android_kernel_oneplus_msm8998/arch/arm/mach-mvebu/coherency.c
Thomas Petazzoni e9a2ce2a68 ARM: mvebu: fix HW I/O coherency related deadlocks
commit c5379ba8fccd99d5f99632c789f0393d84a57805 upstream.

Until now, our understanding for HW I/O coherency to work on the
Cortex-A9 based Marvell SoC was that only the PCIe regions should be
mapped strongly-ordered. However, we were still encountering some
deadlocks, especially when testing the CESA crypto engine. After
checking with the HW designers, it was concluded that all the MMIO
registers should be mapped as strongly ordered for the HW I/O coherency
mechanism to work properly.

This fixes some easy to reproduce deadlocks with the CESA crypto engine
driver (dmcrypt on a sufficiently large disk partition).

Tested-by: Terry Stockert <stockert@inkblotadmirer.me>
Tested-by: Romain Perier <romain.perier@free-electrons.com>
Cc: Terry Stockert <stockert@inkblotadmirer.me>
Cc: Romain Perier <romain.perier@free-electrons.com>
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Signed-off-by: Gregory CLEMENT <gregory.clement@free-electrons.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-07-27 09:47:39 -07:00

311 lines
8.2 KiB
C

/*
* Coherency fabric (Aurora) support for Armada 370, 375, 38x and XP
* platforms.
*
* Copyright (C) 2012 Marvell
*
* Yehuda Yitschak <yehuday@marvell.com>
* Gregory Clement <gregory.clement@free-electrons.com>
* Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*
* The Armada 370, 375, 38x and XP SOCs have a coherency fabric which is
* responsible for ensuring hardware coherency between all CPUs and between
* CPUs and I/O masters. This file initializes the coherency fabric and
* supplies basic routines for configuring and controlling hardware coherency
*/
#define pr_fmt(fmt) "mvebu-coherency: " fmt
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/of_address.h>
#include <linux/io.h>
#include <linux/smp.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/mbus.h>
#include <linux/pci.h>
#include <asm/smp_plat.h>
#include <asm/cacheflush.h>
#include <asm/mach/map.h>
#include <asm/dma-mapping.h>
#include "coherency.h"
#include "mvebu-soc-id.h"
unsigned long coherency_phys_base;
void __iomem *coherency_base;
static void __iomem *coherency_cpu_base;
static void __iomem *cpu_config_base;
/* Coherency fabric registers */
#define IO_SYNC_BARRIER_CTL_OFFSET 0x0
enum {
COHERENCY_FABRIC_TYPE_NONE,
COHERENCY_FABRIC_TYPE_ARMADA_370_XP,
COHERENCY_FABRIC_TYPE_ARMADA_375,
COHERENCY_FABRIC_TYPE_ARMADA_380,
};
static const struct of_device_id of_coherency_table[] = {
{.compatible = "marvell,coherency-fabric",
.data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_370_XP },
{.compatible = "marvell,armada-375-coherency-fabric",
.data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_375 },
{.compatible = "marvell,armada-380-coherency-fabric",
.data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_380 },
{ /* end of list */ },
};
/* Functions defined in coherency_ll.S */
int ll_enable_coherency(void);
void ll_add_cpu_to_smp_group(void);
#define CPU_CONFIG_SHARED_L2 BIT(16)
/*
* Disable the "Shared L2 Present" bit in CPU Configuration register
* on Armada XP.
*
* The "Shared L2 Present" bit affects the "level of coherence" value
* in the clidr CP15 register. Cache operation functions such as
* "flush all" and "invalidate all" operate on all the cache levels
* that included in the defined level of coherence. When HW I/O
* coherency is used, this bit causes unnecessary flushes of the L2
* cache.
*/
static void armada_xp_clear_shared_l2(void)
{
u32 reg;
if (!cpu_config_base)
return;
reg = readl(cpu_config_base);
reg &= ~CPU_CONFIG_SHARED_L2;
writel(reg, cpu_config_base);
}
static int mvebu_hwcc_notifier(struct notifier_block *nb,
unsigned long event, void *__dev)
{
struct device *dev = __dev;
if (event != BUS_NOTIFY_ADD_DEVICE)
return NOTIFY_DONE;
set_dma_ops(dev, &arm_coherent_dma_ops);
return NOTIFY_OK;
}
static struct notifier_block mvebu_hwcc_nb = {
.notifier_call = mvebu_hwcc_notifier,
};
static struct notifier_block mvebu_hwcc_pci_nb = {
.notifier_call = mvebu_hwcc_notifier,
};
static int armada_xp_clear_shared_l2_notifier_func(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
armada_xp_clear_shared_l2();
return NOTIFY_OK;
}
static struct notifier_block armada_xp_clear_shared_l2_notifier = {
.notifier_call = armada_xp_clear_shared_l2_notifier_func,
.priority = 100,
};
static void __init armada_370_coherency_init(struct device_node *np)
{
struct resource res;
struct device_node *cpu_config_np;
of_address_to_resource(np, 0, &res);
coherency_phys_base = res.start;
/*
* Ensure secondary CPUs will see the updated value,
* which they read before they join the coherency
* fabric, and therefore before they are coherent with
* the boot CPU cache.
*/
sync_cache_w(&coherency_phys_base);
coherency_base = of_iomap(np, 0);
coherency_cpu_base = of_iomap(np, 1);
cpu_config_np = of_find_compatible_node(NULL, NULL,
"marvell,armada-xp-cpu-config");
if (!cpu_config_np)
goto exit;
cpu_config_base = of_iomap(cpu_config_np, 0);
if (!cpu_config_base) {
of_node_put(cpu_config_np);
goto exit;
}
of_node_put(cpu_config_np);
register_cpu_notifier(&armada_xp_clear_shared_l2_notifier);
exit:
set_cpu_coherent();
}
/*
* This ioremap hook is used on Armada 375/38x to ensure that all MMIO
* areas are mapped as MT_UNCACHED instead of MT_DEVICE. This is
* needed for the HW I/O coherency mechanism to work properly without
* deadlock.
*/
static void __iomem *
armada_wa_ioremap_caller(phys_addr_t phys_addr, size_t size,
unsigned int mtype, void *caller)
{
mtype = MT_UNCACHED;
return __arm_ioremap_caller(phys_addr, size, mtype, caller);
}
static void __init armada_375_380_coherency_init(struct device_node *np)
{
struct device_node *cache_dn;
coherency_cpu_base = of_iomap(np, 0);
arch_ioremap_caller = armada_wa_ioremap_caller;
/*
* We should switch the PL310 to I/O coherency mode only if
* I/O coherency is actually enabled.
*/
if (!coherency_available())
return;
/*
* Add the PL310 property "arm,io-coherent". This makes sure the
* outer sync operation is not used, which allows to
* workaround the system erratum that causes deadlocks when
* doing PCIe in an SMP situation on Armada 375 and Armada
* 38x.
*/
for_each_compatible_node(cache_dn, NULL, "arm,pl310-cache") {
struct property *p;
p = kzalloc(sizeof(*p), GFP_KERNEL);
p->name = kstrdup("arm,io-coherent", GFP_KERNEL);
of_add_property(cache_dn, p);
}
}
static int coherency_type(void)
{
struct device_node *np;
const struct of_device_id *match;
int type;
/*
* The coherency fabric is needed:
* - For coherency between processors on Armada XP, so only
* when SMP is enabled.
* - For coherency between the processor and I/O devices, but
* this coherency requires many pre-requisites (write
* allocate cache policy, shareable pages, SMP bit set) that
* are only meant in SMP situations.
*
* Note that this means that on Armada 370, there is currently
* no way to use hardware I/O coherency, because even when
* CONFIG_SMP is enabled, is_smp() returns false due to the
* Armada 370 being a single-core processor. To lift this
* limitation, we would have to find a way to make the cache
* policy set to write-allocate (on all Armada SoCs), and to
* set the shareable attribute in page tables (on all Armada
* SoCs except the Armada 370). Unfortunately, such decisions
* are taken very early in the kernel boot process, at a point
* where we don't know yet on which SoC we are running.
*/
if (!is_smp())
return COHERENCY_FABRIC_TYPE_NONE;
np = of_find_matching_node_and_match(NULL, of_coherency_table, &match);
if (!np)
return COHERENCY_FABRIC_TYPE_NONE;
type = (int) match->data;
of_node_put(np);
return type;
}
int set_cpu_coherent(void)
{
int type = coherency_type();
if (type == COHERENCY_FABRIC_TYPE_ARMADA_370_XP) {
if (!coherency_base) {
pr_warn("Can't make current CPU cache coherent.\n");
pr_warn("Coherency fabric is not initialized\n");
return 1;
}
armada_xp_clear_shared_l2();
ll_add_cpu_to_smp_group();
return ll_enable_coherency();
}
return 0;
}
int coherency_available(void)
{
return coherency_type() != COHERENCY_FABRIC_TYPE_NONE;
}
int __init coherency_init(void)
{
int type = coherency_type();
struct device_node *np;
np = of_find_matching_node(NULL, of_coherency_table);
if (type == COHERENCY_FABRIC_TYPE_ARMADA_370_XP)
armada_370_coherency_init(np);
else if (type == COHERENCY_FABRIC_TYPE_ARMADA_375 ||
type == COHERENCY_FABRIC_TYPE_ARMADA_380)
armada_375_380_coherency_init(np);
of_node_put(np);
return 0;
}
static int __init coherency_late_init(void)
{
if (coherency_available())
bus_register_notifier(&platform_bus_type,
&mvebu_hwcc_nb);
return 0;
}
postcore_initcall(coherency_late_init);
#if IS_ENABLED(CONFIG_PCI)
static int __init coherency_pci_init(void)
{
if (coherency_available())
bus_register_notifier(&pci_bus_type,
&mvebu_hwcc_pci_nb);
return 0;
}
arch_initcall(coherency_pci_init);
#endif