android_kernel_oneplus_msm8998/drivers/cpufreq/Kconfig
Srinivasarao P bb6e807311 Merge android-4.4.97 (46d256d) into msm-4.4
* refs/heads/tmp-46d256d
  Linux 4.4.97
  staging: r8712u: Fix Sparse warning in rtl871x_xmit.c
  xen: don't print error message in case of missing Xenstore entry
  bt8xx: fix memory leak
  s390/dasd: check for device error pointer within state change interrupts
  mei: return error on notification request to a disconnected client
  exynos4-is: fimc-is: Unmap region obtained by of_iomap()
  staging: lustre: ptlrpc: skip lock if export failed
  staging: lustre: hsm: stack overrun in hai_dump_data_field
  staging: lustre: llite: don't invoke direct_IO for the EOF case
  platform/x86: intel_mid_thermal: Fix module autoload
  scsi: aacraid: Process Error for response I/O
  xen/manage: correct return value check on xenbus_scanf()
  cx231xx: Fix I2C on Internal Master 3 Bus
  perf tools: Only increase index if perf_evsel__new_idx() succeeds
  drm/amdgpu: when dpm disabled, also need to stop/start vce.
  i2c: riic: correctly finish transfers
  ext4: do not use stripe_width if it is not set
  ext4: fix stripe-unaligned allocations
  staging: rtl8712u: Fix endian settings for structs describing network packets
  mfd: axp20x: Fix axp288 PEK_DBR and PEK_DBF irqs being swapped
  mfd: ab8500-sysctrl: Handle probe deferral
  ARM: pxa: Don't rely on public mmc header to include leds.h
  mmc: s3cmci: include linux/interrupt.h for tasklet_struct
  PM / wakeirq: report a wakeup_event on dedicated wekup irq
  Fix tracing sample code warning.
  tracing/samples: Fix creation and deletion of simple_thread_fn creation
  drm/msm: fix an integer overflow test
  drm/msm: Fix potential buffer overflow issue
  perf tools: Fix build failure on perl script context
  ocfs2: fstrim: Fix start offset of first cluster group during fstrim
  ARM: 8715/1: add a private asm/unaligned.h
  ARM: dts: mvebu: pl310-cache disable double-linefill
  arm64: ensure __dump_instr() checks addr_limit
  ASoC: adau17x1: Workaround for noise bug in ADC
  KEYS: fix out-of-bounds read during ASN.1 parsing
  KEYS: return full count in keyring_read() if buffer is too small
  cifs: check MaxPathNameComponentLength != 0 before using it
  ALSA: seq: Fix nested rwsem annotation for lockdep splat
  ALSA: timer: Add missing mutex lock for compat ioctls
  BACKPORT: xfrm: Clear sk_dst_cache when applying per-socket policy.
  Revert "ANDROID: sched/rt: schedtune: Add boost retention to RT"
  cpufreq: Drop schedfreq governor
  ANDROID: sched/rt: schedtune: Add boost retention to RT
  ANDROID: sched/rt: add schedtune accounting
  ANDROID: Revert "arm64: move ELF_ET_DYN_BASE to 4GB / 4MB"
  ANDROID: Revert "arm: move ELF_ET_DYN_BASE to 4MB"
  sched: EAS: Fix the calculation of group util in group_idle_state()
  sched: EAS: update trg_cpu to backup_cpu if no energy saving for target_cpu
  sched: EAS: Fix the condition to distinguish energy before/after

Conflicts:
	drivers/cpufreq/Kconfig
	drivers/gpu/drm/msm/msm_gem_submit.c
	kernel/sched/core.c
	kernel/sched/fair.c
	kernel/sched/rt.c
	kernel/sched/sched.h

Change-Id: I0d8c5287cb67fd47c8944a002c0ca71adcdef537
Signed-off-by: Srinivasarao P <spathi@codeaurora.org>
2017-12-18 14:23:14 +05:30

374 lines
11 KiB
Text

menu "CPU Frequency scaling"
config CPU_FREQ
bool "CPU Frequency scaling"
select SRCU
help
CPU Frequency scaling allows you to change the clock speed of
CPUs on the fly. This is a nice method to save power, because
the lower the CPU clock speed, the less power the CPU consumes.
Note that this driver doesn't automatically change the CPU
clock speed, you need to either enable a dynamic cpufreq governor
(see below) after boot, or use a userspace tool.
For details, take a look at <file:Documentation/cpu-freq>.
If in doubt, say N.
if CPU_FREQ
config CPU_FREQ_GOV_COMMON
bool
config CPU_FREQ_BOOST_SW
bool
depends on THERMAL
config CPU_FREQ_STAT
tristate "CPU frequency translation statistics"
default y
help
This driver exports CPU frequency statistics information through sysfs
file system.
To compile this driver as a module, choose M here: the
module will be called cpufreq_stats.
If in doubt, say N.
config CPU_FREQ_STAT_DETAILS
bool "CPU frequency translation statistics details"
depends on CPU_FREQ_STAT
help
This will show detail CPU frequency translation table in sysfs file
system.
If in doubt, say N.
choice
prompt "Default CPUFreq governor"
default CPU_FREQ_DEFAULT_GOV_USERSPACE if ARM_SA1100_CPUFREQ || ARM_SA1110_CPUFREQ
default CPU_FREQ_DEFAULT_GOV_PERFORMANCE
help
This option sets which CPUFreq governor shall be loaded at
startup. If in doubt, select 'performance'.
config CPU_FREQ_DEFAULT_GOV_PERFORMANCE
bool "performance"
select CPU_FREQ_GOV_PERFORMANCE
help
Use the CPUFreq governor 'performance' as default. This sets
the frequency statically to the highest frequency supported by
the CPU.
config CPU_FREQ_DEFAULT_GOV_POWERSAVE
bool "powersave"
select CPU_FREQ_GOV_POWERSAVE
help
Use the CPUFreq governor 'powersave' as default. This sets
the frequency statically to the lowest frequency supported by
the CPU.
config CPU_FREQ_DEFAULT_GOV_USERSPACE
bool "userspace"
select CPU_FREQ_GOV_USERSPACE
help
Use the CPUFreq governor 'userspace' as default. This allows
you to set the CPU frequency manually or when a userspace
program shall be able to set the CPU dynamically without having
to enable the userspace governor manually.
config CPU_FREQ_DEFAULT_GOV_ONDEMAND
bool "ondemand"
select CPU_FREQ_GOV_ONDEMAND
select CPU_FREQ_GOV_PERFORMANCE
help
Use the CPUFreq governor 'ondemand' as default. This allows
you to get a full dynamic frequency capable system by simply
loading your cpufreq low-level hardware driver.
Be aware that not all cpufreq drivers support the ondemand
governor. If unsure have a look at the help section of the
driver. Fallback governor will be the performance governor.
config CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
bool "conservative"
select CPU_FREQ_GOV_CONSERVATIVE
select CPU_FREQ_GOV_PERFORMANCE
help
Use the CPUFreq governor 'conservative' as default. This allows
you to get a full dynamic frequency capable system by simply
loading your cpufreq low-level hardware driver.
Be aware that not all cpufreq drivers support the conservative
governor. If unsure have a look at the help section of the
driver. Fallback governor will be the performance governor.
config CPU_FREQ_DEFAULT_GOV_INTERACTIVE
bool "interactive"
select CPU_FREQ_GOV_INTERACTIVE
help
Use the CPUFreq governor 'interactive' as default. This allows
you to get a full dynamic cpu frequency capable system by simply
loading your cpufreq low-level hardware driver, using the
'interactive' governor for latency-sensitive workloads.
config CPU_FREQ_DEFAULT_GOV_SCHED
bool "sched"
select CPU_FREQ_GOV_SCHED
help
Use the CPUfreq governor 'sched' as default. This scales
cpu frequency using CPU utilization estimates from the
scheduler.
config CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
bool "schedutil"
depends on SMP
select CPU_FREQ_GOV_SCHEDUTIL
select CPU_FREQ_GOV_PERFORMANCE
help
Use the 'schedutil' CPUFreq governor by default. If unsure,
have a look at the help section of that governor. The fallback
governor will be 'performance'.
endchoice
config CPU_FREQ_GOV_PERFORMANCE
tristate "'performance' governor"
help
This cpufreq governor sets the frequency statically to the
highest available CPU frequency.
To compile this driver as a module, choose M here: the
module will be called cpufreq_performance.
If in doubt, say Y.
config CPU_FREQ_GOV_POWERSAVE
tristate "'powersave' governor"
help
This cpufreq governor sets the frequency statically to the
lowest available CPU frequency.
To compile this driver as a module, choose M here: the
module will be called cpufreq_powersave.
If in doubt, say Y.
config CPU_FREQ_GOV_USERSPACE
tristate "'userspace' governor for userspace frequency scaling"
help
Enable this cpufreq governor when you either want to set the
CPU frequency manually or when a userspace program shall
be able to set the CPU dynamically, like on LART
<http://www.lartmaker.nl/>.
To compile this driver as a module, choose M here: the
module will be called cpufreq_userspace.
For details, take a look at <file:Documentation/cpu-freq/>.
If in doubt, say Y.
config CPU_FREQ_GOV_ONDEMAND
tristate "'ondemand' cpufreq policy governor"
select CPU_FREQ_GOV_COMMON
help
'ondemand' - This driver adds a dynamic cpufreq policy governor.
The governor does a periodic polling and
changes frequency based on the CPU utilization.
The support for this governor depends on CPU capability to
do fast frequency switching (i.e, very low latency frequency
transitions).
To compile this driver as a module, choose M here: the
module will be called cpufreq_ondemand.
For details, take a look at linux/Documentation/cpu-freq.
If in doubt, say N.
config CPU_FREQ_GOV_INTERACTIVE
bool "'interactive' cpufreq policy governor"
help
'interactive' - This driver adds a dynamic cpufreq policy governor
designed for latency-sensitive workloads.
This governor attempts to reduce the latency of clock
increases so that the system is more responsive to
interactive workloads.
For details, take a look at linux/Documentation/cpu-freq.
If in doubt, say N.
config CPU_FREQ_GOV_CONSERVATIVE
tristate "'conservative' cpufreq governor"
depends on CPU_FREQ
select CPU_FREQ_GOV_COMMON
help
'conservative' - this driver is rather similar to the 'ondemand'
governor both in its source code and its purpose, the difference is
its optimisation for better suitability in a battery powered
environment. The frequency is gracefully increased and decreased
rather than jumping to 100% when speed is required.
If you have a desktop machine then you should really be considering
the 'ondemand' governor instead, however if you are using a laptop,
PDA or even an AMD64 based computer (due to the unacceptable
step-by-step latency issues between the minimum and maximum frequency
transitions in the CPU) you will probably want to use this governor.
To compile this driver as a module, choose M here: the
module will be called cpufreq_conservative.
For details, take a look at linux/Documentation/cpu-freq.
If in doubt, say N.
config CPU_BOOST
tristate "Event base short term CPU freq boost"
depends on CPU_FREQ
help
This driver boosts the frequency of one or more CPUs based on
various events that might occur in the system. As of now, the
events it reacts to are:
- Migration of important threads from one CPU to another.
If in doubt, say N.
config CPU_FREQ_GOV_SCHEDUTIL
bool "'schedutil' cpufreq policy governor"
depends on CPU_FREQ && SMP
select CPU_FREQ_GOV_ATTR_SET
select IRQ_WORK
help
This governor makes decisions based on the utilization data provided
by the scheduler. It sets the CPU frequency to be proportional to
the utilization/capacity ratio coming from the scheduler. If the
utilization is frequency-invariant, the new frequency is also
proportional to the maximum available frequency. If that is not the
case, it is proportional to the current frequency of the CPU. The
frequency tipping point is at utilization/capacity equal to 80% in
both cases.
If in doubt, say N.
comment "CPU frequency scaling drivers"
config CPUFREQ_DT
tristate "Generic DT based cpufreq driver"
depends on HAVE_CLK && OF
# if CPU_THERMAL is on and THERMAL=m, CPUFREQ_DT cannot be =y:
depends on !CPU_THERMAL || THERMAL
select PM_OPP
help
This adds a generic DT based cpufreq driver for frequency management.
It supports both uniprocessor (UP) and symmetric multiprocessor (SMP)
systems which share clock and voltage across all CPUs.
If in doubt, say N.
if X86
source "drivers/cpufreq/Kconfig.x86"
endif
if ARM || ARM64
source "drivers/cpufreq/Kconfig.arm"
endif
if PPC32 || PPC64
source "drivers/cpufreq/Kconfig.powerpc"
endif
if AVR32
config AVR32_AT32AP_CPUFREQ
bool "CPU frequency driver for AT32AP"
depends on PLATFORM_AT32AP
default n
help
This enables the CPU frequency driver for AT32AP processors.
If in doubt, say N.
endif
if IA64
config IA64_ACPI_CPUFREQ
tristate "ACPI Processor P-States driver"
depends on ACPI_PROCESSOR
help
This driver adds a CPUFreq driver which utilizes the ACPI
Processor Performance States.
For details, take a look at <file:Documentation/cpu-freq/>.
If in doubt, say N.
endif
if MIPS
config LOONGSON2_CPUFREQ
tristate "Loongson2 CPUFreq Driver"
help
This option adds a CPUFreq driver for loongson processors which
support software configurable cpu frequency.
Loongson2F and it's successors support this feature.
For details, take a look at <file:Documentation/cpu-freq/>.
If in doubt, say N.
config LOONGSON1_CPUFREQ
tristate "Loongson1 CPUFreq Driver"
help
This option adds a CPUFreq driver for loongson1 processors which
support software configurable cpu frequency.
For details, take a look at <file:Documentation/cpu-freq/>.
If in doubt, say N.
endif
if SPARC64
config SPARC_US3_CPUFREQ
tristate "UltraSPARC-III CPU Frequency driver"
help
This adds the CPUFreq driver for UltraSPARC-III processors.
For details, take a look at <file:Documentation/cpu-freq>.
If in doubt, say N.
config SPARC_US2E_CPUFREQ
tristate "UltraSPARC-IIe CPU Frequency driver"
help
This adds the CPUFreq driver for UltraSPARC-IIe processors.
For details, take a look at <file:Documentation/cpu-freq>.
If in doubt, say N.
endif
if SUPERH
config SH_CPU_FREQ
tristate "SuperH CPU Frequency driver"
help
This adds the cpufreq driver for SuperH. Any CPU that supports
clock rate rounding through the clock framework can use this
driver. While it will make the kernel slightly larger, this is
harmless for CPUs that don't support rate rounding. The driver
will also generate a notice in the boot log before disabling
itself if the CPU in question is not capable of rate rounding.
For details, take a look at <file:Documentation/cpu-freq>.
If unsure, say N.
endif
config QORIQ_CPUFREQ
tristate "CPU frequency scaling driver for Freescale QorIQ SoCs"
depends on OF && COMMON_CLK && (PPC_E500MC || ARM)
select CLK_QORIQ
help
This adds the CPUFreq driver support for Freescale QorIQ SoCs
which are capable of changing the CPU's frequency dynamically.
endif
endmenu