_t state, void *data)
|
|
{
|
|
mutex_lock(&smem_module_init_notifier_lock);
|
|
smem_module_inited = 1;
|
|
raw_notifier_call_chain(&smem_module_init_notifier_list,
|
|
state, data);
|
|
mutex_unlock(&smem_module_init_notifier_lock);
|
|
}
|
|
|
|
/**
|
|
* smem_init_security_partition - Init local structures for a secured smem
|
|
* partition that has apps as one of the hosts
|
|
*
|
|
* @entry: Entry in the security TOC for the partition to init
|
|
* @num: Partition ID
|
|
*
|
|
* Initialize local data structures to point to a secured smem partition
|
|
* that is accessible by apps and another processor. Assumes that one of the
|
|
* listed hosts is apps. Verifiess that the partition is valid, otherwise will
|
|
* skip. Checks for memory corruption and will BUG() if detected. Assumes
|
|
* smem_areas is already initialized and that smem_areas[0] corresponds to the
|
|
* smem region with the secured partitions.
|
|
*/
|
|
static void smem_init_security_partition(struct smem_toc_entry *entry,
|
|
uint32_t num)
|
|
{
|
|
uint16_t remote_host = 0;
|
|
struct smem_partition_header *hdr;
|
|
bool is_comm_partition = false;
|
|
|
|
if (!entry->offset) {
|
|
SMEM_INFO("Skipping smem partition %d - bad offset\n", num);
|
|
return;
|
|
}
|
|
if (!entry->size) {
|
|
SMEM_INFO("Skipping smem partition %d - bad size\n", num);
|
|
return;
|
|
}
|
|
if (!entry->size_cacheline) {
|
|
SMEM_INFO("Skipping smem partition %d - bad cacheline\n", num);
|
|
return;
|
|
}
|
|
|
|
if (entry->host0 == SMEM_COMM_HOST && entry->host1 == SMEM_COMM_HOST)
|
|
is_comm_partition = true;
|
|
|
|
if (!is_comm_partition) {
|
|
if (entry->host0 == SMEM_APPS)
|
|
remote_host = entry->host1;
|
|
else
|
|
remote_host = entry->host0;
|
|
|
|
if (remote_host >= NUM_SMEM_SUBSYSTEMS) {
|
|
SMEM_INFO(
|
|
"Skipping smem partition %d - bad remote:%d\n",
|
|
num, remote_host);
|
|
return;
|
|
}
|
|
if (partitions[remote_host].offset) {
|
|
SMEM_INFO(
|
|
"Skipping smem partition %d - duplicate of %d\n",
|
|
num, partitions[remote_host].partition_num);
|
|
return;
|
|
}
|
|
|
|
if (entry->host0 != SMEM_APPS && entry->host1 != SMEM_APPS) {
|
|
SMEM_INFO(
|
|
"Non-APSS Partition %d offset:%x host0:%d host1:%d\n",
|
|
num, entry->offset, entry->host0, entry->host1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
hdr = smem_areas[0].virt_addr + entry->offset;
|
|
|
|
if (hdr->identifier != SMEM_PART_HDR_IDENTIFIER) {
|
|
LOG_ERR("Smem partition %d hdr magic is bad\n", num);
|
|
BUG();
|
|
}
|
|
if (hdr->size != entry->size) {
|
|
LOG_ERR("Smem partition %d size is invalid\n", num);
|
|
BUG();
|
|
}
|
|
if (hdr->offset_free_uncached > hdr->size) {
|
|
LOG_ERR("Smem partition %d uncached heap exceeds size\n", num);
|
|
BUG();
|
|
}
|
|
if (hdr->offset_free_cached > hdr->size) {
|
|
LOG_ERR("Smem partition %d cached heap exceeds size\n", num);
|
|
BUG();
|
|
}
|
|
if (is_comm_partition) {
|
|
if (hdr->host0 == SMEM_COMM_HOST
|
|
&& hdr->host1 == SMEM_COMM_HOST) {
|
|
comm_partition.partition_num = num;
|
|
comm_partition.offset = entry->offset;
|
|
comm_partition.size_cacheline = entry->size_cacheline;
|
|
SMEM_INFO("Common Partition %d offset:%x\n", num,
|
|
entry->offset);
|
|
} else {
|
|
LOG_ERR("Smem Comm partition hosts don't match TOC\n");
|
|
WARN_ON(1);
|
|
}
|
|
return;
|
|
}
|
|
if (hdr->host0 != SMEM_APPS && hdr->host1 != SMEM_APPS) {
|
|
LOG_ERR("Smem partition %d hosts don't match TOC\n", num);
|
|
BUG();
|
|
}
|
|
if (hdr->host0 != remote_host && hdr->host1 != remote_host) {
|
|
LOG_ERR("Smem partition %d hosts don't match TOC\n", num);
|
|
BUG();
|
|
}
|
|
|
|
partitions[remote_host].partition_num = num;
|
|
partitions[remote_host].offset = entry->offset;
|
|
partitions[remote_host].size_cacheline = entry->size_cacheline;
|
|
SMEM_INFO("Partition %d offset:%x remote:%d\n", num, entry->offset,
|
|
remote_host);
|
|
}
|
|
|
|
/**
|
|
* smem_init_security - Init local support for secured smem
|
|
*
|
|
* Looks for a valid security TOC, and if one is found, parses it looking for
|
|
* partitions that apps can access. If any such partitions are found, do the
|
|
* required local initialization to support them. Assumes smem_areas is inited
|
|
* and smem_area[0] corresponds to the smem region with the TOC.
|
|
*/
|
|
static void smem_init_security(void)
|
|
{
|
|
struct smem_toc *toc;
|
|
uint32_t i;
|
|
|
|
SMEM_DBG("%s\n", __func__);
|
|
|
|
toc = smem_areas[0].virt_addr + smem_areas[0].size - 4 * 1024;
|
|
|
|
if (toc->identifier != SMEM_TOC_IDENTIFIER) {
|
|
LOG_ERR("%s failed: invalid TOC magic\n", __func__);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < toc->num_entries; ++i) {
|
|
SMEM_DBG("Partition %d host0:%d host1:%d\n", i,
|
|
toc->entry[i].host0,
|
|
toc->entry[i].host1);
|
|
smem_init_security_partition(&toc->entry[i], i);
|
|
}
|
|
|
|
SMEM_DBG("%s done\n", __func__);
|
|
}
|
|
|
|
/**
|
|
* smem_init_target_info - Init smem target information
|
|
*
|
|
* @info_addr : smem target info physical address.
|
|
* @size : size of the smem target info structure.
|
|
*
|
|
* This function is used to initialize the smem_targ_info structure and checks
|
|
* for valid identifier, if identifier is valid initialize smem variables.
|
|
*/
|
|
static int smem_init_target_info(phys_addr_t info_addr, resource_size_t size)
|
|
{
|
|
struct smem_targ_info_type *smem_targ_info;
|
|
void *smem_targ_info_addr;
|
|
smem_targ_info_addr = ioremap_nocache(info_addr, size);
|
|
if (!smem_targ_info_addr) {
|
|
LOG_ERR("%s: failed ioremap_nocache() of addr:%pa size:%pa\n",
|
|
__func__, &info_addr, &size);
|
|
return -ENODEV;
|
|
}
|
|
smem_targ_info =
|
|
(struct smem_targ_info_type __iomem *)smem_targ_info_addr;
|
|
|
|
if (smem_targ_info->identifier != SMEM_TARG_INFO_IDENTIFIER) {
|
|
LOG_ERR("%s failed: invalid TARGET INFO magic\n", __func__);
|
|
return -ENODEV;
|
|
}
|
|
smem_ram_phys = smem_targ_info->phys_base_addr;
|
|
smem_ram_size = smem_targ_info->size;
|
|
if (smem_targ_info->max_items)
|
|
smem_max_items = smem_targ_info->max_items;
|
|
iounmap(smem_targ_info_addr);
|
|
return 0;
|
|
}
|
|
|
|
static int msm_smem_probe(struct platform_device *pdev)
|
|
{
|
|
char *key;
|
|
struct resource *r;
|
|
phys_addr_t aux_mem_base;
|
|
resource_size_t aux_mem_size;
|
|
int temp_string_size = 11; /* max 3 digit count */
|
|
char temp_string[temp_string_size];
|
|
int ret;
|
|
struct ramdump_segment *ramdump_segments_tmp = NULL;
|
|
struct smem_area *smem_areas_tmp = NULL;
|
|
int smem_idx = 0;
|
|
bool security_enabled;
|
|
|
|
r = platform_get_resource_byname(pdev, IORESOURCE_MEM,
|
|
"smem_targ_info_imem");
|
|
if (r) {
|
|
if (smem_init_target_info(r->start, resource_size(r)))
|
|
goto smem_targ_info_legacy;
|
|
goto smem_targ_info_done;
|
|
}
|
|
|
|
r = platform_get_resource_byname(pdev, IORESOURCE_MEM,
|
|
"smem_targ_info_reg");
|
|
if (r) {
|
|
void *reg_base_addr;
|
|
uint64_t base_addr;
|
|
reg_base_addr = ioremap_nocache(r->start, resource_size(r));
|
|
base_addr = (uint32_t)readl_relaxed(reg_base_addr);
|
|
base_addr |=
|
|
((uint64_t)readl_relaxed(reg_base_addr + 0x4) << 32);
|
|
iounmap(reg_base_addr);
|
|
if ((base_addr == 0) || ((base_addr >> 32) != 0)) {
|
|
SMEM_INFO("%s: Invalid SMEM address\n", __func__);
|
|
goto smem_targ_info_legacy;
|
|
}
|
|
if (smem_init_target_info(base_addr,
|
|
sizeof(struct smem_targ_info_type)))
|
|
goto smem_targ_info_legacy;
|
|
goto smem_targ_info_done;
|
|
}
|
|
|
|
smem_targ_info_legacy:
|
|
SMEM_INFO("%s: reading dt-specified SMEM address\n", __func__);
|
|
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smem");
|
|
if (r) {
|
|
smem_ram_size = resource_size(r);
|
|
smem_ram_phys = r->start;
|
|
}
|
|
|
|
smem_targ_info_done:
|
|
if (!smem_ram_phys || !smem_ram_size) {
|
|
LOG_ERR("%s: Missing SMEM TARGET INFO\n", __func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
smem_ram_base = ioremap_nocache(smem_ram_phys, smem_ram_size);
|
|
|
|
if (!smem_ram_base) {
|
|
LOG_ERR("%s: ioremap_nocache() of addr:%pa size: %pa\n",
|
|
__func__,
|
|
&smem_ram_phys, &smem_ram_size);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (!smem_initialized_check())
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* The software implementation requires smem_find(), which needs
|
|
* smem_ram_base to be intitialized. The remote spinlock item is
|
|
* guarenteed to be allocated by the bootloader, so this is the
|
|
* safest and earliest place to init the spinlock.
|
|
*/
|
|
ret = init_smem_remote_spinlock();
|
|
if (ret) {
|
|
LOG_ERR("%s: remote spinlock init failed %d\n", __func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
key = "irq-reg-base";
|
|
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, key);
|
|
if (!r) {
|
|
LOG_ERR("%s: missing '%s'\n", __func__, key);
|
|
return -ENODEV;
|
|
}
|
|
|
|
num_smem_areas = 1;
|
|
while (1) {
|
|
scnprintf(temp_string, temp_string_size, "aux-mem%d",
|
|
num_smem_areas);
|
|
r = platform_get_resource_byname(pdev, IORESOURCE_MEM,
|
|
temp_string);
|
|
if (!r)
|
|
break;
|
|
|
|
++num_smem_areas;
|
|
if (num_smem_areas > 999) {
|
|
LOG_ERR("%s: max num aux mem regions reached\n",
|
|
__func__);
|
|
break;
|
|
}
|
|
}
|
|
/* Initialize main SMEM region and SSR ramdump region */
|
|
smem_areas_tmp = kmalloc_array(num_smem_areas, sizeof(struct smem_area),
|
|
GFP_KERNEL);
|
|
if (!smem_areas_tmp) {
|
|
LOG_ERR("%s: smem areas kmalloc failed\n", __func__);
|
|
ret = -ENOMEM;
|
|
goto free_smem_areas;
|
|
}
|
|
|
|
ramdump_segments_tmp = kcalloc(num_smem_areas,
|
|
sizeof(struct ramdump_segment), GFP_KERNEL);
|
|
if (!ramdump_segments_tmp) {
|
|
LOG_ERR("%s: ramdump segment kmalloc failed\n", __func__);
|
|
ret = -ENOMEM;
|
|
goto free_smem_areas;
|
|
}
|
|
smem_areas_tmp[smem_idx].phys_addr = smem_ram_phys;
|
|
smem_areas_tmp[smem_idx].size = smem_ram_size;
|
|
smem_areas_tmp[smem_idx].virt_addr = smem_ram_base;
|
|
|
|
ramdump_segments_tmp[smem_idx].address = smem_ram_phys;
|
|
ramdump_segments_tmp[smem_idx].size = smem_ram_size;
|
|
++smem_idx;
|
|
|
|
/* Configure auxiliary SMEM regions */
|
|
while (1) {
|
|
scnprintf(temp_string, temp_string_size, "aux-mem%d",
|
|
smem_idx);
|
|
r = platform_get_resource_byname(pdev, IORESOURCE_MEM,
|
|
temp_string);
|
|
if (!r)
|
|
break;
|
|
aux_mem_base = r->start;
|
|
aux_mem_size = resource_size(r);
|
|
|
|
ramdump_segments_tmp[smem_idx].address = aux_mem_base;
|
|
ramdump_segments_tmp[smem_idx].size = aux_mem_size;
|
|
|
|
smem_areas_tmp[smem_idx].phys_addr = aux_mem_base;
|
|
smem_areas_tmp[smem_idx].size = aux_mem_size;
|
|
smem_areas_tmp[smem_idx].virt_addr = ioremap_nocache(
|
|
(unsigned long)(smem_areas_tmp[smem_idx].phys_addr),
|
|
smem_areas_tmp[smem_idx].size);
|
|
SMEM_DBG("%s: %s = %pa %pa -> %p", __func__, temp_string,
|
|
&aux_mem_base, &aux_mem_size,
|
|
smem_areas_tmp[smem_idx].virt_addr);
|
|
|
|
if (!smem_areas_tmp[smem_idx].virt_addr) {
|
|
LOG_ERR("%s: ioremap_nocache() of addr:%pa size: %pa\n",
|
|
__func__,
|
|
&smem_areas_tmp[smem_idx].phys_addr,
|
|
&smem_areas_tmp[smem_idx].size);
|
|
ret = -ENOMEM;
|
|
goto free_smem_areas;
|
|
}
|
|
|
|
if (OVERFLOW_ADD_UNSIGNED(uintptr_t,
|
|
(uintptr_t)smem_areas_tmp[smem_idx].virt_addr,
|
|
smem_areas_tmp[smem_idx].size)) {
|
|
LOG_ERR(
|
|
"%s: invalid virtual address block %i: %p:%pa\n",
|
|
__func__, smem_idx,
|
|
smem_areas_tmp[smem_idx].virt_addr,
|
|
&smem_areas_tmp[smem_idx].size);
|
|
++smem_idx;
|
|
ret = -EINVAL;
|
|
goto free_smem_areas;
|
|
}
|
|
|
|
++smem_idx;
|
|
if (smem_idx > 999) {
|
|
LOG_ERR("%s: max num aux mem regions reached\n",
|
|
__func__);
|
|
break;
|
|
}
|
|
}
|
|
|
|
smem_areas = smem_areas_tmp;
|
|
smem_ramdump_segments = ramdump_segments_tmp;
|
|
|
|
key = "qcom,mpu-enabled";
|
|
security_enabled = of_property_read_bool(pdev->dev.of_node, key);
|
|
if (security_enabled) {
|
|
SMEM_INFO("smem security enabled\n");
|
|
smem_init_security();
|
|
}
|
|
smem_dev = &pdev->dev;
|
|
probe_done = true;
|
|
|
|
ret = of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
|
|
if (ret)
|
|
LOG_ERR("%s: of_platform_populate failed %d\n", __func__, ret);
|
|
|
|
return 0;
|
|
|
|
free_smem_areas:
|
|
for (smem_idx = smem_idx - 1; smem_idx >= 1; --smem_idx)
|
|
iounmap(smem_areas_tmp[smem_idx].virt_addr);
|
|
|
|
num_smem_areas = 0;
|
|
kfree(ramdump_segments_tmp);
|
|
kfree(smem_areas_tmp);
|
|
return ret;
|
|
}
|
|
|
|
static struct of_device_id msm_smem_match_table[] = {
|
|
{ .compatible = "qcom,smem" },
|
|
{},
|
|
};
|
|
|
|
static struct platform_driver msm_smem_driver = {
|
|
.probe = msm_smem_probe,
|
|
.driver = {
|
|
.name = "msm_smem",
|
|
.owner = THIS_MODULE,
|
|
.of_match_table = msm_smem_match_table,
|
|
},
|
|
};
|
|
|
|
int __init msm_smem_init(void)
|
|
{
|
|
static bool registered;
|
|
int rc;
|
|
|
|
if (registered)
|
|
return 0;
|
|
|
|
registered = true;
|
|
smem_max_items = SMEM_NUM_ITEMS;
|
|
smem_ipc_log_ctx = ipc_log_context_create(NUM_LOG_PAGES, "smem", 0);
|
|
if (!smem_ipc_log_ctx) {
|
|
pr_err("%s: unable to create logging context\n", __func__);
|
|
msm_smem_debug_mask = 0;
|
|
}
|
|
|
|
rc = platform_driver_register(&msm_smem_driver);
|
|
if (rc) {
|
|
LOG_ERR("%s: msm_smem_driver register failed %d\n",
|
|
__func__, rc);
|
|
return rc;
|
|
}
|
|
|
|
smem_module_init_notify(0, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
arch_initcall(msm_smem_init);
|