android_kernel_oneplus_msm8998/include/linux/msm_gsi.h
Ghanim Fodi 7d7714eae2 msm: ipa3: Ring IPA MHI event ring doorbell on channel start
Ringing IPA MHI event ring doorbell is done at MHI device
during MHI channel start. This is done after the rings
are allocated. The ring write pointer updated by the host is
used as the doorbell value. Doorbell ringing is required
in order to supply event credits to GSI H/W.

Change-Id: I2db110b4f99c8ab6c6878d426b3ebb37149b0b76
Signed-off-by: Ghanim Fodi <gfodi@codeaurora.org>
2017-06-25 23:49:59 -07:00

1290 lines
39 KiB
C

/* Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef MSM_GSI_H
#define MSM_GSI_H
#include <linux/types.h>
enum gsi_ver {
GSI_VER_ERR = 0,
GSI_VER_1_0 = 1,
GSI_VER_1_2 = 2,
GSI_VER_1_3 = 3,
GSI_VER_MAX,
};
enum gsi_status {
GSI_STATUS_SUCCESS = 0,
GSI_STATUS_ERROR = 1,
GSI_STATUS_RING_INSUFFICIENT_SPACE = 2,
GSI_STATUS_RING_EMPTY = 3,
GSI_STATUS_RES_ALLOC_FAILURE = 4,
GSI_STATUS_BAD_STATE = 5,
GSI_STATUS_INVALID_PARAMS = 6,
GSI_STATUS_UNSUPPORTED_OP = 7,
GSI_STATUS_NODEV = 8,
GSI_STATUS_POLL_EMPTY = 9,
GSI_STATUS_EVT_RING_INCOMPATIBLE = 10,
GSI_STATUS_TIMED_OUT = 11,
GSI_STATUS_AGAIN = 12,
};
enum gsi_per_evt {
GSI_PER_EVT_GLOB_ERROR,
GSI_PER_EVT_GLOB_GP1,
GSI_PER_EVT_GLOB_GP2,
GSI_PER_EVT_GLOB_GP3,
GSI_PER_EVT_GENERAL_BREAK_POINT,
GSI_PER_EVT_GENERAL_BUS_ERROR,
GSI_PER_EVT_GENERAL_CMD_FIFO_OVERFLOW,
GSI_PER_EVT_GENERAL_MCS_STACK_OVERFLOW,
};
/**
* gsi_per_notify - Peripheral callback info
*
* @user_data: cookie supplied in gsi_register_device
* @evt_id: type of notification
* @err_desc: error related information
*
*/
struct gsi_per_notify {
void *user_data;
enum gsi_per_evt evt_id;
union {
uint16_t err_desc;
} data;
};
enum gsi_intr_type {
GSI_INTR_MSI = 0x0,
GSI_INTR_IRQ = 0x1
};
/**
* gsi_per_props - Peripheral related properties
*
* @gsi: GSI core version
* @ee: EE where this driver and peripheral driver runs
* @intr: control interrupt type
* @intvec: write data for MSI write
* @msi_addr: MSI address
* @irq: IRQ number
* @phys_addr: physical address of GSI block
* @size: register size of GSI block
* @notify_cb: general notification callback
* @req_clk_cb: callback to request peripheral clock
* granted should be set to true if request is completed
* synchronously, false otherwise (peripheral needs
* to call gsi_complete_clk_grant later when request is
* completed)
* if this callback is not provided, then GSI will assume
* peripheral is clocked at all times
* @rel_clk_cb: callback to release peripheral clock
* @user_data: cookie used for notifications
*
* All the callbacks are in interrupt context
*
*/
struct gsi_per_props {
enum gsi_ver ver;
unsigned int ee;
enum gsi_intr_type intr;
uint32_t intvec;
uint64_t msi_addr;
unsigned int irq;
phys_addr_t phys_addr;
unsigned long size;
void (*notify_cb)(struct gsi_per_notify *notify);
void (*req_clk_cb)(void *user_data, bool *granted);
int (*rel_clk_cb)(void *user_data);
void *user_data;
};
enum gsi_evt_err {
GSI_EVT_OUT_OF_BUFFERS_ERR = 0x0,
GSI_EVT_OUT_OF_RESOURCES_ERR = 0x1,
GSI_EVT_UNSUPPORTED_INTER_EE_OP_ERR = 0x2,
GSI_EVT_EVT_RING_EMPTY_ERR = 0x3,
};
/**
* gsi_evt_err_notify - event ring error callback info
*
* @user_data: cookie supplied in gsi_alloc_evt_ring
* @evt_id: type of error
* @err_desc: more info about the error
*
*/
struct gsi_evt_err_notify {
void *user_data;
enum gsi_evt_err evt_id;
uint16_t err_desc;
};
enum gsi_evt_chtype {
GSI_EVT_CHTYPE_MHI_EV = 0x0,
GSI_EVT_CHTYPE_XHCI_EV = 0x1,
GSI_EVT_CHTYPE_GPI_EV = 0x2,
GSI_EVT_CHTYPE_XDCI_EV = 0x3
};
enum gsi_evt_ring_elem_size {
GSI_EVT_RING_RE_SIZE_4B = 4,
GSI_EVT_RING_RE_SIZE_16B = 16,
};
/**
* gsi_evt_ring_props - Event ring related properties
*
* @intf: interface type (of the associated channel)
* @intr: interrupt type
* @re_size: size of event ring element
* @ring_len: length of ring in bytes (must be integral multiple of
* re_size)
* @ring_base_addr: physical base address of ring. Address must be aligned to
* ring_len rounded to power of two
* @ring_base_vaddr: virtual base address of ring (set to NULL when not
* applicable)
* @int_modt: cycles base interrupt moderation (32KHz clock)
* @int_modc: interrupt moderation packet counter
* @intvec: write data for MSI write
* @msi_addr: MSI address
* @rp_update_addr: physical address to which event read pointer should be
* written on every event generation. must be set to 0 when
* no update is desdired
* @exclusive: if true, only one GSI channel can be associated with this
* event ring. if false, the event ring can be shared among
* multiple GSI channels but in that case no polling
* (GSI_CHAN_MODE_POLL) is supported on any of those channels
* @err_cb: error notification callback
* @user_data: cookie used for error notifications
* @evchid_valid: is evchid valid?
* @evchid: the event ID that is being specifically requested (this is
* relevant for MHI where doorbell routing requires ERs to be
* physically contiguous)
*/
struct gsi_evt_ring_props {
enum gsi_evt_chtype intf;
enum gsi_intr_type intr;
enum gsi_evt_ring_elem_size re_size;
uint16_t ring_len;
uint64_t ring_base_addr;
void *ring_base_vaddr;
uint16_t int_modt;
uint8_t int_modc;
uint32_t intvec;
uint64_t msi_addr;
uint64_t rp_update_addr;
bool exclusive;
void (*err_cb)(struct gsi_evt_err_notify *notify);
void *user_data;
bool evchid_valid;
uint8_t evchid;
};
enum gsi_chan_mode {
GSI_CHAN_MODE_CALLBACK = 0x0,
GSI_CHAN_MODE_POLL = 0x1,
};
enum gsi_chan_prot {
GSI_CHAN_PROT_MHI = 0x0,
GSI_CHAN_PROT_XHCI = 0x1,
GSI_CHAN_PROT_GPI = 0x2,
GSI_CHAN_PROT_XDCI = 0x3
};
enum gsi_chan_dir {
GSI_CHAN_DIR_FROM_GSI = 0x0,
GSI_CHAN_DIR_TO_GSI = 0x1
};
enum gsi_max_prefetch {
GSI_ONE_PREFETCH_SEG = 0x0,
GSI_TWO_PREFETCH_SEG = 0x1
};
enum gsi_chan_evt {
GSI_CHAN_EVT_INVALID = 0x0,
GSI_CHAN_EVT_SUCCESS = 0x1,
GSI_CHAN_EVT_EOT = 0x2,
GSI_CHAN_EVT_OVERFLOW = 0x3,
GSI_CHAN_EVT_EOB = 0x4,
GSI_CHAN_EVT_OOB = 0x5,
GSI_CHAN_EVT_DB_MODE = 0x6,
GSI_CHAN_EVT_UNDEFINED = 0x10,
GSI_CHAN_EVT_RE_ERROR = 0x11,
};
/**
* gsi_chan_xfer_notify - Channel callback info
*
* @chan_user_data: cookie supplied in gsi_alloc_channel
* @xfer_user_data: cookie of the gsi_xfer_elem that caused the
* event to be generated
* @evt_id: type of event triggered by the associated TRE
* (corresponding to xfer_user_data)
* @bytes_xfered: number of bytes transferred by the associated TRE
* (corresponding to xfer_user_data)
*
*/
struct gsi_chan_xfer_notify {
void *chan_user_data;
void *xfer_user_data;
enum gsi_chan_evt evt_id;
uint16_t bytes_xfered;
};
enum gsi_chan_err {
GSI_CHAN_INVALID_TRE_ERR = 0x0,
GSI_CHAN_NON_ALLOCATED_EVT_ACCESS_ERR = 0x1,
GSI_CHAN_OUT_OF_BUFFERS_ERR = 0x2,
GSI_CHAN_OUT_OF_RESOURCES_ERR = 0x3,
GSI_CHAN_UNSUPPORTED_INTER_EE_OP_ERR = 0x4,
GSI_CHAN_HWO_1_ERR = 0x5
};
/**
* gsi_chan_err_notify - Channel general callback info
*
* @chan_user_data: cookie supplied in gsi_alloc_channel
* @evt_id: type of error
* @err_desc: more info about the error
*
*/
struct gsi_chan_err_notify {
void *chan_user_data;
enum gsi_chan_err evt_id;
uint16_t err_desc;
};
enum gsi_chan_ring_elem_size {
GSI_CHAN_RE_SIZE_4B = 4,
GSI_CHAN_RE_SIZE_16B = 16,
GSI_CHAN_RE_SIZE_32B = 32,
};
enum gsi_chan_use_db_eng {
GSI_CHAN_DIRECT_MODE = 0x0,
GSI_CHAN_DB_MODE = 0x1,
};
/**
* gsi_chan_props - Channel related properties
*
* @prot: interface type
* @dir: channel direction
* @ch_id: virtual channel ID
* @evt_ring_hdl: handle of associated event ring. set to ~0 if no
* event ring associated
* @re_size: size of channel ring element
* @ring_len: length of ring in bytes (must be integral multiple of
* re_size)
* @max_re_expected: maximal number of ring elements expected to be queued.
* used for data path statistics gathering. if 0 provided
* ring_len / re_size will be used.
* @ring_base_addr: physical base address of ring. Address must be aligned to
* ring_len rounded to power of two
* @ring_base_vaddr: virtual base address of ring (set to NULL when not
* applicable)
* @use_db_eng: 0 => direct mode (doorbells are written directly to RE
* engine)
* 1 => DB mode (doorbells are written to DB engine)
* @max_prefetch: limit number of pre-fetch segments for channel
* @low_weight: low channel weight (priority of channel for RE engine
* round robin algorithm); must be >= 1
* @xfer_cb: transfer notification callback, this callback happens
* on event boundaries
*
* e.g. 1
*
* out TD with 3 REs
*
* RE1: EOT=0, EOB=0, CHAIN=1;
* RE2: EOT=0, EOB=0, CHAIN=1;
* RE3: EOT=1, EOB=0, CHAIN=0;
*
* the callback will be triggered for RE3 using the
* xfer_user_data of that RE
*
* e.g. 2
*
* in REs
*
* RE1: EOT=1, EOB=0, CHAIN=0;
* RE2: EOT=1, EOB=0, CHAIN=0;
* RE3: EOT=1, EOB=0, CHAIN=0;
*
* received packet consumes all of RE1, RE2 and part of RE3
* for EOT condition. there will be three callbacks in below
* order
*
* callback for RE1 using GSI_CHAN_EVT_OVERFLOW
* callback for RE2 using GSI_CHAN_EVT_OVERFLOW
* callback for RE3 using GSI_CHAN_EVT_EOT
*
* @err_cb: error notification callback
* @chan_user_data: cookie used for notifications
*
* All the callbacks are in interrupt context
*
*/
struct gsi_chan_props {
enum gsi_chan_prot prot;
enum gsi_chan_dir dir;
uint8_t ch_id;
unsigned long evt_ring_hdl;
enum gsi_chan_ring_elem_size re_size;
uint16_t ring_len;
uint16_t max_re_expected;
uint64_t ring_base_addr;
void *ring_base_vaddr;
enum gsi_chan_use_db_eng use_db_eng;
enum gsi_max_prefetch max_prefetch;
uint8_t low_weight;
void (*xfer_cb)(struct gsi_chan_xfer_notify *notify);
void (*err_cb)(struct gsi_chan_err_notify *notify);
void *chan_user_data;
};
enum gsi_xfer_flag {
GSI_XFER_FLAG_CHAIN = 0x1,
GSI_XFER_FLAG_EOB = 0x100,
GSI_XFER_FLAG_EOT = 0x200,
GSI_XFER_FLAG_BEI = 0x400
};
enum gsi_xfer_elem_type {
GSI_XFER_ELEM_DATA,
GSI_XFER_ELEM_IMME_CMD,
};
/**
* gsi_xfer_elem - Metadata about a single transfer
*
* @addr: physical address of buffer
* @len: size of buffer for GSI_XFER_ELEM_DATA:
* for outbound transfers this is the number of bytes to
* transfer.
* for inbound transfers, this is the maximum number of
* bytes the host expects from device in this transfer
*
* immediate command opcode for GSI_XFER_ELEM_IMME_CMD
* @flags: transfer flags, OR of all the applicable flags
*
* GSI_XFER_FLAG_BEI: Block event interrupt
* 1: Event generated by this ring element must not assert
* an interrupt to the host
* 0: Event generated by this ring element must assert an
* interrupt to the host
*
* GSI_XFER_FLAG_EOT: Interrupt on end of transfer
* 1: If an EOT condition is encountered when processing
* this ring element, an event is generated by the device
* with its completion code set to EOT.
* 0: If an EOT condition is encountered for this ring
* element, a completion event is not be generated by the
* device, unless IEOB is 1
*
* GSI_XFER_FLAG_EOB: Interrupt on end of block
* 1: Device notifies host after processing this ring element
* by sending a completion event
* 0: Completion event is not required after processing this
* ring element
*
* GSI_XFER_FLAG_CHAIN: Chain bit that identifies the ring
* elements in a TD
*
* @type: transfer type
*
* GSI_XFER_ELEM_DATA: for all data transfers
* GSI_XFER_ELEM_IMME_CMD: for IPA immediate commands
*
* @xfer_user_data: cookie used in xfer_cb
*
*/
struct gsi_xfer_elem {
uint64_t addr;
uint16_t len;
uint16_t flags;
enum gsi_xfer_elem_type type;
void *xfer_user_data;
};
/**
* gsi_gpi_channel_scratch - GPI protocol SW config area of
* channel scratch
*
* @max_outstanding_tre: Used for the prefetch management sequence by the
* sequencer. Defines the maximum number of allowed
* outstanding TREs in IPA/GSI (in Bytes). RE engine
* prefetch will be limited by this configuration. It
* is suggested to configure this value to IPA_IF
* channel TLV queue size times element size. To disable
* the feature in doorbell mode (DB Mode=1). Maximum
* outstanding TREs should be set to 64KB
* (or any value larger or equal to ring length . RLEN)
* @outstanding_threshold: Used for the prefetch management sequence by the
* sequencer. Defines the threshold (in Bytes) as to when
* to update the channel doorbell. Should be smaller than
* Maximum outstanding TREs. value. It is suggested to
* configure this value to 2 * element size.
*/
struct __packed gsi_gpi_channel_scratch {
uint64_t resvd1;
uint32_t resvd2:16;
uint32_t max_outstanding_tre:16;
uint32_t resvd3:16;
uint32_t outstanding_threshold:16;
};
/**
* gsi_mhi_channel_scratch - MHI protocol SW config area of
* channel scratch
*
* @mhi_host_wp_addr: Valid only when UL/DL Sync En is asserted. Defines
* address in host from which channel write pointer
* should be read in polling mode
* @assert_bit40: 1: bit #41 in address should be asserted upon
* IPA_IF.ProcessDescriptor routine (for MHI over PCIe
* transfers)
* 0: bit #41 in address should be deasserted upon
* IPA_IF.ProcessDescriptor routine (for non-MHI over
* PCIe transfers)
* @polling_configuration: Uplink channels: Defines timer to poll on MHI
* context. Range: 1 to 31 milliseconds.
* Downlink channel: Defines transfer ring buffer
* availability threshold to poll on MHI context in
* multiple of 8. Range: 0 to 31, meaning 0 to 258 ring
* elements. E.g., value of 2 indicates 16 ring elements.
* Valid only when Burst Mode Enabled is set to 1
* @burst_mode_enabled: 0: Burst mode is disabled for this channel
* 1: Burst mode is enabled for this channel
* @polling_mode: 0: the channel is not in polling mode, meaning the
* host should ring DBs.
* 1: the channel is in polling mode, meaning the host
* @oob_mod_threshold: Defines OOB moderation threshold. Units are in 8
* ring elements.
* should not ring DBs until notified of DB mode/OOB mode
* @max_outstanding_tre: Used for the prefetch management sequence by the
* sequencer. Defines the maximum number of allowed
* outstanding TREs in IPA/GSI (in Bytes). RE engine
* prefetch will be limited by this configuration. It
* is suggested to configure this value to IPA_IF
* channel TLV queue size times element size.
* To disable the feature in doorbell mode (DB Mode=1).
* Maximum outstanding TREs should be set to 64KB
* (or any value larger or equal to ring length . RLEN)
* @outstanding_threshold: Used for the prefetch management sequence by the
* sequencer. Defines the threshold (in Bytes) as to when
* to update the channel doorbell. Should be smaller than
* Maximum outstanding TREs. value. It is suggested to
* configure this value to min(TLV_FIFO_SIZE/2,8) *
* element size.
*/
struct __packed gsi_mhi_channel_scratch {
uint64_t mhi_host_wp_addr;
uint32_t rsvd1:1;
uint32_t assert_bit40:1;
uint32_t polling_configuration:5;
uint32_t burst_mode_enabled:1;
uint32_t polling_mode:1;
uint32_t oob_mod_threshold:5;
uint32_t resvd2:2;
uint32_t max_outstanding_tre:16;
uint32_t resvd3:16;
uint32_t outstanding_threshold:16;
};
/**
* gsi_xdci_channel_scratch - xDCI protocol SW config area of
* channel scratch
*
* @const_buffer_size: TRB buffer size in KB (similar to IPA aggregationi
* configuration). Must be aligned to Max USB Packet Size
* @xferrscidx: Transfer Resource Index (XferRscIdx). The hardware-assigned
* transfer resource index for the transfer, which was
* returned in response to the Start Transfer command.
* This field is used for "Update Transfer" command
* @last_trb_addr: Address (LSB - based on alignment restrictions) of
* last TRB in queue. Used to identify rollover case
* @depcmd_low_addr: Used to generate "Update Transfer" command
* @max_outstanding_tre: Used for the prefetch management sequence by the
* sequencer. Defines the maximum number of allowed
* outstanding TREs in IPA/GSI (in Bytes). RE engine
* prefetch will be limited by this configuration. It
* is suggested to configure this value to IPA_IF
* channel TLV queue size times element size.
* To disable the feature in doorbell mode (DB Mode=1)
* Maximum outstanding TREs should be set to 64KB
* (or any value larger or equal to ring length . RLEN)
* @depcmd_hi_addr: Used to generate "Update Transfer" command
* @outstanding_threshold: Used for the prefetch management sequence by the
* sequencer. Defines the threshold (in Bytes) as to when
* to update the channel doorbell. Should be smaller than
* Maximum outstanding TREs. value. It is suggested to
* configure this value to 2 * element size. for MBIM the
* suggested configuration is the element size.
*/
struct __packed gsi_xdci_channel_scratch {
uint32_t last_trb_addr:16;
uint32_t resvd1:4;
uint32_t xferrscidx:7;
uint32_t const_buffer_size:5;
uint32_t depcmd_low_addr;
uint32_t depcmd_hi_addr:8;
uint32_t resvd2:8;
uint32_t max_outstanding_tre:16;
uint32_t resvd3:16;
uint32_t outstanding_threshold:16;
};
/**
* gsi_channel_scratch - channel scratch SW config area
*
*/
union __packed gsi_channel_scratch {
struct __packed gsi_gpi_channel_scratch gpi;
struct __packed gsi_mhi_channel_scratch mhi;
struct __packed gsi_xdci_channel_scratch xdci;
struct __packed {
uint32_t word1;
uint32_t word2;
uint32_t word3;
uint32_t word4;
} data;
};
/**
* gsi_mhi_evt_scratch - MHI protocol SW config area of
* event scratch
*/
struct __packed gsi_mhi_evt_scratch {
uint32_t resvd1;
uint32_t resvd2;
};
/**
* gsi_xdci_evt_scratch - xDCI protocol SW config area of
* event scratch
*
*/
struct __packed gsi_xdci_evt_scratch {
uint32_t gevntcount_low_addr;
uint32_t gevntcount_hi_addr:8;
uint32_t resvd1:24;
};
/**
* gsi_evt_scratch - event scratch SW config area
*
*/
union __packed gsi_evt_scratch {
struct __packed gsi_mhi_evt_scratch mhi;
struct __packed gsi_xdci_evt_scratch xdci;
struct __packed {
uint32_t word1;
uint32_t word2;
} data;
};
/**
* gsi_device_scratch - EE scratch config parameters
*
* @mhi_base_chan_idx_valid: is mhi_base_chan_idx valid?
* @mhi_base_chan_idx: base index of IPA MHI channel indexes.
* IPA MHI channel index = GSI channel ID +
* MHI base channel index
* @max_usb_pkt_size_valid: is max_usb_pkt_size valid?
* @max_usb_pkt_size: max USB packet size in bytes (valid values are
* 512 and 1024)
*/
struct gsi_device_scratch {
bool mhi_base_chan_idx_valid;
uint8_t mhi_base_chan_idx;
bool max_usb_pkt_size_valid;
uint16_t max_usb_pkt_size;
};
/**
* gsi_chan_info - information about channel occupancy
*
* @wp: channel write pointer (physical address)
* @rp: channel read pointer (physical address)
* @evt_valid: is evt* info valid?
* @evt_wp: event ring write pointer (physical address)
* @evt_rp: event ring read pointer (physical address)
*/
struct gsi_chan_info {
uint64_t wp;
uint64_t rp;
bool evt_valid;
uint64_t evt_wp;
uint64_t evt_rp;
};
#ifdef CONFIG_GSI
/**
* gsi_register_device - Peripheral should call this function to
* register itself with GSI before invoking any other APIs
*
* @props: Peripheral properties
* @dev_hdl: Handle populated by GSI, opaque to client
*
* @Return -GSI_STATUS_AGAIN if request should be re-tried later
* other error codes for failure
*/
int gsi_register_device(struct gsi_per_props *props, unsigned long *dev_hdl);
/**
* gsi_complete_clk_grant - Peripheral should call this function to
* grant the clock resource requested by GSI previously that could not
* be granted synchronously. GSI will release the clock resource using
* the rel_clk_cb when appropriate
*
* @dev_hdl: Client handle previously obtained from
* gsi_register_device
*
* @Return gsi_status
*/
int gsi_complete_clk_grant(unsigned long dev_hdl);
/**
* gsi_write_device_scratch - Peripheral should call this function to
* write to the EE scratch area
*
* @dev_hdl: Client handle previously obtained from
* gsi_register_device
* @val: Value to write
*
* @Return gsi_status
*/
int gsi_write_device_scratch(unsigned long dev_hdl,
struct gsi_device_scratch *val);
/**
* gsi_deregister_device - Peripheral should call this function to
* de-register itself with GSI
*
* @dev_hdl: Client handle previously obtained from
* gsi_register_device
* @force: When set to true, cleanup is performed even if there
* are in use resources like channels, event rings, etc.
* this would be used after GSI reset to recover from some
* fatal error
* When set to false, there must not exist any allocated
* channels and event rings.
*
* @Return gsi_status
*/
int gsi_deregister_device(unsigned long dev_hdl, bool force);
/**
* gsi_alloc_evt_ring - Peripheral should call this function to
* allocate an event ring
*
* @props: Event ring properties
* @dev_hdl: Client handle previously obtained from
* gsi_register_device
* @evt_ring_hdl: Handle populated by GSI, opaque to client
*
* This function can sleep
*
* @Return gsi_status
*/
int gsi_alloc_evt_ring(struct gsi_evt_ring_props *props, unsigned long dev_hdl,
unsigned long *evt_ring_hdl);
/**
* gsi_write_evt_ring_scratch - Peripheral should call this function to
* write to the scratch area of the event ring context
*
* @evt_ring_hdl: Client handle previously obtained from
* gsi_alloc_evt_ring
* @val: Value to write
*
* @Return gsi_status
*/
int gsi_write_evt_ring_scratch(unsigned long evt_ring_hdl,
union __packed gsi_evt_scratch val);
/**
* gsi_dealloc_evt_ring - Peripheral should call this function to
* de-allocate an event ring. There should not exist any active
* channels using this event ring
*
* @evt_ring_hdl: Client handle previously obtained from
* gsi_alloc_evt_ring
*
* This function can sleep
*
* @Return gsi_status
*/
int gsi_dealloc_evt_ring(unsigned long evt_ring_hdl);
/**
* gsi_query_evt_ring_db_addr - Peripheral should call this function to
* query the physical addresses of the event ring doorbell registers
*
* @evt_ring_hdl: Client handle previously obtained from
* gsi_alloc_evt_ring
* @db_addr_wp_lsb: Physical address of doorbell register where the 32
* LSBs of the doorbell value should be written
* @db_addr_wp_msb: Physical address of doorbell register where the 32
* MSBs of the doorbell value should be written
*
* @Return gsi_status
*/
int gsi_query_evt_ring_db_addr(unsigned long evt_ring_hdl,
uint32_t *db_addr_wp_lsb, uint32_t *db_addr_wp_msb);
/**
* gsi_ring_evt_ring_db - Peripheral should call this function for
* ringing the event ring doorbell with given value
*
* @evt_ring_hdl: Client handle previously obtained from
* gsi_alloc_evt_ring
* @value: The value to be used for ringing the doorbell
*
* @Return gsi_status
*/
int gsi_ring_evt_ring_db(unsigned long evt_ring_hdl, uint64_t value);
/**
* gsi_reset_evt_ring - Peripheral should call this function to
* reset an event ring to recover from error state
*
* @evt_ring_hdl: Client handle previously obtained from
* gsi_alloc_evt_ring
*
* This function can sleep
*
* @Return gsi_status
*/
int gsi_reset_evt_ring(unsigned long evt_ring_hdl);
/**
* gsi_get_evt_ring_cfg - This function returns the current config
* of the specified event ring
*
* @evt_ring_hdl: Client handle previously obtained from
* gsi_alloc_evt_ring
* @props: where to copy properties to
* @scr: where to copy scratch info to
*
* @Return gsi_status
*/
int gsi_get_evt_ring_cfg(unsigned long evt_ring_hdl,
struct gsi_evt_ring_props *props, union gsi_evt_scratch *scr);
/**
* gsi_set_evt_ring_cfg - This function applies the supplied config
* to the specified event ring.
*
* exclusive property of the event ring cannot be changed after
* gsi_alloc_evt_ring
*
* @evt_ring_hdl: Client handle previously obtained from
* gsi_alloc_evt_ring
* @props: the properties to apply
* @scr: the scratch info to apply
*
* @Return gsi_status
*/
int gsi_set_evt_ring_cfg(unsigned long evt_ring_hdl,
struct gsi_evt_ring_props *props, union gsi_evt_scratch *scr);
/**
* gsi_alloc_channel - Peripheral should call this function to
* allocate a channel
*
* @props: Channel properties
* @dev_hdl: Client handle previously obtained from
* gsi_register_device
* @chan_hdl: Handle populated by GSI, opaque to client
*
* This function can sleep
*
* @Return gsi_status
*/
int gsi_alloc_channel(struct gsi_chan_props *props, unsigned long dev_hdl,
unsigned long *chan_hdl);
/**
* gsi_write_channel_scratch - Peripheral should call this function to
* write to the scratch area of the channel context
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
* @val: Value to write
*
* @Return gsi_status
*/
int gsi_write_channel_scratch(unsigned long chan_hdl,
union __packed gsi_channel_scratch val);
/**
* gsi_start_channel - Peripheral should call this function to
* start a channel i.e put into running state
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
*
* This function can sleep
*
* @Return gsi_status
*/
int gsi_start_channel(unsigned long chan_hdl);
/**
* gsi_stop_channel - Peripheral should call this function to
* stop a channel. Stop will happen on a packet boundary
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
*
* This function can sleep
*
* @Return -GSI_STATUS_AGAIN if client should call stop/stop_db again
* other error codes for failure
*/
int gsi_stop_channel(unsigned long chan_hdl);
/**
* gsi_reset_channel - Peripheral should call this function to
* reset a channel to recover from error state
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
*
* This function can sleep
*
* @Return gsi_status
*/
int gsi_reset_channel(unsigned long chan_hdl);
/**
* gsi_dealloc_channel - Peripheral should call this function to
* de-allocate a channel
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
*
* This function can sleep
*
* @Return gsi_status
*/
int gsi_dealloc_channel(unsigned long chan_hdl);
/**
* gsi_stop_db_channel - Peripheral should call this function to
* stop a channel when all transfer elements till the doorbell
* have been processed
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
*
* This function can sleep
*
* @Return -GSI_STATUS_AGAIN if client should call stop/stop_db again
* other error codes for failure
*/
int gsi_stop_db_channel(unsigned long chan_hdl);
/**
* gsi_query_channel_db_addr - Peripheral should call this function to
* query the physical addresses of the channel doorbell registers
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
* @db_addr_wp_lsb: Physical address of doorbell register where the 32
* LSBs of the doorbell value should be written
* @db_addr_wp_msb: Physical address of doorbell register where the 32
* MSBs of the doorbell value should be written
*
* @Return gsi_status
*/
int gsi_query_channel_db_addr(unsigned long chan_hdl,
uint32_t *db_addr_wp_lsb, uint32_t *db_addr_wp_msb);
/**
* gsi_query_channel_info - Peripheral can call this function to query the
* channel and associated event ring (if any) status.
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
* @info: Where to read the values into
*
* @Return gsi_status
*/
int gsi_query_channel_info(unsigned long chan_hdl,
struct gsi_chan_info *info);
/**
* gsi_is_channel_empty - Peripheral can call this function to query if
* the channel is empty. This is only applicable to GPI. "Empty" means
* GSI has consumed all descriptors for a TO_GSI channel and SW has
* processed all completed descriptors for a FROM_GSI channel.
*
* @chan_hdl: Client handle previously obtained from gsi_alloc_channel
* @is_empty: set by GSI based on channel emptiness
*
* @Return gsi_status
*/
int gsi_is_channel_empty(unsigned long chan_hdl, bool *is_empty);
/**
* gsi_get_channel_cfg - This function returns the current config
* of the specified channel
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
* @props: where to copy properties to
* @scr: where to copy scratch info to
*
* @Return gsi_status
*/
int gsi_get_channel_cfg(unsigned long chan_hdl, struct gsi_chan_props *props,
union gsi_channel_scratch *scr);
/**
* gsi_set_channel_cfg - This function applies the supplied config
* to the specified channel
*
* ch_id and evt_ring_hdl of the channel cannot be changed after
* gsi_alloc_channel
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
* @props: the properties to apply
* @scr: the scratch info to apply
*
* @Return gsi_status
*/
int gsi_set_channel_cfg(unsigned long chan_hdl, struct gsi_chan_props *props,
union gsi_channel_scratch *scr);
/**
* gsi_poll_channel - Peripheral should call this function to query for
* completed transfer descriptors.
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
* @notify: Information about the completed transfer if any
*
* @Return gsi_status (GSI_STATUS_POLL_EMPTY is returned if no transfers
* completed)
*/
int gsi_poll_channel(unsigned long chan_hdl,
struct gsi_chan_xfer_notify *notify);
/**
* gsi_config_channel_mode - Peripheral should call this function
* to configure the channel mode.
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
* @mode: Mode to move the channel into
*
* @Return gsi_status
*/
int gsi_config_channel_mode(unsigned long chan_hdl, enum gsi_chan_mode mode);
/**
* gsi_queue_xfer - Peripheral should call this function
* to queue transfers on the given channel
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
* @num_xfers: Number of transfer in the array @ xfer
* @xfer: Array of num_xfers transfer descriptors
* @ring_db: If true, tell HW about these queued xfers
* If false, do not notify HW at this time
*
* @Return gsi_status
*/
int gsi_queue_xfer(unsigned long chan_hdl, uint16_t num_xfers,
struct gsi_xfer_elem *xfer, bool ring_db);
/**
* gsi_start_xfer - Peripheral should call this function to
* inform HW about queued xfers
*
* @chan_hdl: Client handle previously obtained from
* gsi_alloc_channel
*
* @Return gsi_status
*/
int gsi_start_xfer(unsigned long chan_hdl);
/**
* gsi_configure_regs - Peripheral should call this function
* to configure the GSI registers before/after the FW is
* loaded but before it is enabled.
*
* @gsi_base_addr: Base address of GSI register space
* @gsi_size: Mapping size of the GSI register space
* @per_base_addr: Base address of the peripheral using GSI
*
* @Return gsi_status
*/
int gsi_configure_regs(phys_addr_t gsi_base_addr, u32 gsi_size,
phys_addr_t per_base_addr);
/**
* gsi_enable_fw - Peripheral should call this function
* to enable the GSI FW after the FW has been loaded to the SRAM.
*
* @gsi_base_addr: Base address of GSI register space
* @gsi_size: Mapping size of the GSI register space
* @Return gsi_status
*/
int gsi_enable_fw(phys_addr_t gsi_base_addr, u32 gsi_size);
/**
* gsi_get_inst_ram_offset_and_size - Peripheral should call this function
* to get instruction RAM base address offset and size. Peripheral typically
* uses this info to load GSI FW into the IRAM.
*
* @base_offset:[OUT] - IRAM base offset address
* @size: [OUT] - IRAM size
* @Return none
*/
void gsi_get_inst_ram_offset_and_size(unsigned long *base_offset,
unsigned long *size);
/**
* gsi_halt_channel_ee - Peripheral should call this function
* to stop other EE's channel. This is usually used in SSR clean
*
* @chan_idx: Virtual channel index
* @ee: EE
* @code: [out] response code for operation
* @Return gsi_status
*/
int gsi_halt_channel_ee(unsigned int chan_idx, unsigned int ee, int *code);
/*
* Here is a typical sequence of calls
*
* gsi_register_device
*
* gsi_write_device_scratch (if the protocol needs this)
*
* gsi_alloc_evt_ring (for as many event rings as needed)
* gsi_write_evt_ring_scratch
*
* gsi_alloc_channel (for as many channels as needed; channels can have
* no event ring, an exclusive event ring or a shared event ring)
* gsi_write_channel_scratch
* gsi_start_channel
* gsi_queue_xfer/gsi_start_xfer
* gsi_config_channel_mode/gsi_poll_channel (if clients wants to poll on
* xfer completions)
* gsi_stop_db_channel/gsi_stop_channel
*
* gsi_dealloc_channel
*
* gsi_dealloc_evt_ring
*
* gsi_deregister_device
*
*/
#else
static inline int gsi_register_device(struct gsi_per_props *props,
unsigned long *dev_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_complete_clk_grant(unsigned long dev_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_write_device_scratch(unsigned long dev_hdl,
struct gsi_device_scratch *val)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_deregister_device(unsigned long dev_hdl, bool force)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_alloc_evt_ring(struct gsi_evt_ring_props *props,
unsigned long dev_hdl,
unsigned long *evt_ring_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_write_evt_ring_scratch(unsigned long evt_ring_hdl,
union __packed gsi_evt_scratch val)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_dealloc_evt_ring(unsigned long evt_ring_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_query_evt_ring_db_addr(unsigned long evt_ring_hdl,
uint32_t *db_addr_wp_lsb, uint32_t *db_addr_wp_msb)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_ring_evt_ring_db(unsigned long evt_ring_hdl,
uint64_t value)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_reset_evt_ring(unsigned long evt_ring_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_alloc_channel(struct gsi_chan_props *props,
unsigned long dev_hdl,
unsigned long *chan_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_write_channel_scratch(unsigned long chan_hdl,
union __packed gsi_channel_scratch val)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_start_channel(unsigned long chan_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_stop_channel(unsigned long chan_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_reset_channel(unsigned long chan_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_dealloc_channel(unsigned long chan_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_stop_db_channel(unsigned long chan_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_query_channel_db_addr(unsigned long chan_hdl,
uint32_t *db_addr_wp_lsb, uint32_t *db_addr_wp_msb)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_query_channel_info(unsigned long chan_hdl,
struct gsi_chan_info *info)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_is_channel_empty(unsigned long chan_hdl, bool *is_empty)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_poll_channel(unsigned long chan_hdl,
struct gsi_chan_xfer_notify *notify)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_config_channel_mode(unsigned long chan_hdl,
enum gsi_chan_mode mode)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_queue_xfer(unsigned long chan_hdl, uint16_t num_xfers,
struct gsi_xfer_elem *xfer, bool ring_db)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_start_xfer(unsigned long chan_hdl)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_get_channel_cfg(unsigned long chan_hdl,
struct gsi_chan_props *props,
union gsi_channel_scratch *scr)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_set_channel_cfg(unsigned long chan_hdl,
struct gsi_chan_props *props,
union gsi_channel_scratch *scr)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_get_evt_ring_cfg(unsigned long evt_ring_hdl,
struct gsi_evt_ring_props *props, union gsi_evt_scratch *scr)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_set_evt_ring_cfg(unsigned long evt_ring_hdl,
struct gsi_evt_ring_props *props, union gsi_evt_scratch *scr)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_configure_regs(phys_addr_t gsi_base_addr, u32 gsi_size,
phys_addr_t per_base_addr)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline int gsi_enable_fw(phys_addr_t gsi_base_addr, u32 gsi_size)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
static inline void gsi_get_inst_ram_offset_and_size(unsigned long *base_offset,
unsigned long *size)
{
}
static inline int gsi_halt_channel_ee(unsigned int chan_idx, unsigned int ee,
int *code)
{
return -GSI_STATUS_UNSUPPORTED_OP;
}
#endif
#endif