* refs/heads/tmp-46d256d Linux 4.4.97 staging: r8712u: Fix Sparse warning in rtl871x_xmit.c xen: don't print error message in case of missing Xenstore entry bt8xx: fix memory leak s390/dasd: check for device error pointer within state change interrupts mei: return error on notification request to a disconnected client exynos4-is: fimc-is: Unmap region obtained by of_iomap() staging: lustre: ptlrpc: skip lock if export failed staging: lustre: hsm: stack overrun in hai_dump_data_field staging: lustre: llite: don't invoke direct_IO for the EOF case platform/x86: intel_mid_thermal: Fix module autoload scsi: aacraid: Process Error for response I/O xen/manage: correct return value check on xenbus_scanf() cx231xx: Fix I2C on Internal Master 3 Bus perf tools: Only increase index if perf_evsel__new_idx() succeeds drm/amdgpu: when dpm disabled, also need to stop/start vce. i2c: riic: correctly finish transfers ext4: do not use stripe_width if it is not set ext4: fix stripe-unaligned allocations staging: rtl8712u: Fix endian settings for structs describing network packets mfd: axp20x: Fix axp288 PEK_DBR and PEK_DBF irqs being swapped mfd: ab8500-sysctrl: Handle probe deferral ARM: pxa: Don't rely on public mmc header to include leds.h mmc: s3cmci: include linux/interrupt.h for tasklet_struct PM / wakeirq: report a wakeup_event on dedicated wekup irq Fix tracing sample code warning. tracing/samples: Fix creation and deletion of simple_thread_fn creation drm/msm: fix an integer overflow test drm/msm: Fix potential buffer overflow issue perf tools: Fix build failure on perl script context ocfs2: fstrim: Fix start offset of first cluster group during fstrim ARM: 8715/1: add a private asm/unaligned.h ARM: dts: mvebu: pl310-cache disable double-linefill arm64: ensure __dump_instr() checks addr_limit ASoC: adau17x1: Workaround for noise bug in ADC KEYS: fix out-of-bounds read during ASN.1 parsing KEYS: return full count in keyring_read() if buffer is too small cifs: check MaxPathNameComponentLength != 0 before using it ALSA: seq: Fix nested rwsem annotation for lockdep splat ALSA: timer: Add missing mutex lock for compat ioctls BACKPORT: xfrm: Clear sk_dst_cache when applying per-socket policy. Revert "ANDROID: sched/rt: schedtune: Add boost retention to RT" cpufreq: Drop schedfreq governor ANDROID: sched/rt: schedtune: Add boost retention to RT ANDROID: sched/rt: add schedtune accounting ANDROID: Revert "arm64: move ELF_ET_DYN_BASE to 4GB / 4MB" ANDROID: Revert "arm: move ELF_ET_DYN_BASE to 4MB" sched: EAS: Fix the calculation of group util in group_idle_state() sched: EAS: update trg_cpu to backup_cpu if no energy saving for target_cpu sched: EAS: Fix the condition to distinguish energy before/after Conflicts: drivers/cpufreq/Kconfig drivers/gpu/drm/msm/msm_gem_submit.c kernel/sched/core.c kernel/sched/fair.c kernel/sched/rt.c kernel/sched/sched.h Change-Id: I0d8c5287cb67fd47c8944a002c0ca71adcdef537 Signed-off-by: Srinivasarao P <spathi@codeaurora.org>
2867 lines
75 KiB
C
2867 lines
75 KiB
C
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/sysctl.h>
|
|
#include <linux/sched/rt.h>
|
|
#include <linux/sched/deadline.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "cpupri.h"
|
|
#include "cpudeadline.h"
|
|
#include "cpuacct.h"
|
|
|
|
struct rq;
|
|
struct cpuidle_state;
|
|
|
|
/* task_struct::on_rq states: */
|
|
#define TASK_ON_RQ_QUEUED 1
|
|
#define TASK_ON_RQ_MIGRATING 2
|
|
|
|
extern __read_mostly int scheduler_running;
|
|
|
|
extern unsigned long calc_load_update;
|
|
extern atomic_long_t calc_load_tasks;
|
|
|
|
extern void calc_global_load_tick(struct rq *this_rq);
|
|
|
|
extern long calc_load_fold_active(struct rq *this_rq);
|
|
|
|
#ifdef CONFIG_SMP
|
|
extern void update_cpu_load_active(struct rq *this_rq);
|
|
extern void check_for_migration(struct rq *rq, struct task_struct *p);
|
|
#else
|
|
static inline void update_cpu_load_active(struct rq *this_rq) { }
|
|
static inline void check_for_migration(struct rq *rq, struct task_struct *p) { }
|
|
#endif
|
|
|
|
/*
|
|
* Helpers for converting nanosecond timing to jiffy resolution
|
|
*/
|
|
#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
|
|
|
|
/*
|
|
* Increase resolution of nice-level calculations for 64-bit architectures.
|
|
* The extra resolution improves shares distribution and load balancing of
|
|
* low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
|
|
* hierarchies, especially on larger systems. This is not a user-visible change
|
|
* and does not change the user-interface for setting shares/weights.
|
|
*
|
|
* We increase resolution only if we have enough bits to allow this increased
|
|
* resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
|
|
* when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
|
|
* increased costs.
|
|
*/
|
|
#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
|
|
# define SCHED_LOAD_RESOLUTION 10
|
|
# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
|
|
# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
|
|
#else
|
|
# define SCHED_LOAD_RESOLUTION 0
|
|
# define scale_load(w) (w)
|
|
# define scale_load_down(w) (w)
|
|
#endif
|
|
|
|
#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
|
|
#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
|
|
|
|
#define NICE_0_LOAD SCHED_LOAD_SCALE
|
|
#define NICE_0_SHIFT SCHED_LOAD_SHIFT
|
|
|
|
/*
|
|
* Single value that decides SCHED_DEADLINE internal math precision.
|
|
* 10 -> just above 1us
|
|
* 9 -> just above 0.5us
|
|
*/
|
|
#define DL_SCALE (10)
|
|
|
|
/*
|
|
* These are the 'tuning knobs' of the scheduler:
|
|
*/
|
|
|
|
/*
|
|
* single value that denotes runtime == period, ie unlimited time.
|
|
*/
|
|
#define RUNTIME_INF ((u64)~0ULL)
|
|
|
|
static inline int idle_policy(int policy)
|
|
{
|
|
return policy == SCHED_IDLE;
|
|
}
|
|
static inline int fair_policy(int policy)
|
|
{
|
|
return policy == SCHED_NORMAL || policy == SCHED_BATCH;
|
|
}
|
|
|
|
static inline int rt_policy(int policy)
|
|
{
|
|
return policy == SCHED_FIFO || policy == SCHED_RR;
|
|
}
|
|
|
|
static inline int dl_policy(int policy)
|
|
{
|
|
return policy == SCHED_DEADLINE;
|
|
}
|
|
static inline bool valid_policy(int policy)
|
|
{
|
|
return idle_policy(policy) || fair_policy(policy) ||
|
|
rt_policy(policy) || dl_policy(policy);
|
|
}
|
|
|
|
static inline int task_has_rt_policy(struct task_struct *p)
|
|
{
|
|
return rt_policy(p->policy);
|
|
}
|
|
|
|
static inline int task_has_dl_policy(struct task_struct *p)
|
|
{
|
|
return dl_policy(p->policy);
|
|
}
|
|
|
|
/*
|
|
* Tells if entity @a should preempt entity @b.
|
|
*/
|
|
static inline bool
|
|
dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
|
|
{
|
|
return dl_time_before(a->deadline, b->deadline);
|
|
}
|
|
|
|
/*
|
|
* This is the priority-queue data structure of the RT scheduling class:
|
|
*/
|
|
struct rt_prio_array {
|
|
DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
|
|
struct list_head queue[MAX_RT_PRIO];
|
|
};
|
|
|
|
struct rt_bandwidth {
|
|
/* nests inside the rq lock: */
|
|
raw_spinlock_t rt_runtime_lock;
|
|
ktime_t rt_period;
|
|
u64 rt_runtime;
|
|
struct hrtimer rt_period_timer;
|
|
unsigned int rt_period_active;
|
|
};
|
|
|
|
void __dl_clear_params(struct task_struct *p);
|
|
|
|
/*
|
|
* To keep the bandwidth of -deadline tasks and groups under control
|
|
* we need some place where:
|
|
* - store the maximum -deadline bandwidth of the system (the group);
|
|
* - cache the fraction of that bandwidth that is currently allocated.
|
|
*
|
|
* This is all done in the data structure below. It is similar to the
|
|
* one used for RT-throttling (rt_bandwidth), with the main difference
|
|
* that, since here we are only interested in admission control, we
|
|
* do not decrease any runtime while the group "executes", neither we
|
|
* need a timer to replenish it.
|
|
*
|
|
* With respect to SMP, the bandwidth is given on a per-CPU basis,
|
|
* meaning that:
|
|
* - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
|
|
* - dl_total_bw array contains, in the i-eth element, the currently
|
|
* allocated bandwidth on the i-eth CPU.
|
|
* Moreover, groups consume bandwidth on each CPU, while tasks only
|
|
* consume bandwidth on the CPU they're running on.
|
|
* Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
|
|
* that will be shown the next time the proc or cgroup controls will
|
|
* be red. It on its turn can be changed by writing on its own
|
|
* control.
|
|
*/
|
|
struct dl_bandwidth {
|
|
raw_spinlock_t dl_runtime_lock;
|
|
u64 dl_runtime;
|
|
u64 dl_period;
|
|
};
|
|
|
|
static inline int dl_bandwidth_enabled(void)
|
|
{
|
|
return sysctl_sched_rt_runtime >= 0;
|
|
}
|
|
|
|
extern struct dl_bw *dl_bw_of(int i);
|
|
|
|
struct dl_bw {
|
|
raw_spinlock_t lock;
|
|
u64 bw, total_bw;
|
|
};
|
|
|
|
static inline
|
|
void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
|
|
{
|
|
dl_b->total_bw -= tsk_bw;
|
|
}
|
|
|
|
static inline
|
|
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
|
|
{
|
|
dl_b->total_bw += tsk_bw;
|
|
}
|
|
|
|
static inline
|
|
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
|
|
{
|
|
return dl_b->bw != -1 &&
|
|
dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
|
|
}
|
|
|
|
extern struct mutex sched_domains_mutex;
|
|
|
|
#ifdef CONFIG_CGROUP_SCHED
|
|
|
|
#include <linux/cgroup.h>
|
|
|
|
struct cfs_rq;
|
|
struct rt_rq;
|
|
|
|
extern struct list_head task_groups;
|
|
|
|
struct cfs_bandwidth {
|
|
#ifdef CONFIG_CFS_BANDWIDTH
|
|
raw_spinlock_t lock;
|
|
ktime_t period;
|
|
u64 quota, runtime;
|
|
s64 hierarchical_quota;
|
|
u64 runtime_expires;
|
|
|
|
int idle, period_active;
|
|
struct hrtimer period_timer, slack_timer;
|
|
struct list_head throttled_cfs_rq;
|
|
|
|
/* statistics */
|
|
int nr_periods, nr_throttled;
|
|
u64 throttled_time;
|
|
#endif
|
|
};
|
|
|
|
/* task group related information */
|
|
struct task_group {
|
|
struct cgroup_subsys_state css;
|
|
|
|
#ifdef CONFIG_SCHED_HMP
|
|
bool upmigrate_discouraged;
|
|
#endif
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
/* schedulable entities of this group on each cpu */
|
|
struct sched_entity **se;
|
|
/* runqueue "owned" by this group on each cpu */
|
|
struct cfs_rq **cfs_rq;
|
|
unsigned long shares;
|
|
|
|
#ifdef CONFIG_SMP
|
|
atomic_long_t load_avg;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
struct sched_rt_entity **rt_se;
|
|
struct rt_rq **rt_rq;
|
|
|
|
struct rt_bandwidth rt_bandwidth;
|
|
#endif
|
|
|
|
struct rcu_head rcu;
|
|
struct list_head list;
|
|
|
|
struct task_group *parent;
|
|
struct list_head siblings;
|
|
struct list_head children;
|
|
|
|
#ifdef CONFIG_SCHED_AUTOGROUP
|
|
struct autogroup *autogroup;
|
|
#endif
|
|
|
|
struct cfs_bandwidth cfs_bandwidth;
|
|
};
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
|
|
|
|
/*
|
|
* A weight of 0 or 1 can cause arithmetics problems.
|
|
* A weight of a cfs_rq is the sum of weights of which entities
|
|
* are queued on this cfs_rq, so a weight of a entity should not be
|
|
* too large, so as the shares value of a task group.
|
|
* (The default weight is 1024 - so there's no practical
|
|
* limitation from this.)
|
|
*/
|
|
#define MIN_SHARES (1UL << 1)
|
|
#define MAX_SHARES (1UL << 18)
|
|
#endif
|
|
|
|
typedef int (*tg_visitor)(struct task_group *, void *);
|
|
|
|
extern int walk_tg_tree_from(struct task_group *from,
|
|
tg_visitor down, tg_visitor up, void *data);
|
|
|
|
/*
|
|
* Iterate the full tree, calling @down when first entering a node and @up when
|
|
* leaving it for the final time.
|
|
*
|
|
* Caller must hold rcu_lock or sufficient equivalent.
|
|
*/
|
|
static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
|
|
{
|
|
return walk_tg_tree_from(&root_task_group, down, up, data);
|
|
}
|
|
|
|
extern int tg_nop(struct task_group *tg, void *data);
|
|
|
|
extern void free_fair_sched_group(struct task_group *tg);
|
|
extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
|
|
extern void unregister_fair_sched_group(struct task_group *tg);
|
|
extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
|
|
struct sched_entity *se, int cpu,
|
|
struct sched_entity *parent);
|
|
extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
|
|
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
|
|
|
|
extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
|
|
extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
|
|
extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
|
|
|
|
extern void free_rt_sched_group(struct task_group *tg);
|
|
extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
|
|
extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
|
|
struct sched_rt_entity *rt_se, int cpu,
|
|
struct sched_rt_entity *parent);
|
|
|
|
extern struct task_group *sched_create_group(struct task_group *parent);
|
|
extern void sched_online_group(struct task_group *tg,
|
|
struct task_group *parent);
|
|
extern void sched_destroy_group(struct task_group *tg);
|
|
extern void sched_offline_group(struct task_group *tg);
|
|
|
|
extern void sched_move_task(struct task_struct *tsk);
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
|
|
|
|
#ifdef CONFIG_SMP
|
|
extern void set_task_rq_fair(struct sched_entity *se,
|
|
struct cfs_rq *prev, struct cfs_rq *next);
|
|
#else /* !CONFIG_SMP */
|
|
static inline void set_task_rq_fair(struct sched_entity *se,
|
|
struct cfs_rq *prev, struct cfs_rq *next) { }
|
|
#endif /* CONFIG_SMP */
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
|
extern struct task_group *css_tg(struct cgroup_subsys_state *css);
|
|
#else /* CONFIG_CGROUP_SCHED */
|
|
|
|
struct cfs_bandwidth { };
|
|
|
|
#endif /* CONFIG_CGROUP_SCHED */
|
|
|
|
#ifdef CONFIG_SCHED_HMP
|
|
|
|
#define NUM_TRACKED_WINDOWS 2
|
|
#define NUM_LOAD_INDICES 1000
|
|
|
|
struct hmp_sched_stats {
|
|
int nr_big_tasks;
|
|
u64 cumulative_runnable_avg;
|
|
u64 pred_demands_sum;
|
|
};
|
|
|
|
struct load_subtractions {
|
|
u64 window_start;
|
|
u64 subs;
|
|
u64 new_subs;
|
|
};
|
|
|
|
struct group_cpu_time {
|
|
u64 curr_runnable_sum;
|
|
u64 prev_runnable_sum;
|
|
u64 nt_curr_runnable_sum;
|
|
u64 nt_prev_runnable_sum;
|
|
};
|
|
|
|
struct sched_cluster {
|
|
raw_spinlock_t load_lock;
|
|
struct list_head list;
|
|
struct cpumask cpus;
|
|
int id;
|
|
int max_power_cost;
|
|
int min_power_cost;
|
|
int max_possible_capacity;
|
|
int capacity;
|
|
int efficiency; /* Differentiate cpus with different IPC capability */
|
|
int load_scale_factor;
|
|
unsigned int exec_scale_factor;
|
|
/*
|
|
* max_freq = user maximum
|
|
* max_mitigated_freq = thermal defined maximum
|
|
* max_possible_freq = maximum supported by hardware
|
|
*/
|
|
unsigned int cur_freq, max_freq, max_mitigated_freq, min_freq;
|
|
unsigned int max_possible_freq;
|
|
bool freq_init_done;
|
|
int dstate, dstate_wakeup_latency, dstate_wakeup_energy;
|
|
unsigned int static_cluster_pwr_cost;
|
|
int notifier_sent;
|
|
bool wake_up_idle;
|
|
atomic64_t last_cc_update;
|
|
atomic64_t cycles;
|
|
};
|
|
|
|
extern unsigned long all_cluster_ids[];
|
|
|
|
static inline int cluster_first_cpu(struct sched_cluster *cluster)
|
|
{
|
|
return cpumask_first(&cluster->cpus);
|
|
}
|
|
|
|
struct related_thread_group {
|
|
int id;
|
|
raw_spinlock_t lock;
|
|
struct list_head tasks;
|
|
struct list_head list;
|
|
struct sched_cluster *preferred_cluster;
|
|
struct rcu_head rcu;
|
|
u64 last_update;
|
|
};
|
|
|
|
extern struct list_head cluster_head;
|
|
extern int num_clusters;
|
|
extern struct sched_cluster *sched_cluster[NR_CPUS];
|
|
|
|
struct cpu_cycle {
|
|
u64 cycles;
|
|
u64 time;
|
|
};
|
|
|
|
#define for_each_sched_cluster(cluster) \
|
|
list_for_each_entry_rcu(cluster, &cluster_head, list)
|
|
|
|
#endif /* CONFIG_SCHED_HMP */
|
|
|
|
/* CFS-related fields in a runqueue */
|
|
struct cfs_rq {
|
|
struct load_weight load;
|
|
unsigned int nr_running, h_nr_running;
|
|
|
|
u64 exec_clock;
|
|
u64 min_vruntime;
|
|
#ifndef CONFIG_64BIT
|
|
u64 min_vruntime_copy;
|
|
#endif
|
|
|
|
struct rb_root tasks_timeline;
|
|
struct rb_node *rb_leftmost;
|
|
|
|
/*
|
|
* 'curr' points to currently running entity on this cfs_rq.
|
|
* It is set to NULL otherwise (i.e when none are currently running).
|
|
*/
|
|
struct sched_entity *curr, *next, *last, *skip;
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
unsigned int nr_spread_over;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* CFS load tracking
|
|
*/
|
|
struct sched_avg avg;
|
|
u64 runnable_load_sum;
|
|
unsigned long runnable_load_avg;
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
unsigned long tg_load_avg_contrib;
|
|
unsigned long propagate_avg;
|
|
#endif
|
|
atomic_long_t removed_load_avg, removed_util_avg;
|
|
#ifndef CONFIG_64BIT
|
|
u64 load_last_update_time_copy;
|
|
#endif
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
/*
|
|
* h_load = weight * f(tg)
|
|
*
|
|
* Where f(tg) is the recursive weight fraction assigned to
|
|
* this group.
|
|
*/
|
|
unsigned long h_load;
|
|
u64 last_h_load_update;
|
|
struct sched_entity *h_load_next;
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
|
|
|
|
/*
|
|
* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
|
|
* a hierarchy). Non-leaf lrqs hold other higher schedulable entities
|
|
* (like users, containers etc.)
|
|
*
|
|
* leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
|
|
* list is used during load balance.
|
|
*/
|
|
int on_list;
|
|
struct list_head leaf_cfs_rq_list;
|
|
struct task_group *tg; /* group that "owns" this runqueue */
|
|
|
|
#ifdef CONFIG_CFS_BANDWIDTH
|
|
|
|
#ifdef CONFIG_SCHED_HMP
|
|
struct hmp_sched_stats hmp_stats;
|
|
#endif
|
|
|
|
int runtime_enabled;
|
|
u64 runtime_expires;
|
|
s64 runtime_remaining;
|
|
|
|
u64 throttled_clock, throttled_clock_task;
|
|
u64 throttled_clock_task_time;
|
|
int throttled, throttle_count, throttle_uptodate;
|
|
struct list_head throttled_list;
|
|
#endif /* CONFIG_CFS_BANDWIDTH */
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
};
|
|
|
|
static inline int rt_bandwidth_enabled(void)
|
|
{
|
|
return sysctl_sched_rt_runtime >= 0;
|
|
}
|
|
|
|
/* RT IPI pull logic requires IRQ_WORK */
|
|
#ifdef CONFIG_IRQ_WORK
|
|
# define HAVE_RT_PUSH_IPI
|
|
#endif
|
|
|
|
/* Real-Time classes' related field in a runqueue: */
|
|
struct rt_rq {
|
|
struct rt_prio_array active;
|
|
unsigned int rt_nr_running;
|
|
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
|
|
struct {
|
|
int curr; /* highest queued rt task prio */
|
|
#ifdef CONFIG_SMP
|
|
int next; /* next highest */
|
|
#endif
|
|
} highest_prio;
|
|
#endif
|
|
#ifdef CONFIG_SMP
|
|
unsigned long rt_nr_migratory;
|
|
unsigned long rt_nr_total;
|
|
int overloaded;
|
|
struct plist_head pushable_tasks;
|
|
#ifdef HAVE_RT_PUSH_IPI
|
|
int push_flags;
|
|
int push_cpu;
|
|
struct irq_work push_work;
|
|
raw_spinlock_t push_lock;
|
|
#endif
|
|
#endif /* CONFIG_SMP */
|
|
int rt_queued;
|
|
|
|
int rt_throttled;
|
|
u64 rt_time;
|
|
u64 rt_runtime;
|
|
/* Nests inside the rq lock: */
|
|
raw_spinlock_t rt_runtime_lock;
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
unsigned long rt_nr_boosted;
|
|
|
|
struct rq *rq;
|
|
struct task_group *tg;
|
|
#endif
|
|
};
|
|
|
|
/* Deadline class' related fields in a runqueue */
|
|
struct dl_rq {
|
|
/* runqueue is an rbtree, ordered by deadline */
|
|
struct rb_root rb_root;
|
|
struct rb_node *rb_leftmost;
|
|
|
|
unsigned long dl_nr_running;
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Deadline values of the currently executing and the
|
|
* earliest ready task on this rq. Caching these facilitates
|
|
* the decision wether or not a ready but not running task
|
|
* should migrate somewhere else.
|
|
*/
|
|
struct {
|
|
u64 curr;
|
|
u64 next;
|
|
} earliest_dl;
|
|
|
|
unsigned long dl_nr_migratory;
|
|
int overloaded;
|
|
|
|
/*
|
|
* Tasks on this rq that can be pushed away. They are kept in
|
|
* an rb-tree, ordered by tasks' deadlines, with caching
|
|
* of the leftmost (earliest deadline) element.
|
|
*/
|
|
struct rb_root pushable_dl_tasks_root;
|
|
struct rb_node *pushable_dl_tasks_leftmost;
|
|
#else
|
|
struct dl_bw dl_bw;
|
|
#endif
|
|
/* This is the "average utilization" for this runqueue */
|
|
s64 avg_bw;
|
|
};
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
struct max_cpu_capacity {
|
|
raw_spinlock_t lock;
|
|
unsigned long val;
|
|
int cpu;
|
|
};
|
|
|
|
/*
|
|
* We add the notion of a root-domain which will be used to define per-domain
|
|
* variables. Each exclusive cpuset essentially defines an island domain by
|
|
* fully partitioning the member cpus from any other cpuset. Whenever a new
|
|
* exclusive cpuset is created, we also create and attach a new root-domain
|
|
* object.
|
|
*
|
|
*/
|
|
struct root_domain {
|
|
atomic_t refcount;
|
|
atomic_t rto_count;
|
|
struct rcu_head rcu;
|
|
cpumask_var_t span;
|
|
cpumask_var_t online;
|
|
|
|
/* Indicate more than one runnable task for any CPU */
|
|
bool overload;
|
|
|
|
/* Indicate one or more cpus over-utilized (tipping point) */
|
|
bool overutilized;
|
|
|
|
/*
|
|
* The bit corresponding to a CPU gets set here if such CPU has more
|
|
* than one runnable -deadline task (as it is below for RT tasks).
|
|
*/
|
|
cpumask_var_t dlo_mask;
|
|
atomic_t dlo_count;
|
|
struct dl_bw dl_bw;
|
|
struct cpudl cpudl;
|
|
|
|
/*
|
|
* The "RT overload" flag: it gets set if a CPU has more than
|
|
* one runnable RT task.
|
|
*/
|
|
cpumask_var_t rto_mask;
|
|
struct cpupri cpupri;
|
|
|
|
/* Maximum cpu capacity in the system. */
|
|
struct max_cpu_capacity max_cpu_capacity;
|
|
|
|
/* First cpu with maximum and minimum original capacity */
|
|
int max_cap_orig_cpu, min_cap_orig_cpu;
|
|
};
|
|
|
|
extern struct root_domain def_root_domain;
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*
|
|
* This is the main, per-CPU runqueue data structure.
|
|
*
|
|
* Locking rule: those places that want to lock multiple runqueues
|
|
* (such as the load balancing or the thread migration code), lock
|
|
* acquire operations must be ordered by ascending &runqueue.
|
|
*/
|
|
struct rq {
|
|
/* runqueue lock: */
|
|
raw_spinlock_t lock;
|
|
|
|
/*
|
|
* nr_running and cpu_load should be in the same cacheline because
|
|
* remote CPUs use both these fields when doing load calculation.
|
|
*/
|
|
unsigned int nr_running;
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
unsigned int nr_numa_running;
|
|
unsigned int nr_preferred_running;
|
|
#endif
|
|
#define CPU_LOAD_IDX_MAX 5
|
|
unsigned long cpu_load[CPU_LOAD_IDX_MAX];
|
|
unsigned long last_load_update_tick;
|
|
unsigned int misfit_task;
|
|
#ifdef CONFIG_NO_HZ_COMMON
|
|
u64 nohz_stamp;
|
|
unsigned long nohz_flags;
|
|
#endif
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
unsigned long last_sched_tick;
|
|
#endif
|
|
|
|
#ifdef CONFIG_CPU_QUIET
|
|
/* time-based average load */
|
|
u64 nr_last_stamp;
|
|
u64 nr_running_integral;
|
|
seqcount_t ave_seqcnt;
|
|
#endif
|
|
|
|
/* capture load from *all* tasks on this cpu: */
|
|
struct load_weight load;
|
|
unsigned long nr_load_updates;
|
|
u64 nr_switches;
|
|
|
|
struct cfs_rq cfs;
|
|
struct rt_rq rt;
|
|
struct dl_rq dl;
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
/* list of leaf cfs_rq on this cpu: */
|
|
struct list_head leaf_cfs_rq_list;
|
|
struct list_head *tmp_alone_branch;
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
|
/*
|
|
* This is part of a global counter where only the total sum
|
|
* over all CPUs matters. A task can increase this counter on
|
|
* one CPU and if it got migrated afterwards it may decrease
|
|
* it on another CPU. Always updated under the runqueue lock:
|
|
*/
|
|
unsigned long nr_uninterruptible;
|
|
|
|
struct task_struct *curr, *idle, *stop;
|
|
unsigned long next_balance;
|
|
struct mm_struct *prev_mm;
|
|
|
|
unsigned int clock_skip_update;
|
|
u64 clock;
|
|
u64 clock_task;
|
|
|
|
atomic_t nr_iowait;
|
|
|
|
#ifdef CONFIG_SMP
|
|
struct root_domain *rd;
|
|
struct sched_domain *sd;
|
|
|
|
unsigned long cpu_capacity;
|
|
unsigned long cpu_capacity_orig;
|
|
|
|
struct callback_head *balance_callback;
|
|
|
|
unsigned char idle_balance;
|
|
/* For active balancing */
|
|
int active_balance;
|
|
int push_cpu;
|
|
struct task_struct *push_task;
|
|
struct cpu_stop_work active_balance_work;
|
|
/* cpu of this runqueue: */
|
|
int cpu;
|
|
int online;
|
|
|
|
struct list_head cfs_tasks;
|
|
|
|
u64 rt_avg;
|
|
u64 age_stamp;
|
|
u64 idle_stamp;
|
|
u64 avg_idle;
|
|
|
|
/* This is used to determine avg_idle's max value */
|
|
u64 max_idle_balance_cost;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_HMP
|
|
struct sched_cluster *cluster;
|
|
struct cpumask freq_domain_cpumask;
|
|
struct hmp_sched_stats hmp_stats;
|
|
|
|
int cstate, wakeup_latency, wakeup_energy;
|
|
u64 window_start;
|
|
unsigned long hmp_flags;
|
|
|
|
u64 cur_irqload;
|
|
u64 avg_irqload;
|
|
u64 irqload_ts;
|
|
unsigned int static_cpu_pwr_cost;
|
|
struct task_struct *ed_task;
|
|
struct cpu_cycle cc;
|
|
u64 old_busy_time, old_busy_time_group;
|
|
u64 old_estimated_time;
|
|
u64 curr_runnable_sum;
|
|
u64 prev_runnable_sum;
|
|
u64 nt_curr_runnable_sum;
|
|
u64 nt_prev_runnable_sum;
|
|
struct group_cpu_time grp_time;
|
|
struct load_subtractions load_subs[NUM_TRACKED_WINDOWS];
|
|
DECLARE_BITMAP_ARRAY(top_tasks_bitmap,
|
|
NUM_TRACKED_WINDOWS, NUM_LOAD_INDICES);
|
|
u8 *top_tasks[NUM_TRACKED_WINDOWS];
|
|
u8 curr_table;
|
|
int prev_top;
|
|
int curr_top;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_WALT
|
|
u64 cumulative_runnable_avg;
|
|
u64 window_start;
|
|
u64 curr_runnable_sum;
|
|
u64 prev_runnable_sum;
|
|
u64 nt_curr_runnable_sum;
|
|
u64 nt_prev_runnable_sum;
|
|
u64 cur_irqload;
|
|
u64 avg_irqload;
|
|
u64 irqload_ts;
|
|
u64 cum_window_demand;
|
|
#endif /* CONFIG_SCHED_WALT */
|
|
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
u64 prev_irq_time;
|
|
#endif
|
|
#ifdef CONFIG_PARAVIRT
|
|
u64 prev_steal_time;
|
|
#endif
|
|
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
|
|
u64 prev_steal_time_rq;
|
|
#endif
|
|
|
|
/* calc_load related fields */
|
|
unsigned long calc_load_update;
|
|
long calc_load_active;
|
|
|
|
#ifdef CONFIG_SCHED_HRTICK
|
|
#ifdef CONFIG_SMP
|
|
int hrtick_csd_pending;
|
|
struct call_single_data hrtick_csd;
|
|
#endif
|
|
struct hrtimer hrtick_timer;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
/* latency stats */
|
|
struct sched_info rq_sched_info;
|
|
unsigned long long rq_cpu_time;
|
|
/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
|
|
|
|
/* sys_sched_yield() stats */
|
|
unsigned int yld_count;
|
|
|
|
/* schedule() stats */
|
|
unsigned int sched_count;
|
|
unsigned int sched_goidle;
|
|
|
|
/* try_to_wake_up() stats */
|
|
unsigned int ttwu_count;
|
|
unsigned int ttwu_local;
|
|
#ifdef CONFIG_SMP
|
|
struct eas_stats eas_stats;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
struct llist_head wake_list;
|
|
#endif
|
|
|
|
#ifdef CONFIG_CPU_IDLE
|
|
/* Must be inspected within a rcu lock section */
|
|
struct cpuidle_state *idle_state;
|
|
int idle_state_idx;
|
|
#endif
|
|
};
|
|
|
|
static inline int cpu_of(struct rq *rq)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
return rq->cpu;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
|
|
|
|
#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
|
|
#define this_rq() this_cpu_ptr(&runqueues)
|
|
#define task_rq(p) cpu_rq(task_cpu(p))
|
|
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
|
|
#define raw_rq() raw_cpu_ptr(&runqueues)
|
|
|
|
static inline u64 __rq_clock_broken(struct rq *rq)
|
|
{
|
|
return READ_ONCE(rq->clock);
|
|
}
|
|
|
|
static inline u64 rq_clock(struct rq *rq)
|
|
{
|
|
lockdep_assert_held(&rq->lock);
|
|
return rq->clock;
|
|
}
|
|
|
|
static inline u64 rq_clock_task(struct rq *rq)
|
|
{
|
|
lockdep_assert_held(&rq->lock);
|
|
return rq->clock_task;
|
|
}
|
|
|
|
#define RQCF_REQ_SKIP 0x01
|
|
#define RQCF_ACT_SKIP 0x02
|
|
|
|
static inline void rq_clock_skip_update(struct rq *rq, bool skip)
|
|
{
|
|
lockdep_assert_held(&rq->lock);
|
|
if (skip)
|
|
rq->clock_skip_update |= RQCF_REQ_SKIP;
|
|
else
|
|
rq->clock_skip_update &= ~RQCF_REQ_SKIP;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
enum numa_topology_type {
|
|
NUMA_DIRECT,
|
|
NUMA_GLUELESS_MESH,
|
|
NUMA_BACKPLANE,
|
|
};
|
|
extern enum numa_topology_type sched_numa_topology_type;
|
|
extern int sched_max_numa_distance;
|
|
extern bool find_numa_distance(int distance);
|
|
#endif
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
/* The regions in numa_faults array from task_struct */
|
|
enum numa_faults_stats {
|
|
NUMA_MEM = 0,
|
|
NUMA_CPU,
|
|
NUMA_MEMBUF,
|
|
NUMA_CPUBUF
|
|
};
|
|
extern void sched_setnuma(struct task_struct *p, int node);
|
|
extern int migrate_task_to(struct task_struct *p, int cpu);
|
|
extern int migrate_swap(struct task_struct *, struct task_struct *);
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static inline void
|
|
queue_balance_callback(struct rq *rq,
|
|
struct callback_head *head,
|
|
void (*func)(struct rq *rq))
|
|
{
|
|
lockdep_assert_held(&rq->lock);
|
|
|
|
if (unlikely(head->next))
|
|
return;
|
|
|
|
head->func = (void (*)(struct callback_head *))func;
|
|
head->next = rq->balance_callback;
|
|
rq->balance_callback = head;
|
|
}
|
|
|
|
extern void sched_ttwu_pending(void);
|
|
|
|
#define rcu_dereference_check_sched_domain(p) \
|
|
rcu_dereference_check((p), \
|
|
lockdep_is_held(&sched_domains_mutex))
|
|
|
|
/*
|
|
* The domain tree (rq->sd) is protected by RCU's quiescent state transition.
|
|
* See detach_destroy_domains: synchronize_sched for details.
|
|
*
|
|
* The domain tree of any CPU may only be accessed from within
|
|
* preempt-disabled sections.
|
|
*/
|
|
#define for_each_domain(cpu, __sd) \
|
|
for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
|
|
__sd; __sd = __sd->parent)
|
|
|
|
#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
|
|
|
|
/**
|
|
* highest_flag_domain - Return highest sched_domain containing flag.
|
|
* @cpu: The cpu whose highest level of sched domain is to
|
|
* be returned.
|
|
* @flag: The flag to check for the highest sched_domain
|
|
* for the given cpu.
|
|
*
|
|
* Returns the highest sched_domain of a cpu which contains the given flag.
|
|
*/
|
|
static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
|
|
{
|
|
struct sched_domain *sd, *hsd = NULL;
|
|
|
|
for_each_domain(cpu, sd) {
|
|
if (!(sd->flags & flag))
|
|
break;
|
|
hsd = sd;
|
|
}
|
|
|
|
return hsd;
|
|
}
|
|
|
|
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
|
|
{
|
|
struct sched_domain *sd;
|
|
|
|
for_each_domain(cpu, sd) {
|
|
if (sd->flags & flag)
|
|
break;
|
|
}
|
|
|
|
return sd;
|
|
}
|
|
|
|
DECLARE_PER_CPU(struct sched_domain *, sd_llc);
|
|
DECLARE_PER_CPU(int, sd_llc_size);
|
|
DECLARE_PER_CPU(int, sd_llc_id);
|
|
DECLARE_PER_CPU(struct sched_domain *, sd_numa);
|
|
DECLARE_PER_CPU(struct sched_domain *, sd_busy);
|
|
DECLARE_PER_CPU(struct sched_domain *, sd_asym);
|
|
DECLARE_PER_CPU(struct sched_domain *, sd_ea);
|
|
DECLARE_PER_CPU(struct sched_domain *, sd_scs);
|
|
|
|
struct sched_group_capacity {
|
|
atomic_t ref;
|
|
/*
|
|
* CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
|
|
* for a single CPU.
|
|
*/
|
|
unsigned long capacity;
|
|
unsigned long max_capacity; /* Max per-cpu capacity in group */
|
|
unsigned long min_capacity; /* Min per-CPU capacity in group */
|
|
unsigned long next_update;
|
|
int imbalance; /* XXX unrelated to capacity but shared group state */
|
|
/*
|
|
* Number of busy cpus in this group.
|
|
*/
|
|
atomic_t nr_busy_cpus;
|
|
|
|
unsigned long cpumask[0]; /* iteration mask */
|
|
};
|
|
|
|
struct sched_group {
|
|
struct sched_group *next; /* Must be a circular list */
|
|
atomic_t ref;
|
|
|
|
unsigned int group_weight;
|
|
struct sched_group_capacity *sgc;
|
|
const struct sched_group_energy *sge;
|
|
|
|
/*
|
|
* The CPUs this group covers.
|
|
*
|
|
* NOTE: this field is variable length. (Allocated dynamically
|
|
* by attaching extra space to the end of the structure,
|
|
* depending on how many CPUs the kernel has booted up with)
|
|
*/
|
|
unsigned long cpumask[0];
|
|
};
|
|
|
|
static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
|
|
{
|
|
return to_cpumask(sg->cpumask);
|
|
}
|
|
|
|
/*
|
|
* cpumask masking which cpus in the group are allowed to iterate up the domain
|
|
* tree.
|
|
*/
|
|
static inline struct cpumask *sched_group_mask(struct sched_group *sg)
|
|
{
|
|
return to_cpumask(sg->sgc->cpumask);
|
|
}
|
|
|
|
/**
|
|
* group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
|
|
* @group: The group whose first cpu is to be returned.
|
|
*/
|
|
static inline unsigned int group_first_cpu(struct sched_group *group)
|
|
{
|
|
return cpumask_first(sched_group_cpus(group));
|
|
}
|
|
|
|
extern int group_balance_cpu(struct sched_group *sg);
|
|
|
|
#else
|
|
|
|
static inline void sched_ttwu_pending(void) { }
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#include "stats.h"
|
|
#include "auto_group.h"
|
|
|
|
enum sched_boost_policy {
|
|
SCHED_BOOST_NONE,
|
|
SCHED_BOOST_ON_BIG,
|
|
SCHED_BOOST_ON_ALL,
|
|
};
|
|
|
|
#ifdef CONFIG_SCHED_HMP
|
|
|
|
#define WINDOW_STATS_RECENT 0
|
|
#define WINDOW_STATS_MAX 1
|
|
#define WINDOW_STATS_MAX_RECENT_AVG 2
|
|
#define WINDOW_STATS_AVG 3
|
|
#define WINDOW_STATS_INVALID_POLICY 4
|
|
|
|
#define SCHED_UPMIGRATE_MIN_NICE 15
|
|
#define EXITING_TASK_MARKER 0xdeaddead
|
|
|
|
#define UP_MIGRATION 1
|
|
#define DOWN_MIGRATION 2
|
|
#define IRQLOAD_MIGRATION 3
|
|
|
|
extern struct mutex policy_mutex;
|
|
extern unsigned int sched_ravg_window;
|
|
extern unsigned int sched_disable_window_stats;
|
|
extern unsigned int max_possible_freq;
|
|
extern unsigned int min_max_freq;
|
|
extern unsigned int pct_task_load(struct task_struct *p);
|
|
extern unsigned int max_possible_efficiency;
|
|
extern unsigned int min_possible_efficiency;
|
|
extern unsigned int max_capacity;
|
|
extern unsigned int min_capacity;
|
|
extern unsigned int max_load_scale_factor;
|
|
extern unsigned int max_possible_capacity;
|
|
extern unsigned int min_max_possible_capacity;
|
|
extern unsigned int max_power_cost;
|
|
extern unsigned int sched_init_task_load_windows;
|
|
extern unsigned int up_down_migrate_scale_factor;
|
|
extern unsigned int sysctl_sched_restrict_cluster_spill;
|
|
extern unsigned int sched_pred_alert_load;
|
|
extern struct sched_cluster init_cluster;
|
|
extern unsigned int __read_mostly sched_short_sleep_task_threshold;
|
|
extern unsigned int __read_mostly sched_long_cpu_selection_threshold;
|
|
extern unsigned int __read_mostly sched_big_waker_task_load;
|
|
extern unsigned int __read_mostly sched_small_wakee_task_load;
|
|
extern unsigned int __read_mostly sched_spill_load;
|
|
extern unsigned int __read_mostly sched_upmigrate;
|
|
extern unsigned int __read_mostly sched_downmigrate;
|
|
extern unsigned int __read_mostly sysctl_sched_spill_nr_run;
|
|
extern unsigned int __read_mostly sched_load_granule;
|
|
|
|
extern void init_new_task_load(struct task_struct *p, bool idle_task);
|
|
extern u64 sched_ktime_clock(void);
|
|
extern int got_boost_kick(void);
|
|
extern int register_cpu_cycle_counter_cb(struct cpu_cycle_counter_cb *cb);
|
|
extern void update_task_ravg(struct task_struct *p, struct rq *rq, int event,
|
|
u64 wallclock, u64 irqtime);
|
|
extern bool early_detection_notify(struct rq *rq, u64 wallclock);
|
|
extern void clear_ed_task(struct task_struct *p, struct rq *rq);
|
|
extern void fixup_busy_time(struct task_struct *p, int new_cpu);
|
|
extern void clear_boost_kick(int cpu);
|
|
extern void clear_hmp_request(int cpu);
|
|
extern void mark_task_starting(struct task_struct *p);
|
|
extern void set_window_start(struct rq *rq);
|
|
extern void update_cluster_topology(void);
|
|
extern void note_task_waking(struct task_struct *p, u64 wallclock);
|
|
extern void set_task_last_switch_out(struct task_struct *p, u64 wallclock);
|
|
extern void init_clusters(void);
|
|
extern void reset_cpu_hmp_stats(int cpu, int reset_cra);
|
|
extern unsigned int max_task_load(void);
|
|
extern void sched_account_irqtime(int cpu, struct task_struct *curr,
|
|
u64 delta, u64 wallclock);
|
|
extern void sched_account_irqstart(int cpu, struct task_struct *curr,
|
|
u64 wallclock);
|
|
extern unsigned int cpu_temp(int cpu);
|
|
extern unsigned int nr_eligible_big_tasks(int cpu);
|
|
extern int update_preferred_cluster(struct related_thread_group *grp,
|
|
struct task_struct *p, u32 old_load);
|
|
extern void set_preferred_cluster(struct related_thread_group *grp);
|
|
extern void add_new_task_to_grp(struct task_struct *new);
|
|
extern unsigned int update_freq_aggregate_threshold(unsigned int threshold);
|
|
extern void update_avg_burst(struct task_struct *p);
|
|
extern void update_avg(u64 *avg, u64 sample);
|
|
|
|
#define NO_BOOST 0
|
|
#define FULL_THROTTLE_BOOST 1
|
|
#define CONSERVATIVE_BOOST 2
|
|
#define RESTRAINED_BOOST 3
|
|
|
|
static inline struct sched_cluster *cpu_cluster(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->cluster;
|
|
}
|
|
|
|
static inline int cpu_capacity(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->cluster->capacity;
|
|
}
|
|
|
|
static inline int cpu_max_possible_capacity(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->cluster->max_possible_capacity;
|
|
}
|
|
|
|
static inline int cpu_load_scale_factor(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->cluster->load_scale_factor;
|
|
}
|
|
|
|
static inline int cpu_efficiency(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->cluster->efficiency;
|
|
}
|
|
|
|
static inline unsigned int cpu_cur_freq(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->cluster->cur_freq;
|
|
}
|
|
|
|
static inline unsigned int cpu_min_freq(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->cluster->min_freq;
|
|
}
|
|
|
|
static inline unsigned int cluster_max_freq(struct sched_cluster *cluster)
|
|
{
|
|
/*
|
|
* Governor and thermal driver don't know the other party's mitigation
|
|
* voting. So struct cluster saves both and return min() for current
|
|
* cluster fmax.
|
|
*/
|
|
return min(cluster->max_mitigated_freq, cluster->max_freq);
|
|
}
|
|
|
|
static inline unsigned int cpu_max_freq(int cpu)
|
|
{
|
|
return cluster_max_freq(cpu_rq(cpu)->cluster);
|
|
}
|
|
|
|
static inline unsigned int cpu_max_possible_freq(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->cluster->max_possible_freq;
|
|
}
|
|
|
|
static inline int same_cluster(int src_cpu, int dst_cpu)
|
|
{
|
|
return cpu_rq(src_cpu)->cluster == cpu_rq(dst_cpu)->cluster;
|
|
}
|
|
|
|
static inline int cpu_max_power_cost(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->cluster->max_power_cost;
|
|
}
|
|
|
|
static inline int cpu_min_power_cost(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->cluster->min_power_cost;
|
|
}
|
|
|
|
static inline u32 cpu_cycles_to_freq(u64 cycles, u32 period)
|
|
{
|
|
return div64_u64(cycles, period);
|
|
}
|
|
|
|
static inline bool hmp_capable(void)
|
|
{
|
|
return max_possible_capacity != min_max_possible_capacity;
|
|
}
|
|
|
|
static inline bool is_max_capacity_cpu(int cpu)
|
|
{
|
|
return cpu_max_possible_capacity(cpu) == max_possible_capacity;
|
|
}
|
|
|
|
/*
|
|
* 'load' is in reference to "best cpu" at its best frequency.
|
|
* Scale that in reference to a given cpu, accounting for how bad it is
|
|
* in reference to "best cpu".
|
|
*/
|
|
static inline u64 scale_load_to_cpu(u64 task_load, int cpu)
|
|
{
|
|
u64 lsf = cpu_load_scale_factor(cpu);
|
|
|
|
if (lsf != 1024) {
|
|
task_load *= lsf;
|
|
task_load /= 1024;
|
|
}
|
|
|
|
return task_load;
|
|
}
|
|
|
|
static inline unsigned int task_load(struct task_struct *p)
|
|
{
|
|
return p->ravg.demand;
|
|
}
|
|
|
|
static inline void
|
|
inc_cumulative_runnable_avg(struct hmp_sched_stats *stats,
|
|
struct task_struct *p)
|
|
{
|
|
u32 task_load;
|
|
|
|
if (sched_disable_window_stats)
|
|
return;
|
|
|
|
task_load = sched_disable_window_stats ? 0 : p->ravg.demand;
|
|
|
|
stats->cumulative_runnable_avg += task_load;
|
|
stats->pred_demands_sum += p->ravg.pred_demand;
|
|
}
|
|
|
|
static inline void
|
|
dec_cumulative_runnable_avg(struct hmp_sched_stats *stats,
|
|
struct task_struct *p)
|
|
{
|
|
u32 task_load;
|
|
|
|
if (sched_disable_window_stats)
|
|
return;
|
|
|
|
task_load = sched_disable_window_stats ? 0 : p->ravg.demand;
|
|
|
|
stats->cumulative_runnable_avg -= task_load;
|
|
|
|
BUG_ON((s64)stats->cumulative_runnable_avg < 0);
|
|
|
|
stats->pred_demands_sum -= p->ravg.pred_demand;
|
|
BUG_ON((s64)stats->pred_demands_sum < 0);
|
|
}
|
|
|
|
static inline void
|
|
fixup_cumulative_runnable_avg(struct hmp_sched_stats *stats,
|
|
struct task_struct *p, s64 task_load_delta,
|
|
s64 pred_demand_delta)
|
|
{
|
|
if (sched_disable_window_stats)
|
|
return;
|
|
|
|
stats->cumulative_runnable_avg += task_load_delta;
|
|
BUG_ON((s64)stats->cumulative_runnable_avg < 0);
|
|
|
|
stats->pred_demands_sum += pred_demand_delta;
|
|
BUG_ON((s64)stats->pred_demands_sum < 0);
|
|
}
|
|
|
|
#define pct_to_real(tunable) \
|
|
(div64_u64((u64)tunable * (u64)max_task_load(), 100))
|
|
|
|
#define real_to_pct(tunable) \
|
|
(div64_u64((u64)tunable * (u64)100, (u64)max_task_load()))
|
|
|
|
#define SCHED_HIGH_IRQ_TIMEOUT 3
|
|
static inline u64 sched_irqload(int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
s64 delta;
|
|
|
|
delta = get_jiffies_64() - rq->irqload_ts;
|
|
/*
|
|
* Current context can be preempted by irq and rq->irqload_ts can be
|
|
* updated by irq context so that delta can be negative.
|
|
* But this is okay and we can safely return as this means there
|
|
* was recent irq occurrence.
|
|
*/
|
|
|
|
if (delta < SCHED_HIGH_IRQ_TIMEOUT)
|
|
return rq->avg_irqload;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static inline int sched_cpu_high_irqload(int cpu)
|
|
{
|
|
return sched_irqload(cpu) >= sysctl_sched_cpu_high_irqload;
|
|
}
|
|
|
|
static inline bool task_in_related_thread_group(struct task_struct *p)
|
|
{
|
|
return !!(rcu_access_pointer(p->grp) != NULL);
|
|
}
|
|
|
|
static inline
|
|
struct related_thread_group *task_related_thread_group(struct task_struct *p)
|
|
{
|
|
return rcu_dereference(p->grp);
|
|
}
|
|
|
|
#define PRED_DEMAND_DELTA ((s64)new_pred_demand - p->ravg.pred_demand)
|
|
|
|
extern void
|
|
check_for_freq_change(struct rq *rq, bool check_pred, bool check_groups);
|
|
|
|
extern void notify_migration(int src_cpu, int dest_cpu,
|
|
bool src_cpu_dead, struct task_struct *p);
|
|
|
|
/* Is frequency of two cpus synchronized with each other? */
|
|
static inline int same_freq_domain(int src_cpu, int dst_cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(src_cpu);
|
|
|
|
if (src_cpu == dst_cpu)
|
|
return 1;
|
|
|
|
return cpumask_test_cpu(dst_cpu, &rq->freq_domain_cpumask);
|
|
}
|
|
|
|
#define BOOST_KICK 0
|
|
#define CPU_RESERVED 1
|
|
|
|
static inline int is_reserved(int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
return test_bit(CPU_RESERVED, &rq->hmp_flags);
|
|
}
|
|
|
|
static inline int mark_reserved(int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
/* Name boost_flags as hmp_flags? */
|
|
return test_and_set_bit(CPU_RESERVED, &rq->hmp_flags);
|
|
}
|
|
|
|
static inline void clear_reserved(int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
clear_bit(CPU_RESERVED, &rq->hmp_flags);
|
|
}
|
|
|
|
static inline u64 cpu_cravg_sync(int cpu, int sync)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
u64 load;
|
|
|
|
load = rq->hmp_stats.cumulative_runnable_avg;
|
|
|
|
/*
|
|
* If load is being checked in a sync wakeup environment,
|
|
* we may want to discount the load of the currently running
|
|
* task.
|
|
*/
|
|
if (sync && cpu == smp_processor_id()) {
|
|
if (load > rq->curr->ravg.demand)
|
|
load -= rq->curr->ravg.demand;
|
|
else
|
|
load = 0;
|
|
}
|
|
|
|
return load;
|
|
}
|
|
|
|
static inline bool is_short_burst_task(struct task_struct *p)
|
|
{
|
|
return p->ravg.avg_burst < sysctl_sched_short_burst &&
|
|
p->ravg.avg_sleep_time > sysctl_sched_short_sleep;
|
|
}
|
|
|
|
extern void pre_big_task_count_change(const struct cpumask *cpus);
|
|
extern void post_big_task_count_change(const struct cpumask *cpus);
|
|
extern void set_hmp_defaults(void);
|
|
extern int power_delta_exceeded(unsigned int cpu_cost, unsigned int base_cost);
|
|
extern unsigned int power_cost(int cpu, u64 demand);
|
|
extern void reset_all_window_stats(u64 window_start, unsigned int window_size);
|
|
extern int sched_boost(void);
|
|
extern int task_load_will_fit(struct task_struct *p, u64 task_load, int cpu,
|
|
enum sched_boost_policy boost_policy);
|
|
extern enum sched_boost_policy sched_boost_policy(void);
|
|
extern int task_will_fit(struct task_struct *p, int cpu);
|
|
extern u64 cpu_load(int cpu);
|
|
extern u64 cpu_load_sync(int cpu, int sync);
|
|
extern int preferred_cluster(struct sched_cluster *cluster,
|
|
struct task_struct *p);
|
|
extern void inc_nr_big_task(struct hmp_sched_stats *stats,
|
|
struct task_struct *p);
|
|
extern void dec_nr_big_task(struct hmp_sched_stats *stats,
|
|
struct task_struct *p);
|
|
extern void inc_rq_hmp_stats(struct rq *rq,
|
|
struct task_struct *p, int change_cra);
|
|
extern void dec_rq_hmp_stats(struct rq *rq,
|
|
struct task_struct *p, int change_cra);
|
|
extern void reset_hmp_stats(struct hmp_sched_stats *stats, int reset_cra);
|
|
extern int is_big_task(struct task_struct *p);
|
|
extern int upmigrate_discouraged(struct task_struct *p);
|
|
extern struct sched_cluster *rq_cluster(struct rq *rq);
|
|
extern int nr_big_tasks(struct rq *rq);
|
|
extern void fixup_nr_big_tasks(struct hmp_sched_stats *stats,
|
|
struct task_struct *p, s64 delta);
|
|
extern void reset_task_stats(struct task_struct *p);
|
|
extern void reset_cfs_rq_hmp_stats(int cpu, int reset_cra);
|
|
extern void _inc_hmp_sched_stats_fair(struct rq *rq,
|
|
struct task_struct *p, int change_cra);
|
|
extern u64 cpu_upmigrate_discourage_read_u64(struct cgroup_subsys_state *css,
|
|
struct cftype *cft);
|
|
extern int cpu_upmigrate_discourage_write_u64(struct cgroup_subsys_state *css,
|
|
struct cftype *cft, u64 upmigrate_discourage);
|
|
extern void sched_boost_parse_dt(void);
|
|
extern void clear_top_tasks_bitmap(unsigned long *bitmap);
|
|
|
|
#if defined(CONFIG_SCHED_TUNE) && defined(CONFIG_CGROUP_SCHEDTUNE)
|
|
extern bool task_sched_boost(struct task_struct *p);
|
|
extern int sync_cgroup_colocation(struct task_struct *p, bool insert);
|
|
extern bool same_schedtune(struct task_struct *tsk1, struct task_struct *tsk2);
|
|
extern void update_cgroup_boost_settings(void);
|
|
extern void restore_cgroup_boost_settings(void);
|
|
|
|
#else
|
|
static inline bool
|
|
same_schedtune(struct task_struct *tsk1, struct task_struct *tsk2)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static inline bool task_sched_boost(struct task_struct *p)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static inline void update_cgroup_boost_settings(void) { }
|
|
static inline void restore_cgroup_boost_settings(void) { }
|
|
#endif
|
|
|
|
extern int alloc_related_thread_groups(void);
|
|
|
|
#else /* CONFIG_SCHED_HMP */
|
|
|
|
struct hmp_sched_stats;
|
|
struct related_thread_group;
|
|
struct sched_cluster;
|
|
|
|
static inline enum sched_boost_policy sched_boost_policy(void)
|
|
{
|
|
return SCHED_BOOST_NONE;
|
|
}
|
|
|
|
static inline bool task_sched_boost(struct task_struct *p)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static inline int got_boost_kick(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void update_task_ravg(struct task_struct *p, struct rq *rq,
|
|
int event, u64 wallclock, u64 irqtime) { }
|
|
|
|
static inline bool early_detection_notify(struct rq *rq, u64 wallclock)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void clear_ed_task(struct task_struct *p, struct rq *rq) { }
|
|
static inline void fixup_busy_time(struct task_struct *p, int new_cpu) { }
|
|
static inline void clear_boost_kick(int cpu) { }
|
|
static inline void clear_hmp_request(int cpu) { }
|
|
static inline void mark_task_starting(struct task_struct *p) { }
|
|
static inline void set_window_start(struct rq *rq) { }
|
|
static inline void init_clusters(void) {}
|
|
static inline void update_cluster_topology(void) { }
|
|
static inline void note_task_waking(struct task_struct *p, u64 wallclock) { }
|
|
static inline void set_task_last_switch_out(struct task_struct *p,
|
|
u64 wallclock) { }
|
|
|
|
static inline int task_will_fit(struct task_struct *p, int cpu)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static inline int select_best_cpu(struct task_struct *p, int target,
|
|
int reason, int sync)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline unsigned int power_cost(int cpu, u64 demand)
|
|
{
|
|
return SCHED_CAPACITY_SCALE;
|
|
}
|
|
|
|
static inline int sched_boost(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int is_big_task(struct task_struct *p)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int nr_big_tasks(struct rq *rq)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int is_cpu_throttling_imminent(int cpu)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int is_task_migration_throttled(struct task_struct *p)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline unsigned int cpu_temp(int cpu)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
inc_rq_hmp_stats(struct rq *rq, struct task_struct *p, int change_cra) { }
|
|
|
|
static inline void
|
|
dec_rq_hmp_stats(struct rq *rq, struct task_struct *p, int change_cra) { }
|
|
|
|
static inline void
|
|
inc_hmp_sched_stats_fair(struct rq *rq, struct task_struct *p) { }
|
|
|
|
static inline void
|
|
dec_hmp_sched_stats_fair(struct rq *rq, struct task_struct *p) { }
|
|
|
|
static inline int
|
|
preferred_cluster(struct sched_cluster *cluster, struct task_struct *p)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static inline struct sched_cluster *rq_cluster(struct rq *rq)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline void init_new_task_load(struct task_struct *p, bool idle_task)
|
|
{
|
|
}
|
|
|
|
static inline u64 scale_load_to_cpu(u64 load, int cpu)
|
|
{
|
|
return load;
|
|
}
|
|
|
|
static inline unsigned int nr_eligible_big_tasks(int cpu)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline bool is_max_capacity_cpu(int cpu) { return true; }
|
|
|
|
static inline int pct_task_load(struct task_struct *p) { return 0; }
|
|
|
|
static inline int cpu_capacity(int cpu)
|
|
{
|
|
return SCHED_LOAD_SCALE;
|
|
}
|
|
|
|
static inline int same_cluster(int src_cpu, int dst_cpu) { return 1; }
|
|
|
|
static inline void inc_cumulative_runnable_avg(struct hmp_sched_stats *stats,
|
|
struct task_struct *p)
|
|
{
|
|
}
|
|
|
|
static inline void dec_cumulative_runnable_avg(struct hmp_sched_stats *stats,
|
|
struct task_struct *p)
|
|
{
|
|
}
|
|
|
|
static inline void sched_account_irqtime(int cpu, struct task_struct *curr,
|
|
u64 delta, u64 wallclock)
|
|
{
|
|
}
|
|
|
|
static inline void sched_account_irqstart(int cpu, struct task_struct *curr,
|
|
u64 wallclock)
|
|
{
|
|
}
|
|
|
|
static inline int sched_cpu_high_irqload(int cpu) { return 0; }
|
|
|
|
static inline void set_preferred_cluster(struct related_thread_group *grp) { }
|
|
|
|
static inline bool task_in_related_thread_group(struct task_struct *p)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline
|
|
struct related_thread_group *task_related_thread_group(struct task_struct *p)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline u32 task_load(struct task_struct *p) { return 0; }
|
|
|
|
static inline int update_preferred_cluster(struct related_thread_group *grp,
|
|
struct task_struct *p, u32 old_load)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void add_new_task_to_grp(struct task_struct *new) {}
|
|
|
|
#define PRED_DEMAND_DELTA (0)
|
|
|
|
static inline void
|
|
check_for_freq_change(struct rq *rq, bool check_pred, bool check_groups) { }
|
|
|
|
static inline void notify_migration(int src_cpu, int dest_cpu,
|
|
bool src_cpu_dead, struct task_struct *p) { }
|
|
|
|
static inline int same_freq_domain(int src_cpu, int dst_cpu)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static inline void pre_big_task_count_change(void) { }
|
|
static inline void post_big_task_count_change(void) { }
|
|
static inline void set_hmp_defaults(void) { }
|
|
|
|
static inline void clear_reserved(int cpu) { }
|
|
static inline void sched_boost_parse_dt(void) {}
|
|
static inline int alloc_related_thread_groups(void) { return 0; }
|
|
|
|
#define trace_sched_cpu_load(...)
|
|
#define trace_sched_cpu_load_lb(...)
|
|
#define trace_sched_cpu_load_cgroup(...)
|
|
#define trace_sched_cpu_load_wakeup(...)
|
|
|
|
static inline void update_avg_burst(struct task_struct *p) {}
|
|
|
|
#endif /* CONFIG_SCHED_HMP */
|
|
|
|
/*
|
|
* Returns the rq capacity of any rq in a group. This does not play
|
|
* well with groups where rq capacity can change independently.
|
|
*/
|
|
#define group_rq_capacity(group) cpu_capacity(group_first_cpu(group))
|
|
|
|
#ifdef CONFIG_CGROUP_SCHED
|
|
|
|
/*
|
|
* Return the group to which this tasks belongs.
|
|
*
|
|
* We cannot use task_css() and friends because the cgroup subsystem
|
|
* changes that value before the cgroup_subsys::attach() method is called,
|
|
* therefore we cannot pin it and might observe the wrong value.
|
|
*
|
|
* The same is true for autogroup's p->signal->autogroup->tg, the autogroup
|
|
* core changes this before calling sched_move_task().
|
|
*
|
|
* Instead we use a 'copy' which is updated from sched_move_task() while
|
|
* holding both task_struct::pi_lock and rq::lock.
|
|
*/
|
|
static inline struct task_group *task_group(struct task_struct *p)
|
|
{
|
|
return p->sched_task_group;
|
|
}
|
|
|
|
/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
|
|
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
|
|
{
|
|
#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
|
|
struct task_group *tg = task_group(p);
|
|
#endif
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
|
|
p->se.cfs_rq = tg->cfs_rq[cpu];
|
|
p->se.parent = tg->se[cpu];
|
|
#endif
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
p->rt.rt_rq = tg->rt_rq[cpu];
|
|
p->rt.parent = tg->rt_se[cpu];
|
|
#endif
|
|
}
|
|
|
|
#else /* CONFIG_CGROUP_SCHED */
|
|
|
|
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
|
|
static inline struct task_group *task_group(struct task_struct *p)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif /* CONFIG_CGROUP_SCHED */
|
|
|
|
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
|
|
{
|
|
set_task_rq(p, cpu);
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
|
|
* successfuly executed on another CPU. We must ensure that updates of
|
|
* per-task data have been completed by this moment.
|
|
*/
|
|
smp_wmb();
|
|
#ifdef CONFIG_THREAD_INFO_IN_TASK
|
|
p->cpu = cpu;
|
|
#else
|
|
task_thread_info(p)->cpu = cpu;
|
|
#endif
|
|
p->wake_cpu = cpu;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Tunables that become constants when CONFIG_SCHED_DEBUG is off:
|
|
*/
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
# include <linux/static_key.h>
|
|
# define const_debug __read_mostly
|
|
#else
|
|
# define const_debug const
|
|
#endif
|
|
|
|
extern const_debug unsigned int sysctl_sched_features;
|
|
|
|
#define SCHED_FEAT(name, enabled) \
|
|
__SCHED_FEAT_##name ,
|
|
|
|
enum {
|
|
#include "features.h"
|
|
__SCHED_FEAT_NR,
|
|
};
|
|
|
|
#undef SCHED_FEAT
|
|
|
|
#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
|
|
#define SCHED_FEAT(name, enabled) \
|
|
static __always_inline bool static_branch_##name(struct static_key *key) \
|
|
{ \
|
|
return static_key_##enabled(key); \
|
|
}
|
|
|
|
#include "features.h"
|
|
|
|
#undef SCHED_FEAT
|
|
|
|
extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
|
|
#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
|
|
#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
|
|
#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
|
|
#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
|
|
|
|
extern struct static_key_false sched_numa_balancing;
|
|
|
|
static inline u64 global_rt_period(void)
|
|
{
|
|
return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
|
|
}
|
|
|
|
static inline u64 global_rt_runtime(void)
|
|
{
|
|
if (sysctl_sched_rt_runtime < 0)
|
|
return RUNTIME_INF;
|
|
|
|
return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
|
|
}
|
|
|
|
static inline int task_current(struct rq *rq, struct task_struct *p)
|
|
{
|
|
return rq->curr == p;
|
|
}
|
|
|
|
static inline int task_running(struct rq *rq, struct task_struct *p)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
return p->on_cpu;
|
|
#else
|
|
return task_current(rq, p);
|
|
#endif
|
|
}
|
|
|
|
static inline int task_on_rq_queued(struct task_struct *p)
|
|
{
|
|
return p->on_rq == TASK_ON_RQ_QUEUED;
|
|
}
|
|
|
|
static inline int task_on_rq_migrating(struct task_struct *p)
|
|
{
|
|
return p->on_rq == TASK_ON_RQ_MIGRATING;
|
|
}
|
|
|
|
#ifndef prepare_arch_switch
|
|
# define prepare_arch_switch(next) do { } while (0)
|
|
#endif
|
|
#ifndef finish_arch_post_lock_switch
|
|
# define finish_arch_post_lock_switch() do { } while (0)
|
|
#endif
|
|
|
|
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* We can optimise this out completely for !SMP, because the
|
|
* SMP rebalancing from interrupt is the only thing that cares
|
|
* here.
|
|
*/
|
|
next->on_cpu = 1;
|
|
#endif
|
|
}
|
|
|
|
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* After ->on_cpu is cleared, the task can be moved to a different CPU.
|
|
* We must ensure this doesn't happen until the switch is completely
|
|
* finished.
|
|
*
|
|
* In particular, the load of prev->state in finish_task_switch() must
|
|
* happen before this.
|
|
*
|
|
* Pairs with the control dependency and rmb in try_to_wake_up().
|
|
*/
|
|
smp_store_release(&prev->on_cpu, 0);
|
|
#endif
|
|
#ifdef CONFIG_DEBUG_SPINLOCK
|
|
/* this is a valid case when another task releases the spinlock */
|
|
rq->lock.owner = current;
|
|
#endif
|
|
/*
|
|
* If we are tracking spinlock dependencies then we have to
|
|
* fix up the runqueue lock - which gets 'carried over' from
|
|
* prev into current:
|
|
*/
|
|
spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
|
|
|
|
raw_spin_unlock_irq(&rq->lock);
|
|
}
|
|
|
|
/*
|
|
* wake flags
|
|
*/
|
|
#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
|
|
#define WF_FORK 0x02 /* child wakeup after fork */
|
|
#define WF_MIGRATED 0x4 /* internal use, task got migrated */
|
|
#define WF_NO_NOTIFIER 0x08 /* do not notify governor */
|
|
|
|
/*
|
|
* To aid in avoiding the subversion of "niceness" due to uneven distribution
|
|
* of tasks with abnormal "nice" values across CPUs the contribution that
|
|
* each task makes to its run queue's load is weighted according to its
|
|
* scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
|
|
* scaled version of the new time slice allocation that they receive on time
|
|
* slice expiry etc.
|
|
*/
|
|
|
|
#define WEIGHT_IDLEPRIO 3
|
|
#define WMULT_IDLEPRIO 1431655765
|
|
|
|
/*
|
|
* Nice levels are multiplicative, with a gentle 10% change for every
|
|
* nice level changed. I.e. when a CPU-bound task goes from nice 0 to
|
|
* nice 1, it will get ~10% less CPU time than another CPU-bound task
|
|
* that remained on nice 0.
|
|
*
|
|
* The "10% effect" is relative and cumulative: from _any_ nice level,
|
|
* if you go up 1 level, it's -10% CPU usage, if you go down 1 level
|
|
* it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
|
|
* If a task goes up by ~10% and another task goes down by ~10% then
|
|
* the relative distance between them is ~25%.)
|
|
*/
|
|
static const int prio_to_weight[40] = {
|
|
/* -20 */ 88761, 71755, 56483, 46273, 36291,
|
|
/* -15 */ 29154, 23254, 18705, 14949, 11916,
|
|
/* -10 */ 9548, 7620, 6100, 4904, 3906,
|
|
/* -5 */ 3121, 2501, 1991, 1586, 1277,
|
|
/* 0 */ 1024, 820, 655, 526, 423,
|
|
/* 5 */ 335, 272, 215, 172, 137,
|
|
/* 10 */ 110, 87, 70, 56, 45,
|
|
/* 15 */ 36, 29, 23, 18, 15,
|
|
};
|
|
|
|
/*
|
|
* Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
|
|
*
|
|
* In cases where the weight does not change often, we can use the
|
|
* precalculated inverse to speed up arithmetics by turning divisions
|
|
* into multiplications:
|
|
*/
|
|
static const u32 prio_to_wmult[40] = {
|
|
/* -20 */ 48388, 59856, 76040, 92818, 118348,
|
|
/* -15 */ 147320, 184698, 229616, 287308, 360437,
|
|
/* -10 */ 449829, 563644, 704093, 875809, 1099582,
|
|
/* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
|
|
/* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
|
|
/* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
|
|
/* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
|
|
/* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
|
|
};
|
|
|
|
/*
|
|
* {de,en}queue flags:
|
|
*
|
|
* DEQUEUE_SLEEP - task is no longer runnable
|
|
* ENQUEUE_WAKEUP - task just became runnable
|
|
*
|
|
* SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
|
|
* are in a known state which allows modification. Such pairs
|
|
* should preserve as much state as possible.
|
|
*
|
|
* MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
|
|
* in the runqueue.
|
|
*
|
|
* ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
|
|
* ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
|
|
* ENQUEUE_WAKING - sched_class::task_waking was called
|
|
*
|
|
*/
|
|
|
|
#define DEQUEUE_SLEEP 0x01
|
|
#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
|
|
#define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
|
|
|
|
#define ENQUEUE_WAKEUP 0x01
|
|
#define ENQUEUE_RESTORE 0x02
|
|
#define ENQUEUE_MOVE 0x04
|
|
|
|
#define ENQUEUE_HEAD 0x08
|
|
#define ENQUEUE_REPLENISH 0x10
|
|
#ifdef CONFIG_SMP
|
|
#define ENQUEUE_WAKING 0x20
|
|
#else
|
|
#define ENQUEUE_WAKING 0x00
|
|
#endif
|
|
#define ENQUEUE_WAKEUP_NEW 0x40
|
|
|
|
#define RETRY_TASK ((void *)-1UL)
|
|
|
|
struct sched_class {
|
|
const struct sched_class *next;
|
|
|
|
void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
|
|
void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
|
|
void (*yield_task) (struct rq *rq);
|
|
bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
|
|
|
|
void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
|
|
|
|
/*
|
|
* It is the responsibility of the pick_next_task() method that will
|
|
* return the next task to call put_prev_task() on the @prev task or
|
|
* something equivalent.
|
|
*
|
|
* May return RETRY_TASK when it finds a higher prio class has runnable
|
|
* tasks.
|
|
*/
|
|
struct task_struct * (*pick_next_task) (struct rq *rq,
|
|
struct task_struct *prev);
|
|
void (*put_prev_task) (struct rq *rq, struct task_struct *p);
|
|
|
|
#ifdef CONFIG_SMP
|
|
int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags,
|
|
int subling_count_hint);
|
|
void (*migrate_task_rq)(struct task_struct *p);
|
|
|
|
void (*task_waking) (struct task_struct *task);
|
|
void (*task_woken) (struct rq *this_rq, struct task_struct *task);
|
|
|
|
void (*set_cpus_allowed)(struct task_struct *p,
|
|
const struct cpumask *newmask);
|
|
|
|
void (*rq_online)(struct rq *rq);
|
|
void (*rq_offline)(struct rq *rq);
|
|
#endif
|
|
|
|
void (*set_curr_task) (struct rq *rq);
|
|
void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
|
|
void (*task_fork) (struct task_struct *p);
|
|
void (*task_dead) (struct task_struct *p);
|
|
|
|
/*
|
|
* The switched_from() call is allowed to drop rq->lock, therefore we
|
|
* cannot assume the switched_from/switched_to pair is serliazed by
|
|
* rq->lock. They are however serialized by p->pi_lock.
|
|
*/
|
|
void (*switched_from) (struct rq *this_rq, struct task_struct *task);
|
|
void (*switched_to) (struct rq *this_rq, struct task_struct *task);
|
|
void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
|
|
int oldprio);
|
|
|
|
unsigned int (*get_rr_interval) (struct rq *rq,
|
|
struct task_struct *task);
|
|
|
|
void (*update_curr) (struct rq *rq);
|
|
|
|
#define TASK_SET_GROUP 0
|
|
#define TASK_MOVE_GROUP 1
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
void (*task_change_group)(struct task_struct *p, int type);
|
|
#endif
|
|
#ifdef CONFIG_SCHED_HMP
|
|
void (*inc_hmp_sched_stats)(struct rq *rq, struct task_struct *p);
|
|
void (*dec_hmp_sched_stats)(struct rq *rq, struct task_struct *p);
|
|
void (*fixup_hmp_sched_stats)(struct rq *rq, struct task_struct *p,
|
|
u32 new_task_load, u32 new_pred_demand);
|
|
#endif
|
|
};
|
|
|
|
static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
|
|
{
|
|
prev->sched_class->put_prev_task(rq, prev);
|
|
}
|
|
|
|
#define sched_class_highest (&stop_sched_class)
|
|
#define for_each_class(class) \
|
|
for (class = sched_class_highest; class; class = class->next)
|
|
|
|
extern const struct sched_class stop_sched_class;
|
|
extern const struct sched_class dl_sched_class;
|
|
extern const struct sched_class rt_sched_class;
|
|
extern const struct sched_class fair_sched_class;
|
|
extern const struct sched_class idle_sched_class;
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
extern void init_max_cpu_capacity(struct max_cpu_capacity *mcc);
|
|
extern void update_group_capacity(struct sched_domain *sd, int cpu);
|
|
|
|
extern void trigger_load_balance(struct rq *rq);
|
|
extern void nohz_balance_clear_nohz_mask(int cpu);
|
|
|
|
extern void idle_enter_fair(struct rq *this_rq);
|
|
extern void idle_exit_fair(struct rq *this_rq);
|
|
|
|
extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
|
|
|
|
#else
|
|
|
|
static inline void idle_enter_fair(struct rq *rq) { }
|
|
static inline void idle_exit_fair(struct rq *rq) { }
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_CPU_IDLE
|
|
static inline void idle_set_state(struct rq *rq,
|
|
struct cpuidle_state *idle_state)
|
|
{
|
|
rq->idle_state = idle_state;
|
|
}
|
|
|
|
static inline struct cpuidle_state *idle_get_state(struct rq *rq)
|
|
{
|
|
WARN_ON(!rcu_read_lock_held());
|
|
return rq->idle_state;
|
|
}
|
|
|
|
static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx)
|
|
{
|
|
rq->idle_state_idx = idle_state_idx;
|
|
}
|
|
|
|
static inline int idle_get_state_idx(struct rq *rq)
|
|
{
|
|
WARN_ON(!rcu_read_lock_held());
|
|
return rq->idle_state_idx;
|
|
}
|
|
#else
|
|
static inline void idle_set_state(struct rq *rq,
|
|
struct cpuidle_state *idle_state)
|
|
{
|
|
}
|
|
|
|
static inline struct cpuidle_state *idle_get_state(struct rq *rq)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx)
|
|
{
|
|
}
|
|
|
|
static inline int idle_get_state_idx(struct rq *rq)
|
|
{
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SYSRQ_SCHED_DEBUG
|
|
extern void sysrq_sched_debug_show(void);
|
|
#endif
|
|
extern void sched_init_granularity(void);
|
|
extern void update_max_interval(void);
|
|
|
|
extern void init_sched_dl_class(void);
|
|
extern void init_sched_rt_class(void);
|
|
extern void init_sched_fair_class(void);
|
|
|
|
extern void resched_curr(struct rq *rq);
|
|
extern void resched_cpu(int cpu);
|
|
|
|
extern struct rt_bandwidth def_rt_bandwidth;
|
|
extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
|
|
|
|
extern struct dl_bandwidth def_dl_bandwidth;
|
|
extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
|
|
extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
|
|
|
|
unsigned long to_ratio(u64 period, u64 runtime);
|
|
|
|
extern void init_entity_runnable_average(struct sched_entity *se);
|
|
extern void post_init_entity_util_avg(struct sched_entity *se);
|
|
|
|
static inline void __add_nr_running(struct rq *rq, unsigned count)
|
|
{
|
|
unsigned prev_nr = rq->nr_running;
|
|
|
|
sched_update_nr_prod(cpu_of(rq), count, true);
|
|
rq->nr_running = prev_nr + count;
|
|
|
|
if (prev_nr < 2 && rq->nr_running >= 2) {
|
|
#ifdef CONFIG_SMP
|
|
if (!rq->rd->overload)
|
|
rq->rd->overload = true;
|
|
#endif
|
|
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
if (tick_nohz_full_cpu(rq->cpu)) {
|
|
/*
|
|
* Tick is needed if more than one task runs on a CPU.
|
|
* Send the target an IPI to kick it out of nohz mode.
|
|
*
|
|
* We assume that IPI implies full memory barrier and the
|
|
* new value of rq->nr_running is visible on reception
|
|
* from the target.
|
|
*/
|
|
tick_nohz_full_kick_cpu(rq->cpu);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static inline void __sub_nr_running(struct rq *rq, unsigned count)
|
|
{
|
|
sched_update_nr_prod(cpu_of(rq), count, false);
|
|
rq->nr_running -= count;
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_QUIET
|
|
#define NR_AVE_SCALE(x) ((x) << FSHIFT)
|
|
static inline u64 do_nr_running_integral(struct rq *rq)
|
|
{
|
|
s64 nr, deltax;
|
|
u64 nr_running_integral = rq->nr_running_integral;
|
|
|
|
deltax = rq->clock_task - rq->nr_last_stamp;
|
|
nr = NR_AVE_SCALE(rq->nr_running);
|
|
|
|
nr_running_integral += nr * deltax;
|
|
|
|
return nr_running_integral;
|
|
}
|
|
|
|
static inline void add_nr_running(struct rq *rq, unsigned count)
|
|
{
|
|
write_seqcount_begin(&rq->ave_seqcnt);
|
|
rq->nr_running_integral = do_nr_running_integral(rq);
|
|
rq->nr_last_stamp = rq->clock_task;
|
|
__add_nr_running(rq, count);
|
|
write_seqcount_end(&rq->ave_seqcnt);
|
|
}
|
|
|
|
static inline void sub_nr_running(struct rq *rq, unsigned count)
|
|
{
|
|
write_seqcount_begin(&rq->ave_seqcnt);
|
|
rq->nr_running_integral = do_nr_running_integral(rq);
|
|
rq->nr_last_stamp = rq->clock_task;
|
|
__sub_nr_running(rq, count);
|
|
write_seqcount_end(&rq->ave_seqcnt);
|
|
}
|
|
#else
|
|
#define add_nr_running __add_nr_running
|
|
#define sub_nr_running __sub_nr_running
|
|
#endif
|
|
|
|
static inline void rq_last_tick_reset(struct rq *rq)
|
|
{
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
rq->last_sched_tick = jiffies;
|
|
#endif
|
|
}
|
|
|
|
extern void update_rq_clock(struct rq *rq);
|
|
|
|
extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
|
|
extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
|
|
|
|
extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
|
|
|
|
extern const_debug unsigned int sysctl_sched_time_avg;
|
|
extern const_debug unsigned int sysctl_sched_nr_migrate;
|
|
extern const_debug unsigned int sysctl_sched_migration_cost;
|
|
|
|
static inline u64 sched_avg_period(void)
|
|
{
|
|
return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_HRTICK
|
|
|
|
/*
|
|
* Use hrtick when:
|
|
* - enabled by features
|
|
* - hrtimer is actually high res
|
|
*/
|
|
static inline int hrtick_enabled(struct rq *rq)
|
|
{
|
|
if (!sched_feat(HRTICK))
|
|
return 0;
|
|
if (!cpu_active(cpu_of(rq)))
|
|
return 0;
|
|
return hrtimer_is_hres_active(&rq->hrtick_timer);
|
|
}
|
|
|
|
void hrtick_start(struct rq *rq, u64 delay);
|
|
|
|
#else
|
|
|
|
static inline int hrtick_enabled(struct rq *rq)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_SCHED_HRTICK */
|
|
|
|
#ifdef CONFIG_SMP
|
|
extern void sched_avg_update(struct rq *rq);
|
|
|
|
#ifndef arch_scale_freq_capacity
|
|
static __always_inline
|
|
unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
|
|
{
|
|
return SCHED_CAPACITY_SCALE;
|
|
}
|
|
#endif
|
|
|
|
#ifndef arch_scale_cpu_capacity
|
|
static __always_inline
|
|
unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
|
|
{
|
|
if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
|
|
return sd->smt_gain / sd->span_weight;
|
|
|
|
return SCHED_CAPACITY_SCALE;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
static inline unsigned long capacity_of(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->cpu_capacity;
|
|
}
|
|
|
|
static inline unsigned long capacity_orig_of(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->cpu_capacity_orig;
|
|
}
|
|
|
|
extern unsigned int sysctl_sched_use_walt_cpu_util;
|
|
extern unsigned int walt_ravg_window;
|
|
extern bool walt_disabled;
|
|
|
|
/*
|
|
* cpu_util returns the amount of capacity of a CPU that is used by CFS
|
|
* tasks. The unit of the return value must be the one of capacity so we can
|
|
* compare the utilization with the capacity of the CPU that is available for
|
|
* CFS task (ie cpu_capacity).
|
|
*
|
|
* cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
|
|
* recent utilization of currently non-runnable tasks on a CPU. It represents
|
|
* the amount of utilization of a CPU in the range [0..capacity_orig] where
|
|
* capacity_orig is the cpu_capacity available at the highest frequency
|
|
* (arch_scale_freq_capacity()).
|
|
* The utilization of a CPU converges towards a sum equal to or less than the
|
|
* current capacity (capacity_curr <= capacity_orig) of the CPU because it is
|
|
* the running time on this CPU scaled by capacity_curr.
|
|
*
|
|
* Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
|
|
* higher than capacity_orig because of unfortunate rounding in
|
|
* cfs.avg.util_avg or just after migrating tasks and new task wakeups until
|
|
* the average stabilizes with the new running time. We need to check that the
|
|
* utilization stays within the range of [0..capacity_orig] and cap it if
|
|
* necessary. Without utilization capping, a group could be seen as overloaded
|
|
* (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
|
|
* available capacity. We allow utilization to overshoot capacity_curr (but not
|
|
* capacity_orig) as it useful for predicting the capacity required after task
|
|
* migrations (scheduler-driven DVFS).
|
|
*/
|
|
static inline unsigned long __cpu_util(int cpu, int delta)
|
|
{
|
|
unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
|
|
unsigned long capacity = capacity_orig_of(cpu);
|
|
|
|
#ifdef CONFIG_SCHED_WALT
|
|
if (!walt_disabled && sysctl_sched_use_walt_cpu_util)
|
|
util = div64_u64(cpu_rq(cpu)->cumulative_runnable_avg,
|
|
walt_ravg_window >> SCHED_LOAD_SHIFT);
|
|
#endif
|
|
|
|
delta += util;
|
|
if (delta < 0)
|
|
return 0;
|
|
|
|
return (delta >= capacity) ? capacity : delta;
|
|
}
|
|
|
|
static inline unsigned long cpu_util(int cpu)
|
|
{
|
|
return __cpu_util(cpu, 0);
|
|
}
|
|
|
|
static inline unsigned long cpu_util_freq(int cpu)
|
|
{
|
|
unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
|
|
unsigned long capacity = capacity_orig_of(cpu);
|
|
|
|
#ifdef CONFIG_SCHED_WALT
|
|
if (!walt_disabled && sysctl_sched_use_walt_cpu_util)
|
|
util = div64_u64(cpu_rq(cpu)->prev_runnable_sum,
|
|
walt_ravg_window >> SCHED_LOAD_SHIFT);
|
|
#endif
|
|
return (util >= capacity) ? capacity : util;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_HMP
|
|
/*
|
|
* HMP and EAS are orthogonal. Hopefully the compiler just elides out all code
|
|
* with the energy_aware() check, so that we don't even pay the comparison
|
|
* penalty at runtime.
|
|
*/
|
|
#define energy_aware() false
|
|
#else
|
|
static inline bool energy_aware(void)
|
|
{
|
|
return sched_feat(ENERGY_AWARE);
|
|
}
|
|
#endif
|
|
|
|
static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
|
|
{
|
|
rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
|
|
}
|
|
#else
|
|
static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
|
|
static inline void sched_avg_update(struct rq *rq) { }
|
|
#endif
|
|
|
|
/*
|
|
* __task_rq_lock - lock the rq @p resides on.
|
|
*/
|
|
static inline struct rq *__task_rq_lock(struct task_struct *p)
|
|
__acquires(rq->lock)
|
|
{
|
|
struct rq *rq;
|
|
|
|
lockdep_assert_held(&p->pi_lock);
|
|
|
|
for (;;) {
|
|
rq = task_rq(p);
|
|
raw_spin_lock(&rq->lock);
|
|
if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
|
|
lockdep_pin_lock(&rq->lock);
|
|
return rq;
|
|
}
|
|
raw_spin_unlock(&rq->lock);
|
|
|
|
while (unlikely(task_on_rq_migrating(p)))
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
|
|
*/
|
|
static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
|
|
__acquires(p->pi_lock)
|
|
__acquires(rq->lock)
|
|
{
|
|
struct rq *rq;
|
|
|
|
for (;;) {
|
|
raw_spin_lock_irqsave(&p->pi_lock, *flags);
|
|
rq = task_rq(p);
|
|
raw_spin_lock(&rq->lock);
|
|
/*
|
|
* move_queued_task() task_rq_lock()
|
|
*
|
|
* ACQUIRE (rq->lock)
|
|
* [S] ->on_rq = MIGRATING [L] rq = task_rq()
|
|
* WMB (__set_task_cpu()) ACQUIRE (rq->lock);
|
|
* [S] ->cpu = new_cpu [L] task_rq()
|
|
* [L] ->on_rq
|
|
* RELEASE (rq->lock)
|
|
*
|
|
* If we observe the old cpu in task_rq_lock, the acquire of
|
|
* the old rq->lock will fully serialize against the stores.
|
|
*
|
|
* If we observe the new cpu in task_rq_lock, the acquire will
|
|
* pair with the WMB to ensure we must then also see migrating.
|
|
*/
|
|
if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
|
|
lockdep_pin_lock(&rq->lock);
|
|
return rq;
|
|
}
|
|
raw_spin_unlock(&rq->lock);
|
|
raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
|
|
|
|
while (unlikely(task_on_rq_migrating(p)))
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
static inline void __task_rq_unlock(struct rq *rq)
|
|
__releases(rq->lock)
|
|
{
|
|
lockdep_unpin_lock(&rq->lock);
|
|
raw_spin_unlock(&rq->lock);
|
|
}
|
|
|
|
static inline void
|
|
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
|
|
__releases(rq->lock)
|
|
__releases(p->pi_lock)
|
|
{
|
|
lockdep_unpin_lock(&rq->lock);
|
|
raw_spin_unlock(&rq->lock);
|
|
raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
|
|
}
|
|
|
|
extern struct rq *lock_rq_of(struct task_struct *p, unsigned long *flags);
|
|
extern void unlock_rq_of(struct rq *rq, struct task_struct *p, unsigned long *flags);
|
|
|
|
#ifdef CONFIG_SMP
|
|
#ifdef CONFIG_PREEMPT
|
|
|
|
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
|
|
|
|
/*
|
|
* fair double_lock_balance: Safely acquires both rq->locks in a fair
|
|
* way at the expense of forcing extra atomic operations in all
|
|
* invocations. This assures that the double_lock is acquired using the
|
|
* same underlying policy as the spinlock_t on this architecture, which
|
|
* reduces latency compared to the unfair variant below. However, it
|
|
* also adds more overhead and therefore may reduce throughput.
|
|
*/
|
|
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
|
|
__releases(this_rq->lock)
|
|
__acquires(busiest->lock)
|
|
__acquires(this_rq->lock)
|
|
{
|
|
raw_spin_unlock(&this_rq->lock);
|
|
double_rq_lock(this_rq, busiest);
|
|
|
|
return 1;
|
|
}
|
|
|
|
#else
|
|
/*
|
|
* Unfair double_lock_balance: Optimizes throughput at the expense of
|
|
* latency by eliminating extra atomic operations when the locks are
|
|
* already in proper order on entry. This favors lower cpu-ids and will
|
|
* grant the double lock to lower cpus over higher ids under contention,
|
|
* regardless of entry order into the function.
|
|
*/
|
|
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
|
|
__releases(this_rq->lock)
|
|
__acquires(busiest->lock)
|
|
__acquires(this_rq->lock)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (unlikely(!raw_spin_trylock(&busiest->lock))) {
|
|
if (busiest < this_rq) {
|
|
raw_spin_unlock(&this_rq->lock);
|
|
raw_spin_lock(&busiest->lock);
|
|
raw_spin_lock_nested(&this_rq->lock,
|
|
SINGLE_DEPTH_NESTING);
|
|
ret = 1;
|
|
} else
|
|
raw_spin_lock_nested(&busiest->lock,
|
|
SINGLE_DEPTH_NESTING);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#endif /* CONFIG_PREEMPT */
|
|
|
|
/*
|
|
* double_lock_balance - lock the busiest runqueue, this_rq is locked already.
|
|
*/
|
|
static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
|
|
{
|
|
if (unlikely(!irqs_disabled())) {
|
|
/* printk() doesn't work good under rq->lock */
|
|
raw_spin_unlock(&this_rq->lock);
|
|
BUG_ON(1);
|
|
}
|
|
|
|
return _double_lock_balance(this_rq, busiest);
|
|
}
|
|
|
|
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
|
|
__releases(busiest->lock)
|
|
{
|
|
if (this_rq != busiest)
|
|
raw_spin_unlock(&busiest->lock);
|
|
lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
|
|
}
|
|
|
|
static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
|
|
{
|
|
if (l1 > l2)
|
|
swap(l1, l2);
|
|
|
|
spin_lock(l1);
|
|
spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
|
|
}
|
|
|
|
static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
|
|
{
|
|
if (l1 > l2)
|
|
swap(l1, l2);
|
|
|
|
spin_lock_irq(l1);
|
|
spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
|
|
}
|
|
|
|
static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
|
|
{
|
|
if (l1 > l2)
|
|
swap(l1, l2);
|
|
|
|
raw_spin_lock(l1);
|
|
raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
|
|
}
|
|
|
|
/*
|
|
* double_rq_lock - safely lock two runqueues
|
|
*
|
|
* Note this does not disable interrupts like task_rq_lock,
|
|
* you need to do so manually before calling.
|
|
*/
|
|
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
|
|
__acquires(rq1->lock)
|
|
__acquires(rq2->lock)
|
|
{
|
|
BUG_ON(!irqs_disabled());
|
|
if (rq1 == rq2) {
|
|
raw_spin_lock(&rq1->lock);
|
|
__acquire(rq2->lock); /* Fake it out ;) */
|
|
} else {
|
|
if (rq1 < rq2) {
|
|
raw_spin_lock(&rq1->lock);
|
|
raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
|
|
} else {
|
|
raw_spin_lock(&rq2->lock);
|
|
raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* double_rq_unlock - safely unlock two runqueues
|
|
*
|
|
* Note this does not restore interrupts like task_rq_unlock,
|
|
* you need to do so manually after calling.
|
|
*/
|
|
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
|
|
__releases(rq1->lock)
|
|
__releases(rq2->lock)
|
|
{
|
|
raw_spin_unlock(&rq1->lock);
|
|
if (rq1 != rq2)
|
|
raw_spin_unlock(&rq2->lock);
|
|
else
|
|
__release(rq2->lock);
|
|
}
|
|
|
|
/*
|
|
* task_may_not_preempt - check whether a task may not be preemptible soon
|
|
*/
|
|
extern bool task_may_not_preempt(struct task_struct *task, int cpu);
|
|
|
|
#else /* CONFIG_SMP */
|
|
|
|
/*
|
|
* double_rq_lock - safely lock two runqueues
|
|
*
|
|
* Note this does not disable interrupts like task_rq_lock,
|
|
* you need to do so manually before calling.
|
|
*/
|
|
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
|
|
__acquires(rq1->lock)
|
|
__acquires(rq2->lock)
|
|
{
|
|
BUG_ON(!irqs_disabled());
|
|
BUG_ON(rq1 != rq2);
|
|
raw_spin_lock(&rq1->lock);
|
|
__acquire(rq2->lock); /* Fake it out ;) */
|
|
}
|
|
|
|
/*
|
|
* double_rq_unlock - safely unlock two runqueues
|
|
*
|
|
* Note this does not restore interrupts like task_rq_unlock,
|
|
* you need to do so manually after calling.
|
|
*/
|
|
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
|
|
__releases(rq1->lock)
|
|
__releases(rq2->lock)
|
|
{
|
|
BUG_ON(rq1 != rq2);
|
|
raw_spin_unlock(&rq1->lock);
|
|
__release(rq2->lock);
|
|
}
|
|
|
|
#endif
|
|
|
|
extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
|
|
extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
extern void print_cfs_stats(struct seq_file *m, int cpu);
|
|
extern void print_rt_stats(struct seq_file *m, int cpu);
|
|
extern void print_dl_stats(struct seq_file *m, int cpu);
|
|
extern void
|
|
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
extern void
|
|
show_numa_stats(struct task_struct *p, struct seq_file *m);
|
|
extern void
|
|
print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
|
|
unsigned long tpf, unsigned long gsf, unsigned long gpf);
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
#endif /* CONFIG_SCHED_DEBUG */
|
|
|
|
extern void init_cfs_rq(struct cfs_rq *cfs_rq);
|
|
extern void init_rt_rq(struct rt_rq *rt_rq);
|
|
extern void init_dl_rq(struct dl_rq *dl_rq);
|
|
|
|
extern void cfs_bandwidth_usage_inc(void);
|
|
extern void cfs_bandwidth_usage_dec(void);
|
|
|
|
#ifdef CONFIG_NO_HZ_COMMON
|
|
enum rq_nohz_flag_bits {
|
|
NOHZ_TICK_STOPPED,
|
|
NOHZ_BALANCE_KICK,
|
|
};
|
|
|
|
#define NOHZ_KICK_ANY 0
|
|
#define NOHZ_KICK_RESTRICT 1
|
|
|
|
#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
|
|
#endif
|
|
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
|
|
DECLARE_PER_CPU(u64, cpu_hardirq_time);
|
|
DECLARE_PER_CPU(u64, cpu_softirq_time);
|
|
|
|
#ifndef CONFIG_64BIT
|
|
DECLARE_PER_CPU(seqcount_t, irq_time_seq);
|
|
|
|
static inline void irq_time_write_begin(void)
|
|
{
|
|
__this_cpu_inc(irq_time_seq.sequence);
|
|
smp_wmb();
|
|
}
|
|
|
|
static inline void irq_time_write_end(void)
|
|
{
|
|
smp_wmb();
|
|
__this_cpu_inc(irq_time_seq.sequence);
|
|
}
|
|
|
|
static inline u64 irq_time_read(int cpu)
|
|
{
|
|
u64 irq_time;
|
|
unsigned seq;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
|
|
irq_time = per_cpu(cpu_softirq_time, cpu) +
|
|
per_cpu(cpu_hardirq_time, cpu);
|
|
} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
|
|
|
|
return irq_time;
|
|
}
|
|
#else /* CONFIG_64BIT */
|
|
static inline void irq_time_write_begin(void)
|
|
{
|
|
}
|
|
|
|
static inline void irq_time_write_end(void)
|
|
{
|
|
}
|
|
|
|
static inline u64 irq_time_read(int cpu)
|
|
{
|
|
return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
|
|
}
|
|
#endif /* CONFIG_64BIT */
|
|
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
|
|
|
|
/**
|
|
* cpufreq_update_util - Take a note about CPU utilization changes.
|
|
* @rq: Runqueue to carry out the update for.
|
|
* @flags: Update reason flags.
|
|
*
|
|
* This function is called by the scheduler on the CPU whose utilization is
|
|
* being updated.
|
|
*
|
|
* It can only be called from RCU-sched read-side critical sections.
|
|
*
|
|
* The way cpufreq is currently arranged requires it to evaluate the CPU
|
|
* performance state (frequency/voltage) on a regular basis to prevent it from
|
|
* being stuck in a completely inadequate performance level for too long.
|
|
* That is not guaranteed to happen if the updates are only triggered from CFS,
|
|
* though, because they may not be coming in if RT or deadline tasks are active
|
|
* all the time (or there are RT and DL tasks only).
|
|
*
|
|
* As a workaround for that issue, this function is called by the RT and DL
|
|
* sched classes to trigger extra cpufreq updates to prevent it from stalling,
|
|
* but that really is a band-aid. Going forward it should be replaced with
|
|
* solutions targeted more specifically at RT and DL tasks.
|
|
*/
|
|
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
|
|
{
|
|
struct update_util_data *data;
|
|
|
|
data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
|
|
if (data)
|
|
data->func(data, rq_clock(rq), flags);
|
|
}
|
|
|
|
static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
|
|
{
|
|
if (cpu_of(rq) == smp_processor_id())
|
|
cpufreq_update_util(rq, flags);
|
|
}
|
|
#else
|
|
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
|
|
static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
|
|
#endif /* CONFIG_CPU_FREQ */
|
|
|
|
#ifdef CONFIG_SCHED_WALT
|
|
|
|
static inline bool
|
|
walt_task_in_cum_window_demand(struct rq *rq, struct task_struct *p)
|
|
{
|
|
return cpu_of(rq) == task_cpu(p) &&
|
|
(p->on_rq || p->last_sleep_ts >= rq->window_start);
|
|
}
|
|
|
|
#endif /* CONFIG_SCHED_WALT */
|
|
|
|
#ifdef arch_scale_freq_capacity
|
|
#ifndef arch_scale_freq_invariant
|
|
#define arch_scale_freq_invariant() (true)
|
|
#endif
|
|
#else /* arch_scale_freq_capacity */
|
|
#define arch_scale_freq_invariant() (false)
|
|
#endif
|