android_kernel_oneplus_msm8998/kernel/trace/msm_rtb.c
Se Wang (Patrick) Oh 05635f8cd7 trace: rtb: disable RTB in the first panic notifier
As the priority of RTB panic notifier was zero, it was
not guaranteed to disable RTB right after kernel panic.
So RTB log buffer could be flooded with some I/O operations
after panic. By setting the priority of RTB panic notifier
to the highest value, make sure RTB is disabled right after
a kernel panic.

Change-Id: If9efc2ec31efa6aa17e92b2b01e81ab4df6d1730
Signed-off-by: Se Wang (Patrick) Oh <sewango@codeaurora.org>
2016-03-01 12:22:26 -08:00

329 lines
7.3 KiB
C

/*
* Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/atomic.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/atomic.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/io.h>
#include <asm-generic/sizes.h>
#include <linux/msm_rtb.h>
#define SENTINEL_BYTE_1 0xFF
#define SENTINEL_BYTE_2 0xAA
#define SENTINEL_BYTE_3 0xFF
#define RTB_COMPAT_STR "qcom,msm-rtb"
/* Write
* 1) 3 bytes sentinel
* 2) 1 bytes of log type
* 3) 8 bytes of where the caller came from
* 4) 4 bytes index
* 4) 8 bytes extra data from the caller
* 5) 8 bytes of timestamp
*
* Total = 32 bytes.
*/
struct msm_rtb_layout {
unsigned char sentinel[3];
unsigned char log_type;
uint32_t idx;
uint64_t caller;
uint64_t data;
uint64_t timestamp;
} __attribute__ ((__packed__));
struct msm_rtb_state {
struct msm_rtb_layout *rtb;
phys_addr_t phys;
int nentries;
int size;
int enabled;
int initialized;
uint32_t filter;
int step_size;
};
#if defined(CONFIG_QCOM_RTB_SEPARATE_CPUS)
DEFINE_PER_CPU(atomic_t, msm_rtb_idx_cpu);
#else
static atomic_t msm_rtb_idx;
#endif
static struct msm_rtb_state msm_rtb = {
.filter = 1 << LOGK_LOGBUF,
.enabled = 1,
};
module_param_named(filter, msm_rtb.filter, uint, 0644);
module_param_named(enable, msm_rtb.enabled, int, 0644);
static int msm_rtb_panic_notifier(struct notifier_block *this,
unsigned long event, void *ptr)
{
msm_rtb.enabled = 0;
return NOTIFY_DONE;
}
static struct notifier_block msm_rtb_panic_blk = {
.notifier_call = msm_rtb_panic_notifier,
.priority = INT_MAX,
};
int notrace msm_rtb_event_should_log(enum logk_event_type log_type)
{
return msm_rtb.initialized && msm_rtb.enabled &&
((1 << (log_type & ~LOGTYPE_NOPC)) & msm_rtb.filter);
}
EXPORT_SYMBOL(msm_rtb_event_should_log);
static void msm_rtb_emit_sentinel(struct msm_rtb_layout *start)
{
start->sentinel[0] = SENTINEL_BYTE_1;
start->sentinel[1] = SENTINEL_BYTE_2;
start->sentinel[2] = SENTINEL_BYTE_3;
}
static void msm_rtb_write_type(enum logk_event_type log_type,
struct msm_rtb_layout *start)
{
start->log_type = (char)log_type;
}
static void msm_rtb_write_caller(uint64_t caller, struct msm_rtb_layout *start)
{
start->caller = caller;
}
static void msm_rtb_write_idx(uint32_t idx,
struct msm_rtb_layout *start)
{
start->idx = idx;
}
static void msm_rtb_write_data(uint64_t data, struct msm_rtb_layout *start)
{
start->data = data;
}
static void msm_rtb_write_timestamp(struct msm_rtb_layout *start)
{
start->timestamp = sched_clock();
}
static void uncached_logk_pc_idx(enum logk_event_type log_type, uint64_t caller,
uint64_t data, int idx)
{
struct msm_rtb_layout *start;
start = &msm_rtb.rtb[idx & (msm_rtb.nentries - 1)];
msm_rtb_emit_sentinel(start);
msm_rtb_write_type(log_type, start);
msm_rtb_write_caller(caller, start);
msm_rtb_write_idx(idx, start);
msm_rtb_write_data(data, start);
msm_rtb_write_timestamp(start);
mb();
return;
}
static void uncached_logk_timestamp(int idx)
{
unsigned long long timestamp;
timestamp = sched_clock();
uncached_logk_pc_idx(LOGK_TIMESTAMP|LOGTYPE_NOPC,
(uint64_t)lower_32_bits(timestamp),
(uint64_t)upper_32_bits(timestamp), idx);
}
#if defined(CONFIG_QCOM_RTB_SEPARATE_CPUS)
static int msm_rtb_get_idx(void)
{
int cpu, i, offset;
atomic_t *index;
/*
* ideally we would use get_cpu but this is a close enough
* approximation for our purposes.
*/
cpu = raw_smp_processor_id();
index = &per_cpu(msm_rtb_idx_cpu, cpu);
i = atomic_add_return(msm_rtb.step_size, index);
i -= msm_rtb.step_size;
/* Check if index has wrapped around */
offset = (i & (msm_rtb.nentries - 1)) -
((i - msm_rtb.step_size) & (msm_rtb.nentries - 1));
if (offset < 0) {
uncached_logk_timestamp(i);
i = atomic_add_return(msm_rtb.step_size, index);
i -= msm_rtb.step_size;
}
return i;
}
#else
static int msm_rtb_get_idx(void)
{
int i, offset;
i = atomic_inc_return(&msm_rtb_idx);
i--;
/* Check if index has wrapped around */
offset = (i & (msm_rtb.nentries - 1)) -
((i - 1) & (msm_rtb.nentries - 1));
if (offset < 0) {
uncached_logk_timestamp(i);
i = atomic_inc_return(&msm_rtb_idx);
i--;
}
return i;
}
#endif
int notrace uncached_logk_pc(enum logk_event_type log_type, void *caller,
void *data)
{
int i;
if (!msm_rtb_event_should_log(log_type))
return 0;
i = msm_rtb_get_idx();
uncached_logk_pc_idx(log_type, (uint64_t)((unsigned long) caller),
(uint64_t)((unsigned long) data), i);
return 1;
}
EXPORT_SYMBOL(uncached_logk_pc);
noinline int notrace uncached_logk(enum logk_event_type log_type, void *data)
{
return uncached_logk_pc(log_type, __builtin_return_address(0), data);
}
EXPORT_SYMBOL(uncached_logk);
static int msm_rtb_probe(struct platform_device *pdev)
{
struct msm_rtb_platform_data *d = pdev->dev.platform_data;
#if defined(CONFIG_QCOM_RTB_SEPARATE_CPUS)
unsigned int cpu;
#endif
int ret;
if (!pdev->dev.of_node) {
msm_rtb.size = d->size;
} else {
u64 size;
struct device_node *pnode;
pnode = of_parse_phandle(pdev->dev.of_node,
"linux,contiguous-region", 0);
if (pnode != NULL) {
const u32 *addr;
addr = of_get_address(pnode, 0, &size, NULL);
if (!addr) {
of_node_put(pnode);
return -EINVAL;
}
of_node_put(pnode);
} else {
ret = of_property_read_u32(pdev->dev.of_node,
"qcom,rtb-size",
(u32 *)&size);
if (ret < 0)
return ret;
}
msm_rtb.size = size;
}
if (msm_rtb.size <= 0 || msm_rtb.size > SZ_1M)
return -EINVAL;
msm_rtb.rtb = dma_alloc_coherent(&pdev->dev, msm_rtb.size,
&msm_rtb.phys,
GFP_KERNEL);
if (!msm_rtb.rtb)
return -ENOMEM;
msm_rtb.nentries = msm_rtb.size / sizeof(struct msm_rtb_layout);
/* Round this down to a power of 2 */
msm_rtb.nentries = __rounddown_pow_of_two(msm_rtb.nentries);
memset(msm_rtb.rtb, 0, msm_rtb.size);
#if defined(CONFIG_QCOM_RTB_SEPARATE_CPUS)
for_each_possible_cpu(cpu) {
atomic_t *a = &per_cpu(msm_rtb_idx_cpu, cpu);
atomic_set(a, cpu);
}
msm_rtb.step_size = num_possible_cpus();
#else
atomic_set(&msm_rtb_idx, 0);
msm_rtb.step_size = 1;
#endif
atomic_notifier_chain_register(&panic_notifier_list,
&msm_rtb_panic_blk);
msm_rtb.initialized = 1;
return 0;
}
static struct of_device_id msm_match_table[] = {
{.compatible = RTB_COMPAT_STR},
{},
};
static struct platform_driver msm_rtb_driver = {
.driver = {
.name = "msm_rtb",
.owner = THIS_MODULE,
.of_match_table = msm_match_table
},
};
static int __init msm_rtb_init(void)
{
return platform_driver_probe(&msm_rtb_driver, msm_rtb_probe);
}
static void __exit msm_rtb_exit(void)
{
platform_driver_unregister(&msm_rtb_driver);
}
module_init(msm_rtb_init)
module_exit(msm_rtb_exit)