android_kernel_oneplus_msm8998/drivers/rtc/interface.c
Srinivasarao P 0382cccfee Merge android-4.4.128 (89904cc) into msm-4.4
* refs/heads/tmp-89904cc
  ANDROID: Add build server config for cuttlefish.
  ANDROID: Add defconfig for cuttlefish.
  FROMLIST: staging: Android: Add 'vsoc' driver for cuttlefish.
  Revert "proc: make oom adjustment files user read-only"
  Revert "fixup! proc: make oom adjustment files user read-only"
  Linux 4.4.128
  Revert "xhci: plat: Register shutdown for xhci_plat"
  vrf: Fix use after free and double free in vrf_finish_output
  ipv6: the entire IPv6 header chain must fit the first fragment
  net/ipv6: Increment OUTxxx counters after netfilter hook
  net sched actions: fix dumping which requires several messages to user space
  r8169: fix setting driver_data after register_netdev
  vti6: better validate user provided tunnel names
  ip6_tunnel: better validate user provided tunnel names
  ip6_gre: better validate user provided tunnel names
  ipv6: sit: better validate user provided tunnel names
  ip_tunnel: better validate user provided tunnel names
  net: fool proof dev_valid_name()
  bonding: process the err returned by dev_set_allmulti properly in bond_enslave
  bonding: move dev_mc_sync after master_upper_dev_link in bond_enslave
  bonding: fix the err path for dev hwaddr sync in bond_enslave
  vlan: also check phy_driver ts_info for vlan's real device
  vhost: correctly remove wait queue during poll failure
  sky2: Increase D3 delay to sky2 stops working after suspend
  sctp: sctp_sockaddr_af must check minimal addr length for AF_INET6
  sctp: do not leak kernel memory to user space
  pptp: remove a buggy dst release in pptp_connect()
  net/sched: fix NULL dereference in the error path of tcf_bpf_init()
  netlink: make sure nladdr has correct size in netlink_connect()
  net/ipv6: Fix route leaking between VRFs
  net: fix possible out-of-bound read in skb_network_protocol()
  arp: fix arp_filter on l3slave devices
  Kbuild: provide a __UNIQUE_ID for clang
  futex: Remove requirement for lock_page() in get_futex_key()
  random: use lockless method of accessing and updating f->reg_idx
  virtio_net: check return value of skb_to_sgvec in one more location
  virtio_net: check return value of skb_to_sgvec always
  rxrpc: check return value of skb_to_sgvec always
  ipsec: check return value of skb_to_sgvec always
  perf tools: Fix copyfile_offset update of output offset
  cxgb4vf: Fix SGE FL buffer initialization logic for 64K pages
  EDAC, mv64x60: Fix an error handling path
  tty: n_gsm: Allow ADM response in addition to UA for control dlci
  blk-mq: fix kernel oops in blk_mq_tag_idle()
  scsi: libsas: initialize sas_phy status according to response of DISCOVER
  scsi: libsas: fix error when getting phy events
  scsi: libsas: fix memory leak in sas_smp_get_phy_events()
  bcache: segregate flash only volume write streams
  bcache: stop writeback thread after detaching
  vxlan: dont migrate permanent fdb entries during learn
  s390/dasd: fix hanging safe offline
  ACPICA: Disassembler: Abort on an invalid/unknown AML opcode
  ACPICA: Events: Add runtime stub support for event APIs
  cpuidle: dt: Add missing 'of_node_put()'
  Bluetooth: Send HCI Set Event Mask Page 2 command only when needed
  iio: magnetometer: st_magn_spi: fix spi_device_id table
  sparc64: ldc abort during vds iso boot
  sctp: fix recursive locking warning in sctp_do_peeloff
  bnx2x: Allow vfs to disable txvlan offload
  xen: avoid type warning in xchg_xen_ulong
  skbuff: only inherit relevant tx_flags
  perf tests: Decompress kernel module before objdump
  net: emac: fix reset timeout with AR8035 phy
  Fix loop device flush before configure v3
  MIPS: kprobes: flush_insn_slot should flush only if probe initialised
  MIPS: mm: adjust PKMAP location
  MIPS: mm: fixed mappings: correct initialisation
  perf/core: Correct event creation with PERF_FORMAT_GROUP
  e1000e: Undo e1000e_pm_freeze if __e1000_shutdown fails
  ARM: imx: Add MXC_CPU_IMX6ULL and cpu_is_imx6ull
  net: phy: avoid genphy_aneg_done() for PHYs without clause 22 support
  mceusb: sporadic RX truncation corruption fix
  cx25840: fix unchecked return values
  e1000e: fix race condition around skb_tstamp_tx()
  tags: honor COMPILED_SOURCE with apart output directory
  perf report: Ensure the perf DSO mapping matches what libdw sees
  perf header: Set proper module name when build-id event found
  net/mlx4: Check if Granular QoS per VF has been enabled before updating QP qos_vport
  net/mlx4: Fix the check in attaching steering rules
  sit: reload iphdr in ipip6_rcv
  skbuff: return -EMSGSIZE in skb_to_sgvec to prevent overflow
  bio-integrity: Do not allocate integrity context for bio w/o data
  Fix serial console on SNI RM400 machines
  cxgb4: fix incorrect cim_la output for T6
  drm/omap: fix tiled buffer stride calculations
  mISDN: Fix a sleep-in-atomic bug
  qlcnic: Fix a sleep-in-atomic bug in qlcnic_82xx_hw_write_wx_2M and qlcnic_82xx_hw_read_wx_2M
  perf trace: Add mmap alias for s390
  powerpc/spufs: Fix coredump of SPU contexts
  clk: Fix __set_clk_rates error print-string
  clk: scpi: fix return type of __scpi_dvfs_round_rate
  KVM: SVM: do not zero out segment attributes if segment is unusable or not present
  net: freescale: fix potential null pointer dereference
  SUNRPC: ensure correct error is reported by xs_tcp_setup_socket()
  rtc: interface: Validate alarm-time before handling rollover
  rtc: opal: Handle disabled TPO in opal_get_tpo_time()
  cxgb4: FW upgrade fixes
  net/mlx5: avoid build warning for uniprocessor
  arm64: futex: Fix undefined behaviour with FUTEX_OP_OPARG_SHIFT usage
  dmaengine: imx-sdma: Handle return value of clk_prepare_enable
  powerpc/[booke|4xx]: Don't clobber TCR[WP] when setting TCR[DIE]
  ovl: filter trusted xattr for non-admin
  hdlcdrv: Fix divide by zero in hdlcdrv_ioctl
  wl1251: check return from call to wl1251_acx_arp_ip_filter
  ASoC: Intel: sst: Fix the return value of 'sst_send_byte_stream_mrfld()'
  gpio: label descriptors using the device name
  vfb: fix video mode and line_length being set when loaded
  scsi: mpt3sas: Proper handling of set/clear of "ATA command pending" flag.
  scsi: libiscsi: Allow sd_shutdown on bad transport
  ASoC: Intel: cht_bsw_rt5645: Analog Mic support
  media: videobuf2-core: don't go out of the buffer range
  hwmon: (ina2xx) Make calibration register value fixed
  rds; Reset rs->rs_bound_addr in rds_add_bound() failure path
  l2tp: fix missing print session offset info
  perf probe: Add warning message if there is unexpected event name
  thermal: power_allocator: fix one race condition issue for thermal_instances list
  ARM: dts: ls1021a: add "fsl,ls1021a-esdhc" compatible string to esdhc node
  net: llc: add lock_sock in llc_ui_bind to avoid a race condition
  KVM: nVMX: Fix handling of lmsw instruction
  bonding: Don't update slave->link until ready to commit
  Input: elan_i2c - clear INT before resetting controller
  net: move somaxconn init from sysctl code
  tcp: better validation of received ack sequences
  ext4: fix off-by-one on max nr_pages in ext4_find_unwritten_pgoff()
  fix race in drivers/char/random.c:get_reg()
  scsi: bnx2fc: fix race condition in bnx2fc_get_host_stats()
  ASoC: rsnd: SSI PIO adjust to 24bit mode
  pNFS/flexfiles: missing error code in ff_layout_alloc_lseg()
  netfilter: ctnetlink: fix incorrect nf_ct_put during hash resize
  libceph: NULL deref on crush_decode() error path
  net: ieee802154: fix net_device reference release too early
  mlx5: fix bug reading rss_hash_type from CQE
  block: fix an error code in add_partition()
  selinux: do not check open permission on sockets
  net/mlx5: Tolerate irq_set_affinity_hint() failures
  sched/numa: Use down_read_trylock() for the mmap_sem
  leds: pca955x: Correct I2C Functionality
  ray_cs: Avoid reading past end of buffer
  ARM: davinci: da8xx: Create DSP device only when assigned memory
  md-cluster: fix potential lock issue in add_new_disk
  ext4: handle the rest of ext4_mb_load_buddy() ENOMEM errors
  iio: hi8435: cleanup reset gpio
  iio: hi8435: avoid garbage event at first enable
  xfrm: fix state migration copy replay sequence numbers
  selftests/powerpc: Fix TM resched DSCR test with some compilers
  ath5k: fix memory leak on buf on failed eeprom read
  powerpc/mm: Fix virt_addr_valid() etc. on 64-bit hash
  scsi: csiostor: fix use after free in csio_hw_use_fwconfig()
  sh_eth: Use platform device for printing before register_netdev()
  serial: sh-sci: Fix race condition causing garbage during shutdown
  serial: 8250: omap: Disable DMA for console UART
  USB: ene_usb6250: fix SCSI residue overwriting
  net: x25: fix one potential use-after-free issue
  USB: ene_usb6250: fix first command execution
  usb: chipidea: properly handle host or gadget initialization failure
  arp: honour gratuitous ARP _replies_
  neighbour: update neigh timestamps iff update is effective
  ata: libahci: properly propagate return value of platform_get_irq()
  btrfs: fix incorrect error return ret being passed to mapping_set_error
  usb: dwc3: keystone: check return value
  async_tx: Fix DMA_PREP_FENCE usage in do_async_gen_syndrome()
  ipv6: avoid dad-failures for addresses with NODAD
  ARM: dts: imx6qdl-wandboard: Fix audio channel swap
  x86/tsc: Provide 'tsc=unstable' boot parameter
  staging: wlan-ng: prism2mgmt.c: fixed a double endian conversion before calling hfa384x_drvr_setconfig16, also fixes relative sparse warning
  ARM: dts: imx53-qsrb: Pulldown PMIC IRQ pin
  PowerCap: Fix an error code in powercap_register_zone()
  bus: brcmstb_gisb: correct support for 64-bit address output
  bus: brcmstb_gisb: Use register offsets with writes too
  SMB2: Fix share type handling
  vmxnet3: ensure that adapter is in proper state during force_close
  KVM: PPC: Book3S PR: Check copy_to/from_user return values
  Input: elantech - force relative mode on a certain module
  Input: elan_i2c - check if device is there before really probing
  netxen_nic: set rcode to the return status from the call to netxen_issue_cmd
  net: qca_spi: Fix alignment issues in rx path
  blk-mq: NVMe 512B/4K+T10 DIF/DIX format returns I/O error on dd with split op
  CIFS: silence lockdep splat in cifs_relock_file()
  NFSv4.1: Work around a Linux server bug...
  net/mlx4_en: Avoid adding steering rules with invalid ring
  s390: move _text symbol to address higher than zero
  pidns: disable pid allocation if pid_ns_prepare_proc() is failed in alloc_pid()
  drivers/misc/vmw_vmci/vmci_queue_pair.c: fix a couple integer overflow tests
  lockd: fix lockd shutdown race
  net: ethernet: ti: cpsw: adjust cpsw fifos depth for fullduplex flow control
  net: cdc_ncm: Fix TX zero padding
  ipmi_ssif: unlock on allocation failure
  qlge: Avoid reading past end of buffer
  bna: Avoid reading past end of buffer
  mac80211: bail out from prep_connection() if a reconfig is ongoing
  af_key: Fix slab-out-of-bounds in pfkey_compile_policy.
  IB/srpt: Fix abort handling
  NFSv4.1: RECLAIM_COMPLETE must handle NFS4ERR_CONN_NOT_BOUND_TO_SESSION
  x86/asm: Don't use RBP as a temporary register in csum_partial_copy_generic()
  rtc: snvs: fix an incorrect check of return value
  md/raid5: make use of spin_lock_irq over local_irq_disable + spin_lock
  cfg80211: make RATE_INFO_BW_20 the default
  ANDROID: proc: add null check in proc_uid_init
  f2fs/fscrypt: updates to v4.17-rc1
  Reduce amount of casting in drivers/tty/goldfish.c.

Conflicts:
	drivers/staging/android/Kconfig
	drivers/staging/android/Makefile

Change-Id: Ic7aa3df76a0312b8d6d84f8a8e11e793311a239a
Signed-off-by: Srinivasarao P <spathi@codeaurora.org>
2018-04-20 13:05:36 +05:30

967 lines
24 KiB
C

/*
* RTC subsystem, interface functions
*
* Copyright (C) 2005 Tower Technologies
* Author: Alessandro Zummo <a.zummo@towertech.it>
*
* based on arch/arm/common/rtctime.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/rtc.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <linux/log2.h>
#include <linux/workqueue.h>
static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
{
int err;
if (!rtc->ops)
err = -ENODEV;
else if (!rtc->ops->read_time)
err = -EINVAL;
else {
memset(tm, 0, sizeof(struct rtc_time));
err = rtc->ops->read_time(rtc->dev.parent, tm);
if (err < 0) {
dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
err);
return err;
}
err = rtc_valid_tm(tm);
if (err < 0)
dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
}
return err;
}
int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
{
int err;
err = mutex_lock_interruptible(&rtc->ops_lock);
if (err)
return err;
err = __rtc_read_time(rtc, tm);
mutex_unlock(&rtc->ops_lock);
return err;
}
EXPORT_SYMBOL_GPL(rtc_read_time);
int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
{
int err;
err = rtc_valid_tm(tm);
if (err != 0)
return err;
err = mutex_lock_interruptible(&rtc->ops_lock);
if (err)
return err;
if (!rtc->ops)
err = -ENODEV;
else if (rtc->ops->set_time)
err = rtc->ops->set_time(rtc->dev.parent, tm);
else if (rtc->ops->set_mmss64) {
time64_t secs64 = rtc_tm_to_time64(tm);
err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
} else if (rtc->ops->set_mmss) {
time64_t secs64 = rtc_tm_to_time64(tm);
err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
} else
err = -EINVAL;
pm_stay_awake(rtc->dev.parent);
mutex_unlock(&rtc->ops_lock);
/* A timer might have just expired */
schedule_work(&rtc->irqwork);
return err;
}
EXPORT_SYMBOL_GPL(rtc_set_time);
static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
int err;
err = mutex_lock_interruptible(&rtc->ops_lock);
if (err)
return err;
if (rtc->ops == NULL)
err = -ENODEV;
else if (!rtc->ops->read_alarm)
err = -EINVAL;
else {
memset(alarm, 0, sizeof(struct rtc_wkalrm));
err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
}
mutex_unlock(&rtc->ops_lock);
return err;
}
int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
int err;
struct rtc_time before, now;
int first_time = 1;
time64_t t_now, t_alm;
enum { none, day, month, year } missing = none;
unsigned days;
/* The lower level RTC driver may return -1 in some fields,
* creating invalid alarm->time values, for reasons like:
*
* - The hardware may not be capable of filling them in;
* many alarms match only on time-of-day fields, not
* day/month/year calendar data.
*
* - Some hardware uses illegal values as "wildcard" match
* values, which non-Linux firmware (like a BIOS) may try
* to set up as e.g. "alarm 15 minutes after each hour".
* Linux uses only oneshot alarms.
*
* When we see that here, we deal with it by using values from
* a current RTC timestamp for any missing (-1) values. The
* RTC driver prevents "periodic alarm" modes.
*
* But this can be racey, because some fields of the RTC timestamp
* may have wrapped in the interval since we read the RTC alarm,
* which would lead to us inserting inconsistent values in place
* of the -1 fields.
*
* Reading the alarm and timestamp in the reverse sequence
* would have the same race condition, and not solve the issue.
*
* So, we must first read the RTC timestamp,
* then read the RTC alarm value,
* and then read a second RTC timestamp.
*
* If any fields of the second timestamp have changed
* when compared with the first timestamp, then we know
* our timestamp may be inconsistent with that used by
* the low-level rtc_read_alarm_internal() function.
*
* So, when the two timestamps disagree, we just loop and do
* the process again to get a fully consistent set of values.
*
* This could all instead be done in the lower level driver,
* but since more than one lower level RTC implementation needs it,
* then it's probably best best to do it here instead of there..
*/
/* Get the "before" timestamp */
err = rtc_read_time(rtc, &before);
if (err < 0)
return err;
do {
if (!first_time)
memcpy(&before, &now, sizeof(struct rtc_time));
first_time = 0;
/* get the RTC alarm values, which may be incomplete */
err = rtc_read_alarm_internal(rtc, alarm);
if (err)
return err;
/* full-function RTCs won't have such missing fields */
if (rtc_valid_tm(&alarm->time) == 0)
return 0;
/* get the "after" timestamp, to detect wrapped fields */
err = rtc_read_time(rtc, &now);
if (err < 0)
return err;
/* note that tm_sec is a "don't care" value here: */
} while ( before.tm_min != now.tm_min
|| before.tm_hour != now.tm_hour
|| before.tm_mon != now.tm_mon
|| before.tm_year != now.tm_year);
/* Fill in the missing alarm fields using the timestamp; we
* know there's at least one since alarm->time is invalid.
*/
if (alarm->time.tm_sec == -1)
alarm->time.tm_sec = now.tm_sec;
if (alarm->time.tm_min == -1)
alarm->time.tm_min = now.tm_min;
if (alarm->time.tm_hour == -1)
alarm->time.tm_hour = now.tm_hour;
/* For simplicity, only support date rollover for now */
if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
alarm->time.tm_mday = now.tm_mday;
missing = day;
}
if ((unsigned)alarm->time.tm_mon >= 12) {
alarm->time.tm_mon = now.tm_mon;
if (missing == none)
missing = month;
}
if (alarm->time.tm_year == -1) {
alarm->time.tm_year = now.tm_year;
if (missing == none)
missing = year;
}
/* Can't proceed if alarm is still invalid after replacing
* missing fields.
*/
err = rtc_valid_tm(&alarm->time);
if (err)
goto done;
/* with luck, no rollover is needed */
t_now = rtc_tm_to_time64(&now);
t_alm = rtc_tm_to_time64(&alarm->time);
if (t_now < t_alm)
goto done;
switch (missing) {
/* 24 hour rollover ... if it's now 10am Monday, an alarm that
* that will trigger at 5am will do so at 5am Tuesday, which
* could also be in the next month or year. This is a common
* case, especially for PCs.
*/
case day:
dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
t_alm += 24 * 60 * 60;
rtc_time64_to_tm(t_alm, &alarm->time);
break;
/* Month rollover ... if it's the 31th, an alarm on the 3rd will
* be next month. An alarm matching on the 30th, 29th, or 28th
* may end up in the month after that! Many newer PCs support
* this type of alarm.
*/
case month:
dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
do {
if (alarm->time.tm_mon < 11)
alarm->time.tm_mon++;
else {
alarm->time.tm_mon = 0;
alarm->time.tm_year++;
}
days = rtc_month_days(alarm->time.tm_mon,
alarm->time.tm_year);
} while (days < alarm->time.tm_mday);
break;
/* Year rollover ... easy except for leap years! */
case year:
dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
do {
alarm->time.tm_year++;
} while (!is_leap_year(alarm->time.tm_year + 1900)
&& rtc_valid_tm(&alarm->time) != 0);
break;
default:
dev_warn(&rtc->dev, "alarm rollover not handled\n");
}
err = rtc_valid_tm(&alarm->time);
done:
if (err) {
dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
alarm->time.tm_sec);
}
return err;
}
int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
int err;
err = mutex_lock_interruptible(&rtc->ops_lock);
if (err)
return err;
if (rtc->ops == NULL)
err = -ENODEV;
else if (!rtc->ops->read_alarm)
err = -EINVAL;
else {
memset(alarm, 0, sizeof(struct rtc_wkalrm));
alarm->enabled = rtc->aie_timer.enabled;
alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
}
mutex_unlock(&rtc->ops_lock);
return err;
}
EXPORT_SYMBOL_GPL(rtc_read_alarm);
static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
struct rtc_time tm;
time64_t now, scheduled;
int err;
err = rtc_valid_tm(&alarm->time);
if (err)
return err;
scheduled = rtc_tm_to_time64(&alarm->time);
/* Make sure we're not setting alarms in the past */
err = __rtc_read_time(rtc, &tm);
if (err)
return err;
now = rtc_tm_to_time64(&tm);
if (scheduled <= now)
return -ETIME;
/*
* XXX - We just checked to make sure the alarm time is not
* in the past, but there is still a race window where if
* the is alarm set for the next second and the second ticks
* over right here, before we set the alarm.
*/
if (!rtc->ops)
err = -ENODEV;
else if (!rtc->ops->set_alarm)
err = -EINVAL;
else
err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
return err;
}
int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
int err;
err = rtc_valid_tm(&alarm->time);
if (err != 0)
return err;
err = mutex_lock_interruptible(&rtc->ops_lock);
if (err)
return err;
if (rtc->aie_timer.enabled)
rtc_timer_remove(rtc, &rtc->aie_timer);
rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
rtc->aie_timer.period = ktime_set(0, 0);
if (alarm->enabled)
err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
mutex_unlock(&rtc->ops_lock);
return err;
}
EXPORT_SYMBOL_GPL(rtc_set_alarm);
static void rtc_alarm_disable(struct rtc_device *rtc)
{
if (!rtc->ops || !rtc->ops->alarm_irq_enable)
return;
rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
}
/* Called once per device from rtc_device_register */
int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
int err;
struct rtc_time now;
err = rtc_valid_tm(&alarm->time);
if (err != 0)
return err;
err = rtc_read_time(rtc, &now);
if (err)
return err;
err = mutex_lock_interruptible(&rtc->ops_lock);
if (err)
return err;
rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
rtc->aie_timer.period = ktime_set(0, 0);
/* Alarm has to be enabled & in the futrure for us to enqueue it */
if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
rtc->aie_timer.node.expires.tv64)) {
rtc->aie_timer.enabled = 1;
timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
} else if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 >=
rtc->aie_timer.node.expires.tv64)){
rtc_alarm_disable(rtc);
}
mutex_unlock(&rtc->ops_lock);
return err;
}
EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
{
int err = mutex_lock_interruptible(&rtc->ops_lock);
if (err)
return err;
if (rtc->aie_timer.enabled != enabled) {
if (enabled)
err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
else
rtc_timer_remove(rtc, &rtc->aie_timer);
}
if (err)
/* nothing */;
else if (!rtc->ops)
err = -ENODEV;
else if (!rtc->ops->alarm_irq_enable)
err = -EINVAL;
else
err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
mutex_unlock(&rtc->ops_lock);
return err;
}
EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
{
int err = mutex_lock_interruptible(&rtc->ops_lock);
if (err)
return err;
#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
if (enabled == 0 && rtc->uie_irq_active) {
mutex_unlock(&rtc->ops_lock);
return rtc_dev_update_irq_enable_emul(rtc, 0);
}
#endif
/* make sure we're changing state */
if (rtc->uie_rtctimer.enabled == enabled)
goto out;
if (rtc->uie_unsupported) {
err = -EINVAL;
goto out;
}
if (enabled) {
struct rtc_time tm;
ktime_t now, onesec;
__rtc_read_time(rtc, &tm);
onesec = ktime_set(1, 0);
now = rtc_tm_to_ktime(tm);
rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
rtc->uie_rtctimer.period = ktime_set(1, 0);
err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
} else
rtc_timer_remove(rtc, &rtc->uie_rtctimer);
out:
mutex_unlock(&rtc->ops_lock);
#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
/*
* Enable emulation if the driver did not provide
* the update_irq_enable function pointer or if returned
* -EINVAL to signal that it has been configured without
* interrupts or that are not available at the moment.
*/
if (err == -EINVAL)
err = rtc_dev_update_irq_enable_emul(rtc, enabled);
#endif
return err;
}
EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
/**
* rtc_handle_legacy_irq - AIE, UIE and PIE event hook
* @rtc: pointer to the rtc device
*
* This function is called when an AIE, UIE or PIE mode interrupt
* has occurred (or been emulated).
*
* Triggers the registered irq_task function callback.
*/
void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
{
unsigned long flags;
/* mark one irq of the appropriate mode */
spin_lock_irqsave(&rtc->irq_lock, flags);
rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
spin_unlock_irqrestore(&rtc->irq_lock, flags);
/* call the task func */
spin_lock_irqsave(&rtc->irq_task_lock, flags);
if (rtc->irq_task)
rtc->irq_task->func(rtc->irq_task->private_data);
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
wake_up_interruptible(&rtc->irq_queue);
kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
}
/**
* rtc_aie_update_irq - AIE mode rtctimer hook
* @private: pointer to the rtc_device
*
* This functions is called when the aie_timer expires.
*/
void rtc_aie_update_irq(void *private)
{
struct rtc_device *rtc = (struct rtc_device *)private;
rtc_handle_legacy_irq(rtc, 1, RTC_AF);
}
/**
* rtc_uie_update_irq - UIE mode rtctimer hook
* @private: pointer to the rtc_device
*
* This functions is called when the uie_timer expires.
*/
void rtc_uie_update_irq(void *private)
{
struct rtc_device *rtc = (struct rtc_device *)private;
rtc_handle_legacy_irq(rtc, 1, RTC_UF);
}
/**
* rtc_pie_update_irq - PIE mode hrtimer hook
* @timer: pointer to the pie mode hrtimer
*
* This function is used to emulate PIE mode interrupts
* using an hrtimer. This function is called when the periodic
* hrtimer expires.
*/
enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
{
struct rtc_device *rtc;
ktime_t period;
int count;
rtc = container_of(timer, struct rtc_device, pie_timer);
period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
count = hrtimer_forward_now(timer, period);
rtc_handle_legacy_irq(rtc, count, RTC_PF);
return HRTIMER_RESTART;
}
/**
* rtc_update_irq - Triggered when a RTC interrupt occurs.
* @rtc: the rtc device
* @num: how many irqs are being reported (usually one)
* @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
* Context: any
*/
void rtc_update_irq(struct rtc_device *rtc,
unsigned long num, unsigned long events)
{
if (IS_ERR_OR_NULL(rtc))
return;
pm_stay_awake(rtc->dev.parent);
schedule_work(&rtc->irqwork);
}
EXPORT_SYMBOL_GPL(rtc_update_irq);
static int __rtc_match(struct device *dev, const void *data)
{
const char *name = data;
if (strcmp(dev_name(dev), name) == 0)
return 1;
return 0;
}
struct rtc_device *rtc_class_open(const char *name)
{
struct device *dev;
struct rtc_device *rtc = NULL;
dev = class_find_device(rtc_class, NULL, name, __rtc_match);
if (dev)
rtc = to_rtc_device(dev);
if (rtc) {
if (!try_module_get(rtc->owner)) {
put_device(dev);
rtc = NULL;
}
}
return rtc;
}
EXPORT_SYMBOL_GPL(rtc_class_open);
void rtc_class_close(struct rtc_device *rtc)
{
module_put(rtc->owner);
put_device(&rtc->dev);
}
EXPORT_SYMBOL_GPL(rtc_class_close);
int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
{
int retval = -EBUSY;
if (task == NULL || task->func == NULL)
return -EINVAL;
/* Cannot register while the char dev is in use */
if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
return -EBUSY;
spin_lock_irq(&rtc->irq_task_lock);
if (rtc->irq_task == NULL) {
rtc->irq_task = task;
retval = 0;
}
spin_unlock_irq(&rtc->irq_task_lock);
clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
return retval;
}
EXPORT_SYMBOL_GPL(rtc_irq_register);
void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
{
spin_lock_irq(&rtc->irq_task_lock);
if (rtc->irq_task == task)
rtc->irq_task = NULL;
spin_unlock_irq(&rtc->irq_task_lock);
}
EXPORT_SYMBOL_GPL(rtc_irq_unregister);
static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
{
/*
* We always cancel the timer here first, because otherwise
* we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
* when we manage to start the timer before the callback
* returns HRTIMER_RESTART.
*
* We cannot use hrtimer_cancel() here as a running callback
* could be blocked on rtc->irq_task_lock and hrtimer_cancel()
* would spin forever.
*/
if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
return -1;
if (enabled) {
ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
}
return 0;
}
/**
* rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
* @rtc: the rtc device
* @task: currently registered with rtc_irq_register()
* @enabled: true to enable periodic IRQs
* Context: any
*
* Note that rtc_irq_set_freq() should previously have been used to
* specify the desired frequency of periodic IRQ task->func() callbacks.
*/
int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
{
int err = 0;
unsigned long flags;
retry:
spin_lock_irqsave(&rtc->irq_task_lock, flags);
if (rtc->irq_task != NULL && task == NULL)
err = -EBUSY;
else if (rtc->irq_task != task)
err = -EACCES;
else {
if (rtc_update_hrtimer(rtc, enabled) < 0) {
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
cpu_relax();
goto retry;
}
rtc->pie_enabled = enabled;
}
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
return err;
}
EXPORT_SYMBOL_GPL(rtc_irq_set_state);
/**
* rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
* @rtc: the rtc device
* @task: currently registered with rtc_irq_register()
* @freq: positive frequency with which task->func() will be called
* Context: any
*
* Note that rtc_irq_set_state() is used to enable or disable the
* periodic IRQs.
*/
int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
{
int err = 0;
unsigned long flags;
if (freq <= 0 || freq > RTC_MAX_FREQ)
return -EINVAL;
retry:
spin_lock_irqsave(&rtc->irq_task_lock, flags);
if (rtc->irq_task != NULL && task == NULL)
err = -EBUSY;
else if (rtc->irq_task != task)
err = -EACCES;
else {
rtc->irq_freq = freq;
if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
cpu_relax();
goto retry;
}
}
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
return err;
}
EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
/**
* rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
* @rtc rtc device
* @timer timer being added.
*
* Enqueues a timer onto the rtc devices timerqueue and sets
* the next alarm event appropriately.
*
* Sets the enabled bit on the added timer.
*
* Must hold ops_lock for proper serialization of timerqueue
*/
static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
{
struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
struct rtc_time tm;
ktime_t now;
timer->enabled = 1;
__rtc_read_time(rtc, &tm);
now = rtc_tm_to_ktime(tm);
/* Skip over expired timers */
while (next) {
if (next->expires.tv64 >= now.tv64)
break;
next = timerqueue_iterate_next(next);
}
timerqueue_add(&rtc->timerqueue, &timer->node);
if (!next || ktime_before(timer->node.expires, next->expires)) {
struct rtc_wkalrm alarm;
int err;
alarm.time = rtc_ktime_to_tm(timer->node.expires);
alarm.enabled = 1;
err = __rtc_set_alarm(rtc, &alarm);
if (err == -ETIME) {
pm_stay_awake(rtc->dev.parent);
schedule_work(&rtc->irqwork);
} else if (err) {
timerqueue_del(&rtc->timerqueue, &timer->node);
timer->enabled = 0;
return err;
}
}
return 0;
}
/**
* rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
* @rtc rtc device
* @timer timer being removed.
*
* Removes a timer onto the rtc devices timerqueue and sets
* the next alarm event appropriately.
*
* Clears the enabled bit on the removed timer.
*
* Must hold ops_lock for proper serialization of timerqueue
*/
static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
{
struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
timerqueue_del(&rtc->timerqueue, &timer->node);
timer->enabled = 0;
if (next == &timer->node) {
struct rtc_wkalrm alarm;
int err;
next = timerqueue_getnext(&rtc->timerqueue);
if (!next) {
rtc_alarm_disable(rtc);
return;
}
alarm.time = rtc_ktime_to_tm(next->expires);
alarm.enabled = 1;
err = __rtc_set_alarm(rtc, &alarm);
if (err == -ETIME) {
pm_stay_awake(rtc->dev.parent);
schedule_work(&rtc->irqwork);
}
}
}
/**
* rtc_timer_do_work - Expires rtc timers
* @rtc rtc device
* @timer timer being removed.
*
* Expires rtc timers. Reprograms next alarm event if needed.
* Called via worktask.
*
* Serializes access to timerqueue via ops_lock mutex
*/
void rtc_timer_do_work(struct work_struct *work)
{
struct rtc_timer *timer;
struct timerqueue_node *next;
ktime_t now;
struct rtc_time tm;
struct rtc_device *rtc =
container_of(work, struct rtc_device, irqwork);
mutex_lock(&rtc->ops_lock);
again:
__rtc_read_time(rtc, &tm);
now = rtc_tm_to_ktime(tm);
while ((next = timerqueue_getnext(&rtc->timerqueue))) {
if (next->expires.tv64 > now.tv64)
break;
/* expire timer */
timer = container_of(next, struct rtc_timer, node);
timerqueue_del(&rtc->timerqueue, &timer->node);
timer->enabled = 0;
if (timer->task.func)
timer->task.func(timer->task.private_data);
/* Re-add/fwd periodic timers */
if (ktime_to_ns(timer->period)) {
timer->node.expires = ktime_add(timer->node.expires,
timer->period);
timer->enabled = 1;
timerqueue_add(&rtc->timerqueue, &timer->node);
}
}
/* Set next alarm */
if (next) {
struct rtc_wkalrm alarm;
int err;
int retry = 3;
alarm.time = rtc_ktime_to_tm(next->expires);
alarm.enabled = 1;
reprogram:
err = __rtc_set_alarm(rtc, &alarm);
if (err == -ETIME)
goto again;
else if (err) {
if (retry-- > 0)
goto reprogram;
timer = container_of(next, struct rtc_timer, node);
timerqueue_del(&rtc->timerqueue, &timer->node);
timer->enabled = 0;
dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
goto again;
}
} else
rtc_alarm_disable(rtc);
pm_relax(rtc->dev.parent);
mutex_unlock(&rtc->ops_lock);
}
/* rtc_timer_init - Initializes an rtc_timer
* @timer: timer to be intiialized
* @f: function pointer to be called when timer fires
* @data: private data passed to function pointer
*
* Kernel interface to initializing an rtc_timer.
*/
void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
{
timerqueue_init(&timer->node);
timer->enabled = 0;
timer->task.func = f;
timer->task.private_data = data;
}
/* rtc_timer_start - Sets an rtc_timer to fire in the future
* @ rtc: rtc device to be used
* @ timer: timer being set
* @ expires: time at which to expire the timer
* @ period: period that the timer will recur
*
* Kernel interface to set an rtc_timer
*/
int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
ktime_t expires, ktime_t period)
{
int ret = 0;
mutex_lock(&rtc->ops_lock);
if (timer->enabled)
rtc_timer_remove(rtc, timer);
timer->node.expires = expires;
timer->period = period;
ret = rtc_timer_enqueue(rtc, timer);
mutex_unlock(&rtc->ops_lock);
return ret;
}
/* rtc_timer_cancel - Stops an rtc_timer
* @ rtc: rtc device to be used
* @ timer: timer being set
*
* Kernel interface to cancel an rtc_timer
*/
void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
{
mutex_lock(&rtc->ops_lock);
if (timer->enabled)
rtc_timer_remove(rtc, timer);
mutex_unlock(&rtc->ops_lock);
}