android_kernel_oneplus_msm8998/fs/f2fs/data.c
Chao Yu 4901e126b6 f2fs: fix to do sanity check with block address in main area v2
commit 91291e9998d208370eb8156c760691b873bd7522 upstream.

This patch adds f2fs_is_valid_blkaddr() in below functions to do sanity
check with block address to avoid pentential panic:
- f2fs_grab_read_bio()
- __written_first_block()

https://bugzilla.kernel.org/show_bug.cgi?id=200465

- Reproduce

- POC (poc.c)
    #define _GNU_SOURCE
    #include <sys/types.h>
    #include <sys/mount.h>
    #include <sys/mman.h>
    #include <sys/stat.h>
    #include <sys/xattr.h>

    #include <dirent.h>
    #include <errno.h>
    #include <error.h>
    #include <fcntl.h>
    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include <unistd.h>

    #include <linux/falloc.h>
    #include <linux/loop.h>

    static void activity(char *mpoint) {

      char *xattr;
      int err;

      err = asprintf(&xattr, "%s/foo/bar/xattr", mpoint);

      char buf2[113];
      memset(buf2, 0, sizeof(buf2));
      listxattr(xattr, buf2, sizeof(buf2));

    }

    int main(int argc, char *argv[]) {
      activity(argv[1]);
      return 0;
    }

- kernel message
[  844.718738] F2FS-fs (loop0): Mounted with checkpoint version = 2
[  846.430929] F2FS-fs (loop0): access invalid blkaddr:1024
[  846.431058] WARNING: CPU: 1 PID: 1249 at fs/f2fs/checkpoint.c:154 f2fs_is_valid_blkaddr+0x10f/0x160
[  846.431059] Modules linked in: snd_hda_codec_generic snd_hda_intel snd_hda_codec snd_hda_core snd_hwdep snd_pcm snd_timer snd input_leds joydev soundcore serio_raw i2c_piix4 mac_hid ib_iser rdma_cm iw_cm ib_cm ib_core configfs iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi autofs4 raid10 raid456 libcrc32c async_raid6_recov async_memcpy async_pq async_xor xor async_tx raid6_pq raid1 raid0 multipath linear qxl ttm crct10dif_pclmul crc32_pclmul drm_kms_helper ghash_clmulni_intel syscopyarea sysfillrect sysimgblt fb_sys_fops pcbc drm 8139too aesni_intel 8139cp floppy psmouse mii aes_x86_64 crypto_simd pata_acpi cryptd glue_helper
[  846.431310] CPU: 1 PID: 1249 Comm: a.out Not tainted 4.18.0-rc3+ #1
[  846.431312] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
[  846.431315] RIP: 0010:f2fs_is_valid_blkaddr+0x10f/0x160
[  846.431316] Code: 00 eb ed 31 c0 83 fa 05 75 ae 48 83 ec 08 48 8b 3f 89 f1 48 c7 c2 fc 0b 0f 8b 48 c7 c6 8b d7 09 8b 88 44 24 07 e8 61 8b ff ff <0f> 0b 0f b6 44 24 07 48 83 c4 08 eb 81 4c 8b 47 10 8b 8f 38 04 00
[  846.431347] RSP: 0018:ffff961c414a7bc0 EFLAGS: 00010282
[  846.431349] RAX: 0000000000000000 RBX: ffffc5f787b8ea80 RCX: 0000000000000000
[  846.431350] RDX: 0000000000000000 RSI: ffff89dfffd165d8 RDI: ffff89dfffd165d8
[  846.431351] RBP: ffff961c414a7c20 R08: 0000000000000001 R09: 0000000000000248
[  846.431353] R10: 0000000000000000 R11: 0000000000000248 R12: 0000000000000007
[  846.431369] R13: ffff89dff5492800 R14: ffff89dfae3aa000 R15: ffff89dff4ff88d0
[  846.431372] FS:  00007f882e2fb700(0000) GS:ffff89dfffd00000(0000) knlGS:0000000000000000
[  846.431373] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  846.431374] CR2: 0000000001a88008 CR3: 00000001eb572000 CR4: 00000000000006e0
[  846.431384] Call Trace:
[  846.431426]  f2fs_iget+0x6f4/0xe70
[  846.431430]  ? f2fs_find_entry+0x71/0x90
[  846.431432]  f2fs_lookup+0x1aa/0x390
[  846.431452]  __lookup_slow+0x97/0x150
[  846.431459]  lookup_slow+0x35/0x50
[  846.431462]  walk_component+0x1c6/0x470
[  846.431479]  ? memcg_kmem_charge_memcg+0x70/0x90
[  846.431488]  ? page_add_file_rmap+0x13/0x200
[  846.431491]  path_lookupat+0x76/0x230
[  846.431501]  ? __alloc_pages_nodemask+0xfc/0x280
[  846.431504]  filename_lookup+0xb8/0x1a0
[  846.431534]  ? _cond_resched+0x16/0x40
[  846.431541]  ? kmem_cache_alloc+0x160/0x1d0
[  846.431549]  ? path_listxattr+0x41/0xa0
[  846.431551]  path_listxattr+0x41/0xa0
[  846.431570]  do_syscall_64+0x55/0x100
[  846.431583]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
[  846.431607] RIP: 0033:0x7f882de1c0d7
[  846.431607] Code: f0 ff ff 73 01 c3 48 8b 0d be dd 2b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 b8 c2 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 91 dd 2b 00 f7 d8 64 89 01 48
[  846.431639] RSP: 002b:00007ffe8e66c238 EFLAGS: 00000202 ORIG_RAX: 00000000000000c2
[  846.431641] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f882de1c0d7
[  846.431642] RDX: 0000000000000071 RSI: 00007ffe8e66c280 RDI: 0000000001a880c0
[  846.431643] RBP: 00007ffe8e66c300 R08: 0000000001a88010 R09: 0000000000000000
[  846.431645] R10: 00000000000001ab R11: 0000000000000202 R12: 0000000000400550
[  846.431646] R13: 00007ffe8e66c400 R14: 0000000000000000 R15: 0000000000000000
[  846.431648] ---[ end trace abca54df39d14f5c ]---
[  846.431651] F2FS-fs (loop0): invalid blkaddr: 1024, type: 5, run fsck to fix.
[  846.431762] WARNING: CPU: 1 PID: 1249 at fs/f2fs/f2fs.h:2697 f2fs_iget+0xd17/0xe70
[  846.431763] Modules linked in: snd_hda_codec_generic snd_hda_intel snd_hda_codec snd_hda_core snd_hwdep snd_pcm snd_timer snd input_leds joydev soundcore serio_raw i2c_piix4 mac_hid ib_iser rdma_cm iw_cm ib_cm ib_core configfs iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi autofs4 raid10 raid456 libcrc32c async_raid6_recov async_memcpy async_pq async_xor xor async_tx raid6_pq raid1 raid0 multipath linear qxl ttm crct10dif_pclmul crc32_pclmul drm_kms_helper ghash_clmulni_intel syscopyarea sysfillrect sysimgblt fb_sys_fops pcbc drm 8139too aesni_intel 8139cp floppy psmouse mii aes_x86_64 crypto_simd pata_acpi cryptd glue_helper
[  846.431797] CPU: 1 PID: 1249 Comm: a.out Tainted: G        W         4.18.0-rc3+ #1
[  846.431798] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
[  846.431800] RIP: 0010:f2fs_iget+0xd17/0xe70
[  846.431801] Code: ff ff 48 63 d8 e9 e1 f6 ff ff 48 8b 45 c8 41 b8 05 00 00 00 48 c7 c2 d8 e8 0e 8b 48 c7 c6 1d b0 0a 8b 48 8b 38 e8 f9 b4 00 00 <0f> 0b 48 8b 45 c8 f0 80 48 48 04 e9 d8 f9 ff ff 0f 0b 48 8b 43 18
[  846.431832] RSP: 0018:ffff961c414a7bd0 EFLAGS: 00010282
[  846.431834] RAX: 0000000000000000 RBX: ffffc5f787b8ea80 RCX: 0000000000000006
[  846.431835] RDX: 0000000000000000 RSI: 0000000000000096 RDI: ffff89dfffd165d0
[  846.431836] RBP: ffff961c414a7c20 R08: 0000000000000000 R09: 0000000000000273
[  846.431837] R10: 0000000000000000 R11: ffff89dfad50ca60 R12: 0000000000000007
[  846.431838] R13: ffff89dff5492800 R14: ffff89dfae3aa000 R15: ffff89dff4ff88d0
[  846.431840] FS:  00007f882e2fb700(0000) GS:ffff89dfffd00000(0000) knlGS:0000000000000000
[  846.431841] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  846.431842] CR2: 0000000001a88008 CR3: 00000001eb572000 CR4: 00000000000006e0
[  846.431846] Call Trace:
[  846.431850]  ? f2fs_find_entry+0x71/0x90
[  846.431853]  f2fs_lookup+0x1aa/0x390
[  846.431856]  __lookup_slow+0x97/0x150
[  846.431858]  lookup_slow+0x35/0x50
[  846.431874]  walk_component+0x1c6/0x470
[  846.431878]  ? memcg_kmem_charge_memcg+0x70/0x90
[  846.431880]  ? page_add_file_rmap+0x13/0x200
[  846.431882]  path_lookupat+0x76/0x230
[  846.431884]  ? __alloc_pages_nodemask+0xfc/0x280
[  846.431886]  filename_lookup+0xb8/0x1a0
[  846.431890]  ? _cond_resched+0x16/0x40
[  846.431891]  ? kmem_cache_alloc+0x160/0x1d0
[  846.431894]  ? path_listxattr+0x41/0xa0
[  846.431896]  path_listxattr+0x41/0xa0
[  846.431898]  do_syscall_64+0x55/0x100
[  846.431901]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
[  846.431902] RIP: 0033:0x7f882de1c0d7
[  846.431903] Code: f0 ff ff 73 01 c3 48 8b 0d be dd 2b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 b8 c2 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 91 dd 2b 00 f7 d8 64 89 01 48
[  846.431934] RSP: 002b:00007ffe8e66c238 EFLAGS: 00000202 ORIG_RAX: 00000000000000c2
[  846.431936] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f882de1c0d7
[  846.431937] RDX: 0000000000000071 RSI: 00007ffe8e66c280 RDI: 0000000001a880c0
[  846.431939] RBP: 00007ffe8e66c300 R08: 0000000001a88010 R09: 0000000000000000
[  846.431940] R10: 00000000000001ab R11: 0000000000000202 R12: 0000000000400550
[  846.431941] R13: 00007ffe8e66c400 R14: 0000000000000000 R15: 0000000000000000
[  846.431943] ---[ end trace abca54df39d14f5d ]---
[  846.432033] F2FS-fs (loop0): access invalid blkaddr:1024
[  846.432051] WARNING: CPU: 1 PID: 1249 at fs/f2fs/checkpoint.c:154 f2fs_is_valid_blkaddr+0x10f/0x160
[  846.432051] Modules linked in: snd_hda_codec_generic snd_hda_intel snd_hda_codec snd_hda_core snd_hwdep snd_pcm snd_timer snd input_leds joydev soundcore serio_raw i2c_piix4 mac_hid ib_iser rdma_cm iw_cm ib_cm ib_core configfs iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi autofs4 raid10 raid456 libcrc32c async_raid6_recov async_memcpy async_pq async_xor xor async_tx raid6_pq raid1 raid0 multipath linear qxl ttm crct10dif_pclmul crc32_pclmul drm_kms_helper ghash_clmulni_intel syscopyarea sysfillrect sysimgblt fb_sys_fops pcbc drm 8139too aesni_intel 8139cp floppy psmouse mii aes_x86_64 crypto_simd pata_acpi cryptd glue_helper
[  846.432085] CPU: 1 PID: 1249 Comm: a.out Tainted: G        W         4.18.0-rc3+ #1
[  846.432086] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
[  846.432089] RIP: 0010:f2fs_is_valid_blkaddr+0x10f/0x160
[  846.432089] Code: 00 eb ed 31 c0 83 fa 05 75 ae 48 83 ec 08 48 8b 3f 89 f1 48 c7 c2 fc 0b 0f 8b 48 c7 c6 8b d7 09 8b 88 44 24 07 e8 61 8b ff ff <0f> 0b 0f b6 44 24 07 48 83 c4 08 eb 81 4c 8b 47 10 8b 8f 38 04 00
[  846.432120] RSP: 0018:ffff961c414a7900 EFLAGS: 00010286
[  846.432122] RAX: 0000000000000000 RBX: 0000000000000400 RCX: 0000000000000006
[  846.432123] RDX: 0000000000000000 RSI: 0000000000000096 RDI: ffff89dfffd165d0
[  846.432124] RBP: ffff89dff5492800 R08: 0000000000000001 R09: 000000000000029d
[  846.432125] R10: ffff961c414a7820 R11: 000000000000029d R12: 0000000000000400
[  846.432126] R13: 0000000000000000 R14: ffff89dff4ff88d0 R15: 0000000000000000
[  846.432128] FS:  00007f882e2fb700(0000) GS:ffff89dfffd00000(0000) knlGS:0000000000000000
[  846.432130] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  846.432131] CR2: 0000000001a88008 CR3: 00000001eb572000 CR4: 00000000000006e0
[  846.432135] Call Trace:
[  846.432151]  f2fs_wait_on_block_writeback+0x20/0x110
[  846.432158]  f2fs_grab_read_bio+0xbc/0xe0
[  846.432161]  f2fs_submit_page_read+0x21/0x280
[  846.432163]  f2fs_get_read_data_page+0xb7/0x3c0
[  846.432165]  f2fs_get_lock_data_page+0x29/0x1e0
[  846.432167]  f2fs_get_new_data_page+0x148/0x550
[  846.432170]  f2fs_add_regular_entry+0x1d2/0x550
[  846.432178]  ? __switch_to+0x12f/0x460
[  846.432181]  f2fs_add_dentry+0x6a/0xd0
[  846.432184]  f2fs_do_add_link+0xe9/0x140
[  846.432186]  __recover_dot_dentries+0x260/0x280
[  846.432189]  f2fs_lookup+0x343/0x390
[  846.432193]  __lookup_slow+0x97/0x150
[  846.432195]  lookup_slow+0x35/0x50
[  846.432208]  walk_component+0x1c6/0x470
[  846.432212]  ? memcg_kmem_charge_memcg+0x70/0x90
[  846.432215]  ? page_add_file_rmap+0x13/0x200
[  846.432217]  path_lookupat+0x76/0x230
[  846.432219]  ? __alloc_pages_nodemask+0xfc/0x280
[  846.432221]  filename_lookup+0xb8/0x1a0
[  846.432224]  ? _cond_resched+0x16/0x40
[  846.432226]  ? kmem_cache_alloc+0x160/0x1d0
[  846.432228]  ? path_listxattr+0x41/0xa0
[  846.432230]  path_listxattr+0x41/0xa0
[  846.432233]  do_syscall_64+0x55/0x100
[  846.432235]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
[  846.432237] RIP: 0033:0x7f882de1c0d7
[  846.432237] Code: f0 ff ff 73 01 c3 48 8b 0d be dd 2b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 b8 c2 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 91 dd 2b 00 f7 d8 64 89 01 48
[  846.432269] RSP: 002b:00007ffe8e66c238 EFLAGS: 00000202 ORIG_RAX: 00000000000000c2
[  846.432271] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f882de1c0d7
[  846.432272] RDX: 0000000000000071 RSI: 00007ffe8e66c280 RDI: 0000000001a880c0
[  846.432273] RBP: 00007ffe8e66c300 R08: 0000000001a88010 R09: 0000000000000000
[  846.432274] R10: 00000000000001ab R11: 0000000000000202 R12: 0000000000400550
[  846.432275] R13: 00007ffe8e66c400 R14: 0000000000000000 R15: 0000000000000000
[  846.432277] ---[ end trace abca54df39d14f5e ]---
[  846.432279] F2FS-fs (loop0): invalid blkaddr: 1024, type: 5, run fsck to fix.
[  846.432376] WARNING: CPU: 1 PID: 1249 at fs/f2fs/f2fs.h:2697 f2fs_wait_on_block_writeback+0xb1/0x110
[  846.432376] Modules linked in: snd_hda_codec_generic snd_hda_intel snd_hda_codec snd_hda_core snd_hwdep snd_pcm snd_timer snd input_leds joydev soundcore serio_raw i2c_piix4 mac_hid ib_iser rdma_cm iw_cm ib_cm ib_core configfs iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi autofs4 raid10 raid456 libcrc32c async_raid6_recov async_memcpy async_pq async_xor xor async_tx raid6_pq raid1 raid0 multipath linear qxl ttm crct10dif_pclmul crc32_pclmul drm_kms_helper ghash_clmulni_intel syscopyarea sysfillrect sysimgblt fb_sys_fops pcbc drm 8139too aesni_intel 8139cp floppy psmouse mii aes_x86_64 crypto_simd pata_acpi cryptd glue_helper
[  846.432410] CPU: 1 PID: 1249 Comm: a.out Tainted: G        W         4.18.0-rc3+ #1
[  846.432411] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
[  846.432413] RIP: 0010:f2fs_wait_on_block_writeback+0xb1/0x110
[  846.432414] Code: 66 90 f0 ff 4b 34 74 59 5b 5d c3 48 8b 7d 00 41 b8 05 00 00 00 89 d9 48 c7 c2 d8 e8 0e 8b 48 c7 c6 1d b0 0a 8b e8 df bc fd ff <0f> 0b f0 80 4d 48 04 e9 67 ff ff ff 48 8b 03 48 c1 e8 37 83 e0 07
[  846.432445] RSP: 0018:ffff961c414a7910 EFLAGS: 00010286
[  846.432447] RAX: 0000000000000000 RBX: 0000000000000400 RCX: 0000000000000006
[  846.432448] RDX: 0000000000000000 RSI: 0000000000000092 RDI: ffff89dfffd165d0
[  846.432449] RBP: ffff89dff5492800 R08: 0000000000000000 R09: 00000000000002d1
[  846.432450] R10: ffff961c414a7820 R11: ffff89dfad50cf80 R12: 0000000000000400
[  846.432451] R13: 0000000000000000 R14: ffff89dff4ff88d0 R15: 0000000000000000
[  846.432453] FS:  00007f882e2fb700(0000) GS:ffff89dfffd00000(0000) knlGS:0000000000000000
[  846.432454] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  846.432455] CR2: 0000000001a88008 CR3: 00000001eb572000 CR4: 00000000000006e0
[  846.432459] Call Trace:
[  846.432463]  f2fs_grab_read_bio+0xbc/0xe0
[  846.432464]  f2fs_submit_page_read+0x21/0x280
[  846.432466]  f2fs_get_read_data_page+0xb7/0x3c0
[  846.432468]  f2fs_get_lock_data_page+0x29/0x1e0
[  846.432470]  f2fs_get_new_data_page+0x148/0x550
[  846.432473]  f2fs_add_regular_entry+0x1d2/0x550
[  846.432475]  ? __switch_to+0x12f/0x460
[  846.432477]  f2fs_add_dentry+0x6a/0xd0
[  846.432480]  f2fs_do_add_link+0xe9/0x140
[  846.432483]  __recover_dot_dentries+0x260/0x280
[  846.432485]  f2fs_lookup+0x343/0x390
[  846.432488]  __lookup_slow+0x97/0x150
[  846.432490]  lookup_slow+0x35/0x50
[  846.432505]  walk_component+0x1c6/0x470
[  846.432509]  ? memcg_kmem_charge_memcg+0x70/0x90
[  846.432511]  ? page_add_file_rmap+0x13/0x200
[  846.432513]  path_lookupat+0x76/0x230
[  846.432515]  ? __alloc_pages_nodemask+0xfc/0x280
[  846.432517]  filename_lookup+0xb8/0x1a0
[  846.432520]  ? _cond_resched+0x16/0x40
[  846.432522]  ? kmem_cache_alloc+0x160/0x1d0
[  846.432525]  ? path_listxattr+0x41/0xa0
[  846.432526]  path_listxattr+0x41/0xa0
[  846.432529]  do_syscall_64+0x55/0x100
[  846.432531]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
[  846.432533] RIP: 0033:0x7f882de1c0d7
[  846.432533] Code: f0 ff ff 73 01 c3 48 8b 0d be dd 2b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 b8 c2 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 91 dd 2b 00 f7 d8 64 89 01 48
[  846.432565] RSP: 002b:00007ffe8e66c238 EFLAGS: 00000202 ORIG_RAX: 00000000000000c2
[  846.432567] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f882de1c0d7
[  846.432568] RDX: 0000000000000071 RSI: 00007ffe8e66c280 RDI: 0000000001a880c0
[  846.432569] RBP: 00007ffe8e66c300 R08: 0000000001a88010 R09: 0000000000000000
[  846.432570] R10: 00000000000001ab R11: 0000000000000202 R12: 0000000000400550
[  846.432571] R13: 00007ffe8e66c400 R14: 0000000000000000 R15: 0000000000000000
[  846.432573] ---[ end trace abca54df39d14f5f ]---
[  846.434280] BUG: unable to handle kernel NULL pointer dereference at 0000000000000008
[  846.434424] PGD 80000001ebd3a067 P4D 80000001ebd3a067 PUD 1eb1ae067 PMD 0
[  846.434551] Oops: 0000 [#1] SMP PTI
[  846.434697] CPU: 0 PID: 44 Comm: kworker/u5:0 Tainted: G        W         4.18.0-rc3+ #1
[  846.434805] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
[  846.435000] Workqueue: fscrypt_read_queue decrypt_work
[  846.435174] RIP: 0010:fscrypt_do_page_crypto+0x6e/0x2d0
[  846.435351] Code: 00 65 48 8b 04 25 28 00 00 00 48 89 84 24 88 00 00 00 31 c0 e8 43 c2 e0 ff 49 8b 86 48 02 00 00 85 ed c7 44 24 70 00 00 00 00 <48> 8b 58 08 0f 84 14 02 00 00 48 8b 78 10 48 8b 0c 24 48 c7 84 24
[  846.435696] RSP: 0018:ffff961c40f9bd60 EFLAGS: 00010206
[  846.435870] RAX: 0000000000000000 RBX: ffffc5f787719b80 RCX: ffffc5f787719b80
[  846.436051] RDX: ffffffff8b9f4b88 RSI: ffffffff8b0ae622 RDI: ffff961c40f9bdb8
[  846.436261] RBP: 0000000000001000 R08: ffffc5f787719b80 R09: 0000000000001000
[  846.436433] R10: 0000000000000018 R11: fefefefefefefeff R12: ffffc5f787719b80
[  846.436562] R13: ffffc5f787719b80 R14: ffff89dff4ff88d0 R15: 0ffff89dfaddee60
[  846.436658] FS:  0000000000000000(0000) GS:ffff89dfffc00000(0000) knlGS:0000000000000000
[  846.436758] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  846.436898] CR2: 0000000000000008 CR3: 00000001eddd0000 CR4: 00000000000006f0
[  846.437001] Call Trace:
[  846.437181]  ? check_preempt_wakeup+0xf2/0x230
[  846.437276]  ? check_preempt_curr+0x7c/0x90
[  846.437370]  fscrypt_decrypt_page+0x48/0x4d
[  846.437466]  __fscrypt_decrypt_bio+0x5b/0x90
[  846.437542]  decrypt_work+0x12/0x20
[  846.437651]  process_one_work+0x15e/0x3d0
[  846.437740]  worker_thread+0x4c/0x440
[  846.437848]  kthread+0xf8/0x130
[  846.437938]  ? rescuer_thread+0x350/0x350
[  846.438022]  ? kthread_associate_blkcg+0x90/0x90
[  846.438117]  ret_from_fork+0x35/0x40
[  846.438201] Modules linked in: snd_hda_codec_generic snd_hda_intel snd_hda_codec snd_hda_core snd_hwdep snd_pcm snd_timer snd input_leds joydev soundcore serio_raw i2c_piix4 mac_hid ib_iser rdma_cm iw_cm ib_cm ib_core configfs iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi autofs4 raid10 raid456 libcrc32c async_raid6_recov async_memcpy async_pq async_xor xor async_tx raid6_pq raid1 raid0 multipath linear qxl ttm crct10dif_pclmul crc32_pclmul drm_kms_helper ghash_clmulni_intel syscopyarea sysfillrect sysimgblt fb_sys_fops pcbc drm 8139too aesni_intel 8139cp floppy psmouse mii aes_x86_64 crypto_simd pata_acpi cryptd glue_helper
[  846.438653] CR2: 0000000000000008
[  846.438713] ---[ end trace abca54df39d14f60 ]---
[  846.438796] RIP: 0010:fscrypt_do_page_crypto+0x6e/0x2d0
[  846.438844] Code: 00 65 48 8b 04 25 28 00 00 00 48 89 84 24 88 00 00 00 31 c0 e8 43 c2 e0 ff 49 8b 86 48 02 00 00 85 ed c7 44 24 70 00 00 00 00 <48> 8b 58 08 0f 84 14 02 00 00 48 8b 78 10 48 8b 0c 24 48 c7 84 24
[  846.439084] RSP: 0018:ffff961c40f9bd60 EFLAGS: 00010206
[  846.439176] RAX: 0000000000000000 RBX: ffffc5f787719b80 RCX: ffffc5f787719b80
[  846.440927] RDX: ffffffff8b9f4b88 RSI: ffffffff8b0ae622 RDI: ffff961c40f9bdb8
[  846.442083] RBP: 0000000000001000 R08: ffffc5f787719b80 R09: 0000000000001000
[  846.443284] R10: 0000000000000018 R11: fefefefefefefeff R12: ffffc5f787719b80
[  846.444448] R13: ffffc5f787719b80 R14: ffff89dff4ff88d0 R15: 0ffff89dfaddee60
[  846.445558] FS:  0000000000000000(0000) GS:ffff89dfffc00000(0000) knlGS:0000000000000000
[  846.446687] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  846.447796] CR2: 0000000000000008 CR3: 00000001eddd0000 CR4: 00000000000006f0

- Location
https://elixir.bootlin.com/linux/v4.18-rc4/source/fs/crypto/crypto.c#L149
	struct crypto_skcipher *tfm = ci->ci_ctfm;
Here ci can be NULL

Note that this issue maybe require CONFIG_F2FS_FS_ENCRYPTION=y to reproduce.

Reported-by Wen Xu <wen.xu@gatech.edu>
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
[bwh: Backported to 4.4: adjust context]
Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-26 09:42:48 +01:00

1731 lines
40 KiB
C

/*
* fs/f2fs/data.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/buffer_head.h>
#include <linux/mpage.h>
#include <linux/writeback.h>
#include <linux/backing-dev.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/prefetch.h>
#include <linux/uio.h>
#include <linux/cleancache.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include "trace.h"
#include <trace/events/f2fs.h>
static void f2fs_read_end_io(struct bio *bio)
{
struct bio_vec *bvec;
int i;
if (f2fs_bio_encrypted(bio)) {
if (bio->bi_error) {
f2fs_release_crypto_ctx(bio->bi_private);
} else {
f2fs_end_io_crypto_work(bio->bi_private, bio);
return;
}
}
bio_for_each_segment_all(bvec, bio, i) {
struct page *page = bvec->bv_page;
if (!bio->bi_error) {
SetPageUptodate(page);
} else {
ClearPageUptodate(page);
SetPageError(page);
}
unlock_page(page);
}
bio_put(bio);
}
static void f2fs_write_end_io(struct bio *bio)
{
struct f2fs_sb_info *sbi = bio->bi_private;
struct bio_vec *bvec;
int i;
bio_for_each_segment_all(bvec, bio, i) {
struct page *page = bvec->bv_page;
f2fs_restore_and_release_control_page(&page);
if (unlikely(bio->bi_error)) {
set_page_dirty(page);
set_bit(AS_EIO, &page->mapping->flags);
f2fs_stop_checkpoint(sbi);
}
end_page_writeback(page);
dec_page_count(sbi, F2FS_WRITEBACK);
}
if (!get_pages(sbi, F2FS_WRITEBACK) &&
!list_empty(&sbi->cp_wait.task_list))
wake_up(&sbi->cp_wait);
bio_put(bio);
}
/*
* Low-level block read/write IO operations.
*/
static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
int npages, bool is_read)
{
struct bio *bio;
bio = f2fs_bio_alloc(npages);
bio->bi_bdev = sbi->sb->s_bdev;
bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
bio->bi_private = is_read ? NULL : sbi;
return bio;
}
static void __submit_merged_bio(struct f2fs_bio_info *io)
{
struct f2fs_io_info *fio = &io->fio;
if (!io->bio)
return;
if (is_read_io(fio->rw))
trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
else
trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
submit_bio(fio->rw, io->bio);
io->bio = NULL;
}
void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
enum page_type type, int rw)
{
enum page_type btype = PAGE_TYPE_OF_BIO(type);
struct f2fs_bio_info *io;
io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
down_write(&io->io_rwsem);
/* change META to META_FLUSH in the checkpoint procedure */
if (type >= META_FLUSH) {
io->fio.type = META_FLUSH;
if (test_opt(sbi, NOBARRIER))
io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
else
io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
}
__submit_merged_bio(io);
up_write(&io->io_rwsem);
}
/*
* Fill the locked page with data located in the block address.
* Return unlocked page.
*/
int f2fs_submit_page_bio(struct f2fs_io_info *fio)
{
struct bio *bio;
struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
if (!f2fs_is_valid_blkaddr(fio->sbi, fio->blk_addr,
__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
return -EFAULT;
trace_f2fs_submit_page_bio(page, fio);
f2fs_trace_ios(fio, 0);
/* Allocate a new bio */
bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
bio_put(bio);
return -EFAULT;
}
submit_bio(fio->rw, bio);
return 0;
}
void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
{
struct f2fs_sb_info *sbi = fio->sbi;
enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
struct f2fs_bio_info *io;
bool is_read = is_read_io(fio->rw);
struct page *bio_page;
io = is_read ? &sbi->read_io : &sbi->write_io[btype];
verify_block_addr(fio, fio->blk_addr);
down_write(&io->io_rwsem);
if (!is_read)
inc_page_count(sbi, F2FS_WRITEBACK);
if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
io->fio.rw != fio->rw))
__submit_merged_bio(io);
alloc_new:
if (io->bio == NULL) {
int bio_blocks = MAX_BIO_BLOCKS(sbi);
io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
io->fio = *fio;
}
bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) <
PAGE_CACHE_SIZE) {
__submit_merged_bio(io);
goto alloc_new;
}
io->last_block_in_bio = fio->blk_addr;
f2fs_trace_ios(fio, 0);
up_write(&io->io_rwsem);
trace_f2fs_submit_page_mbio(fio->page, fio);
}
/*
* Lock ordering for the change of data block address:
* ->data_page
* ->node_page
* update block addresses in the node page
*/
void set_data_blkaddr(struct dnode_of_data *dn)
{
struct f2fs_node *rn;
__le32 *addr_array;
struct page *node_page = dn->node_page;
unsigned int ofs_in_node = dn->ofs_in_node;
f2fs_wait_on_page_writeback(node_page, NODE);
rn = F2FS_NODE(node_page);
/* Get physical address of data block */
addr_array = blkaddr_in_node(rn);
addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
set_page_dirty(node_page);
}
int reserve_new_block(struct dnode_of_data *dn)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
return -EPERM;
if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
return -ENOSPC;
trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
dn->data_blkaddr = NEW_ADDR;
set_data_blkaddr(dn);
mark_inode_dirty(dn->inode);
sync_inode_page(dn);
return 0;
}
int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
{
bool need_put = dn->inode_page ? false : true;
int err;
err = get_dnode_of_data(dn, index, ALLOC_NODE);
if (err)
return err;
if (dn->data_blkaddr == NULL_ADDR)
err = reserve_new_block(dn);
if (err || need_put)
f2fs_put_dnode(dn);
return err;
}
int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
{
struct extent_info ei;
struct inode *inode = dn->inode;
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
dn->data_blkaddr = ei.blk + index - ei.fofs;
return 0;
}
return f2fs_reserve_block(dn, index);
}
struct page *get_read_data_page(struct inode *inode, pgoff_t index,
int rw, bool for_write)
{
struct address_space *mapping = inode->i_mapping;
struct dnode_of_data dn;
struct page *page;
struct extent_info ei;
int err;
struct f2fs_io_info fio = {
.sbi = F2FS_I_SB(inode),
.type = DATA,
.rw = rw,
.encrypted_page = NULL,
};
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
return read_mapping_page(mapping, index, NULL);
page = f2fs_grab_cache_page(mapping, index, for_write);
if (!page)
return ERR_PTR(-ENOMEM);
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
dn.data_blkaddr = ei.blk + index - ei.fofs;
goto got_it;
}
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
if (err)
goto put_err;
f2fs_put_dnode(&dn);
if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
err = -ENOENT;
goto put_err;
}
got_it:
if (PageUptodate(page)) {
unlock_page(page);
return page;
}
/*
* A new dentry page is allocated but not able to be written, since its
* new inode page couldn't be allocated due to -ENOSPC.
* In such the case, its blkaddr can be remained as NEW_ADDR.
* see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
*/
if (dn.data_blkaddr == NEW_ADDR) {
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
SetPageUptodate(page);
unlock_page(page);
return page;
}
fio.blk_addr = dn.data_blkaddr;
fio.page = page;
err = f2fs_submit_page_bio(&fio);
if (err)
goto put_err;
return page;
put_err:
f2fs_put_page(page, 1);
return ERR_PTR(err);
}
struct page *find_data_page(struct inode *inode, pgoff_t index)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
page = find_get_page(mapping, index);
if (page && PageUptodate(page))
return page;
f2fs_put_page(page, 0);
page = get_read_data_page(inode, index, READ_SYNC, false);
if (IS_ERR(page))
return page;
if (PageUptodate(page))
return page;
wait_on_page_locked(page);
if (unlikely(!PageUptodate(page))) {
f2fs_put_page(page, 0);
return ERR_PTR(-EIO);
}
return page;
}
/*
* If it tries to access a hole, return an error.
* Because, the callers, functions in dir.c and GC, should be able to know
* whether this page exists or not.
*/
struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
bool for_write)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
repeat:
page = get_read_data_page(inode, index, READ_SYNC, for_write);
if (IS_ERR(page))
return page;
/* wait for read completion */
lock_page(page);
if (unlikely(!PageUptodate(page))) {
f2fs_put_page(page, 1);
return ERR_PTR(-EIO);
}
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
return page;
}
/*
* Caller ensures that this data page is never allocated.
* A new zero-filled data page is allocated in the page cache.
*
* Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
* f2fs_unlock_op().
* Note that, ipage is set only by make_empty_dir, and if any error occur,
* ipage should be released by this function.
*/
struct page *get_new_data_page(struct inode *inode,
struct page *ipage, pgoff_t index, bool new_i_size)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
struct dnode_of_data dn;
int err;
repeat:
page = f2fs_grab_cache_page(mapping, index, true);
if (!page) {
/*
* before exiting, we should make sure ipage will be released
* if any error occur.
*/
f2fs_put_page(ipage, 1);
return ERR_PTR(-ENOMEM);
}
set_new_dnode(&dn, inode, ipage, NULL, 0);
err = f2fs_reserve_block(&dn, index);
if (err) {
f2fs_put_page(page, 1);
return ERR_PTR(err);
}
if (!ipage)
f2fs_put_dnode(&dn);
if (PageUptodate(page))
goto got_it;
if (dn.data_blkaddr == NEW_ADDR) {
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
SetPageUptodate(page);
} else {
f2fs_put_page(page, 1);
page = get_read_data_page(inode, index, READ_SYNC, true);
if (IS_ERR(page))
goto repeat;
/* wait for read completion */
lock_page(page);
}
got_it:
if (new_i_size && i_size_read(inode) <
((loff_t)(index + 1) << PAGE_CACHE_SHIFT)) {
i_size_write(inode, ((loff_t)(index + 1) << PAGE_CACHE_SHIFT));
/* Only the directory inode sets new_i_size */
set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
}
return page;
}
static int __allocate_data_block(struct dnode_of_data *dn)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
struct f2fs_inode_info *fi = F2FS_I(dn->inode);
struct f2fs_summary sum;
struct node_info ni;
int seg = CURSEG_WARM_DATA;
pgoff_t fofs;
if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
return -EPERM;
dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
if (dn->data_blkaddr == NEW_ADDR)
goto alloc;
if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
return -ENOSPC;
alloc:
get_node_info(sbi, dn->nid, &ni);
set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
seg = CURSEG_DIRECT_IO;
allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
&sum, seg);
set_data_blkaddr(dn);
/* update i_size */
fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
dn->ofs_in_node;
if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_CACHE_SHIFT))
i_size_write(dn->inode,
((loff_t)(fofs + 1) << PAGE_CACHE_SHIFT));
/* direct IO doesn't use extent cache to maximize the performance */
f2fs_drop_largest_extent(dn->inode, fofs);
return 0;
}
static void __allocate_data_blocks(struct inode *inode, loff_t offset,
size_t count)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct dnode_of_data dn;
u64 start = F2FS_BYTES_TO_BLK(offset);
u64 len = F2FS_BYTES_TO_BLK(count);
bool allocated;
u64 end_offset;
while (len) {
f2fs_balance_fs(sbi);
f2fs_lock_op(sbi);
/* When reading holes, we need its node page */
set_new_dnode(&dn, inode, NULL, NULL, 0);
if (get_dnode_of_data(&dn, start, ALLOC_NODE))
goto out;
allocated = false;
end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
while (dn.ofs_in_node < end_offset && len) {
block_t blkaddr;
if (unlikely(f2fs_cp_error(sbi)))
goto sync_out;
blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
if (__allocate_data_block(&dn))
goto sync_out;
allocated = true;
}
len--;
start++;
dn.ofs_in_node++;
}
if (allocated)
sync_inode_page(&dn);
f2fs_put_dnode(&dn);
f2fs_unlock_op(sbi);
}
return;
sync_out:
if (allocated)
sync_inode_page(&dn);
f2fs_put_dnode(&dn);
out:
f2fs_unlock_op(sbi);
return;
}
/*
* f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
* f2fs_map_blocks structure.
* If original data blocks are allocated, then give them to blockdev.
* Otherwise,
* a. preallocate requested block addresses
* b. do not use extent cache for better performance
* c. give the block addresses to blockdev
*/
static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
int create, int flag)
{
unsigned int maxblocks = map->m_len;
struct dnode_of_data dn;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
pgoff_t pgofs, end_offset;
int err = 0, ofs = 1;
struct extent_info ei;
bool allocated = false;
map->m_len = 0;
map->m_flags = 0;
/* it only supports block size == page size */
pgofs = (pgoff_t)map->m_lblk;
if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
map->m_pblk = ei.blk + pgofs - ei.fofs;
map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
map->m_flags = F2FS_MAP_MAPPED;
goto out;
}
if (create)
f2fs_lock_op(F2FS_I_SB(inode));
/* When reading holes, we need its node page */
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, pgofs, mode);
if (err) {
if (err == -ENOENT)
err = 0;
goto unlock_out;
}
if (__is_valid_data_blkaddr(dn.data_blkaddr) &&
!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, DATA_GENERIC)) {
err = -EFAULT;
goto sync_out;
}
if (!is_valid_data_blkaddr(sbi, dn.data_blkaddr)) {
if (create) {
if (unlikely(f2fs_cp_error(sbi))) {
err = -EIO;
goto put_out;
}
err = __allocate_data_block(&dn);
if (err)
goto put_out;
allocated = true;
map->m_flags = F2FS_MAP_NEW;
} else {
if (flag != F2FS_GET_BLOCK_FIEMAP ||
dn.data_blkaddr != NEW_ADDR) {
if (flag == F2FS_GET_BLOCK_BMAP)
err = -ENOENT;
goto put_out;
}
/*
* preallocated unwritten block should be mapped
* for fiemap.
*/
if (dn.data_blkaddr == NEW_ADDR)
map->m_flags = F2FS_MAP_UNWRITTEN;
}
}
map->m_flags |= F2FS_MAP_MAPPED;
map->m_pblk = dn.data_blkaddr;
map->m_len = 1;
end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
dn.ofs_in_node++;
pgofs++;
get_next:
if (dn.ofs_in_node >= end_offset) {
if (allocated)
sync_inode_page(&dn);
allocated = false;
f2fs_put_dnode(&dn);
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, pgofs, mode);
if (err) {
if (err == -ENOENT)
err = 0;
goto unlock_out;
}
end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
}
if (maxblocks > map->m_len) {
block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
if (create) {
if (unlikely(f2fs_cp_error(sbi))) {
err = -EIO;
goto sync_out;
}
err = __allocate_data_block(&dn);
if (err)
goto sync_out;
allocated = true;
map->m_flags |= F2FS_MAP_NEW;
blkaddr = dn.data_blkaddr;
} else {
/*
* we only merge preallocated unwritten blocks
* for fiemap.
*/
if (flag != F2FS_GET_BLOCK_FIEMAP ||
blkaddr != NEW_ADDR)
goto sync_out;
}
}
/* Give more consecutive addresses for the readahead */
if ((map->m_pblk != NEW_ADDR &&
blkaddr == (map->m_pblk + ofs)) ||
(map->m_pblk == NEW_ADDR &&
blkaddr == NEW_ADDR)) {
ofs++;
dn.ofs_in_node++;
pgofs++;
map->m_len++;
goto get_next;
}
}
sync_out:
if (allocated)
sync_inode_page(&dn);
put_out:
f2fs_put_dnode(&dn);
unlock_out:
if (create)
f2fs_unlock_op(F2FS_I_SB(inode));
out:
trace_f2fs_map_blocks(inode, map, err);
return err;
}
static int __get_data_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh, int create, int flag)
{
struct f2fs_map_blocks map;
int ret;
map.m_lblk = iblock;
map.m_len = bh->b_size >> inode->i_blkbits;
ret = f2fs_map_blocks(inode, &map, create, flag);
if (!ret) {
map_bh(bh, inode->i_sb, map.m_pblk);
bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
bh->b_size = (u64)map.m_len << inode->i_blkbits;
}
return ret;
}
static int get_data_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create, int flag)
{
return __get_data_block(inode, iblock, bh_result, create, flag);
}
static int get_data_block_dio(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
return __get_data_block(inode, iblock, bh_result, create,
F2FS_GET_BLOCK_DIO);
}
static int get_data_block_bmap(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
return __get_data_block(inode, iblock, bh_result, create,
F2FS_GET_BLOCK_BMAP);
}
static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
{
return (offset >> inode->i_blkbits);
}
static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
{
return (blk << inode->i_blkbits);
}
int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
u64 start, u64 len)
{
struct buffer_head map_bh;
sector_t start_blk, last_blk;
loff_t isize = i_size_read(inode);
u64 logical = 0, phys = 0, size = 0;
u32 flags = 0;
bool past_eof = false, whole_file = false;
int ret = 0;
ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
if (ret)
return ret;
if (f2fs_has_inline_data(inode)) {
ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
if (ret != -EAGAIN)
return ret;
}
mutex_lock(&inode->i_mutex);
if (len >= isize) {
whole_file = true;
len = isize;
}
if (logical_to_blk(inode, len) == 0)
len = blk_to_logical(inode, 1);
start_blk = logical_to_blk(inode, start);
last_blk = logical_to_blk(inode, start + len - 1);
next:
memset(&map_bh, 0, sizeof(struct buffer_head));
map_bh.b_size = len;
ret = get_data_block(inode, start_blk, &map_bh, 0,
F2FS_GET_BLOCK_FIEMAP);
if (ret)
goto out;
/* HOLE */
if (!buffer_mapped(&map_bh)) {
start_blk++;
if (!past_eof && blk_to_logical(inode, start_blk) >= isize)
past_eof = 1;
if (past_eof && size) {
flags |= FIEMAP_EXTENT_LAST;
ret = fiemap_fill_next_extent(fieinfo, logical,
phys, size, flags);
} else if (size) {
ret = fiemap_fill_next_extent(fieinfo, logical,
phys, size, flags);
size = 0;
}
/* if we have holes up to/past EOF then we're done */
if (start_blk > last_blk || past_eof || ret)
goto out;
} else {
if (start_blk > last_blk && !whole_file) {
ret = fiemap_fill_next_extent(fieinfo, logical,
phys, size, flags);
goto out;
}
/*
* if size != 0 then we know we already have an extent
* to add, so add it.
*/
if (size) {
ret = fiemap_fill_next_extent(fieinfo, logical,
phys, size, flags);
if (ret)
goto out;
}
logical = blk_to_logical(inode, start_blk);
phys = blk_to_logical(inode, map_bh.b_blocknr);
size = map_bh.b_size;
flags = 0;
if (buffer_unwritten(&map_bh))
flags = FIEMAP_EXTENT_UNWRITTEN;
start_blk += logical_to_blk(inode, size);
/*
* If we are past the EOF, then we need to make sure as
* soon as we find a hole that the last extent we found
* is marked with FIEMAP_EXTENT_LAST
*/
if (!past_eof && logical + size >= isize)
past_eof = true;
}
cond_resched();
if (fatal_signal_pending(current))
ret = -EINTR;
else
goto next;
out:
if (ret == 1)
ret = 0;
mutex_unlock(&inode->i_mutex);
return ret;
}
struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
unsigned nr_pages)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_crypto_ctx *ctx = NULL;
struct block_device *bdev = sbi->sb->s_bdev;
struct bio *bio;
if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
return ERR_PTR(-EFAULT);
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
ctx = f2fs_get_crypto_ctx(inode);
if (IS_ERR(ctx))
return ERR_CAST(ctx);
/* wait the page to be moved by cleaning */
f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
}
bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
if (!bio) {
if (ctx)
f2fs_release_crypto_ctx(ctx);
return ERR_PTR(-ENOMEM);
}
bio->bi_bdev = bdev;
bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blkaddr);
bio->bi_end_io = f2fs_read_end_io;
bio->bi_private = ctx;
return bio;
}
/*
* This function was originally taken from fs/mpage.c, and customized for f2fs.
* Major change was from block_size == page_size in f2fs by default.
*/
static int f2fs_mpage_readpages(struct address_space *mapping,
struct list_head *pages, struct page *page,
unsigned nr_pages)
{
struct bio *bio = NULL;
unsigned page_idx;
sector_t last_block_in_bio = 0;
struct inode *inode = mapping->host;
const unsigned blkbits = inode->i_blkbits;
const unsigned blocksize = 1 << blkbits;
sector_t block_in_file;
sector_t last_block;
sector_t last_block_in_file;
sector_t block_nr;
struct f2fs_map_blocks map;
map.m_pblk = 0;
map.m_lblk = 0;
map.m_len = 0;
map.m_flags = 0;
for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
prefetchw(&page->flags);
if (pages) {
page = list_entry(pages->prev, struct page, lru);
list_del(&page->lru);
if (add_to_page_cache_lru(page, mapping,
page->index, GFP_KERNEL))
goto next_page;
}
block_in_file = (sector_t)page->index;
last_block = block_in_file + nr_pages;
last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
blkbits;
if (last_block > last_block_in_file)
last_block = last_block_in_file;
/*
* Map blocks using the previous result first.
*/
if ((map.m_flags & F2FS_MAP_MAPPED) &&
block_in_file > map.m_lblk &&
block_in_file < (map.m_lblk + map.m_len))
goto got_it;
/*
* Then do more f2fs_map_blocks() calls until we are
* done with this page.
*/
map.m_flags = 0;
if (block_in_file < last_block) {
map.m_lblk = block_in_file;
map.m_len = last_block - block_in_file;
if (f2fs_map_blocks(inode, &map, 0,
F2FS_GET_BLOCK_READ))
goto set_error_page;
}
got_it:
if ((map.m_flags & F2FS_MAP_MAPPED)) {
block_nr = map.m_pblk + block_in_file - map.m_lblk;
SetPageMappedToDisk(page);
if (!PageUptodate(page) && !cleancache_get_page(page)) {
SetPageUptodate(page);
goto confused;
}
if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
DATA_GENERIC))
goto set_error_page;
} else {
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
SetPageUptodate(page);
unlock_page(page);
goto next_page;
}
/*
* This page will go to BIO. Do we need to send this
* BIO off first?
*/
if (bio && (last_block_in_bio != block_nr - 1)) {
submit_and_realloc:
submit_bio(READ, bio);
bio = NULL;
}
if (bio == NULL) {
bio = f2fs_grab_bio(inode, block_nr, nr_pages);
if (IS_ERR(bio))
goto set_error_page;
}
if (bio_add_page(bio, page, blocksize, 0) < blocksize)
goto submit_and_realloc;
last_block_in_bio = block_nr;
goto next_page;
set_error_page:
SetPageError(page);
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
unlock_page(page);
goto next_page;
confused:
if (bio) {
submit_bio(READ, bio);
bio = NULL;
}
unlock_page(page);
next_page:
if (pages)
page_cache_release(page);
}
BUG_ON(pages && !list_empty(pages));
if (bio)
submit_bio(READ, bio);
return 0;
}
static int f2fs_read_data_page(struct file *file, struct page *page)
{
struct inode *inode = page->mapping->host;
int ret = -EAGAIN;
trace_f2fs_readpage(page, DATA);
/* If the file has inline data, try to read it directly */
if (f2fs_has_inline_data(inode))
ret = f2fs_read_inline_data(inode, page);
if (ret == -EAGAIN)
ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
return ret;
}
static int f2fs_read_data_pages(struct file *file,
struct address_space *mapping,
struct list_head *pages, unsigned nr_pages)
{
struct inode *inode = file->f_mapping->host;
struct page *page = list_entry(pages->prev, struct page, lru);
trace_f2fs_readpages(inode, page, nr_pages);
/* If the file has inline data, skip readpages */
if (f2fs_has_inline_data(inode))
return 0;
return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
}
int do_write_data_page(struct f2fs_io_info *fio)
{
struct page *page = fio->page;
struct inode *inode = page->mapping->host;
struct dnode_of_data dn;
int err = 0;
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
if (err)
return err;
fio->blk_addr = dn.data_blkaddr;
/* This page is already truncated */
if (fio->blk_addr == NULL_ADDR) {
ClearPageUptodate(page);
goto out_writepage;
}
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
/* wait for GCed encrypted page writeback */
f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
fio->blk_addr);
fio->encrypted_page = f2fs_encrypt(inode, fio->page);
if (IS_ERR(fio->encrypted_page)) {
err = PTR_ERR(fio->encrypted_page);
goto out_writepage;
}
}
set_page_writeback(page);
if (__is_valid_data_blkaddr(fio->blk_addr) &&
!f2fs_is_valid_blkaddr(fio->sbi, fio->blk_addr,
DATA_GENERIC)) {
err = -EFAULT;
goto out_writepage;
}
/*
* If current allocation needs SSR,
* it had better in-place writes for updated data.
*/
if (unlikely(is_valid_data_blkaddr(fio->sbi, fio->blk_addr) &&
!is_cold_data(page) &&
need_inplace_update(inode))) {
rewrite_data_page(fio);
set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
trace_f2fs_do_write_data_page(page, IPU);
} else {
write_data_page(&dn, fio);
set_data_blkaddr(&dn);
f2fs_update_extent_cache(&dn);
trace_f2fs_do_write_data_page(page, OPU);
set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
if (page->index == 0)
set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
}
out_writepage:
f2fs_put_dnode(&dn);
return err;
}
static int f2fs_write_data_page(struct page *page,
struct writeback_control *wbc)
{
struct inode *inode = page->mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
loff_t i_size = i_size_read(inode);
const pgoff_t end_index = ((unsigned long long) i_size)
>> PAGE_CACHE_SHIFT;
unsigned offset = 0;
bool need_balance_fs = false;
int err = 0;
struct f2fs_io_info fio = {
.sbi = sbi,
.type = DATA,
.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
.page = page,
.encrypted_page = NULL,
};
trace_f2fs_writepage(page, DATA);
if (page->index < end_index)
goto write;
/*
* If the offset is out-of-range of file size,
* this page does not have to be written to disk.
*/
offset = i_size & (PAGE_CACHE_SIZE - 1);
if ((page->index >= end_index + 1) || !offset)
goto out;
zero_user_segment(page, offset, PAGE_CACHE_SIZE);
write:
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
goto redirty_out;
if (f2fs_is_drop_cache(inode))
goto out;
if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
available_free_memory(sbi, BASE_CHECK))
goto redirty_out;
/* Dentry blocks are controlled by checkpoint */
if (S_ISDIR(inode->i_mode)) {
if (unlikely(f2fs_cp_error(sbi)))
goto redirty_out;
err = do_write_data_page(&fio);
goto done;
}
/* we should bypass data pages to proceed the kworkder jobs */
if (unlikely(f2fs_cp_error(sbi))) {
SetPageError(page);
goto out;
}
if (!wbc->for_reclaim)
need_balance_fs = true;
else if (has_not_enough_free_secs(sbi, 0))
goto redirty_out;
err = -EAGAIN;
f2fs_lock_op(sbi);
if (f2fs_has_inline_data(inode))
err = f2fs_write_inline_data(inode, page);
if (err == -EAGAIN)
err = do_write_data_page(&fio);
f2fs_unlock_op(sbi);
done:
if (err && err != -ENOENT)
goto redirty_out;
clear_cold_data(page);
out:
inode_dec_dirty_pages(inode);
if (err)
ClearPageUptodate(page);
unlock_page(page);
if (need_balance_fs)
f2fs_balance_fs(sbi);
if (wbc->for_reclaim)
f2fs_submit_merged_bio(sbi, DATA, WRITE);
return 0;
redirty_out:
redirty_page_for_writepage(wbc, page);
return AOP_WRITEPAGE_ACTIVATE;
}
static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
void *data)
{
struct address_space *mapping = data;
int ret = mapping->a_ops->writepage(page, wbc);
mapping_set_error(mapping, ret);
return ret;
}
/*
* This function was copied from write_cche_pages from mm/page-writeback.c.
* The major change is making write step of cold data page separately from
* warm/hot data page.
*/
static int f2fs_write_cache_pages(struct address_space *mapping,
struct writeback_control *wbc, writepage_t writepage,
void *data)
{
int ret = 0;
int done = 0;
struct pagevec pvec;
int nr_pages;
pgoff_t uninitialized_var(writeback_index);
pgoff_t index;
pgoff_t end; /* Inclusive */
pgoff_t done_index;
int cycled;
int range_whole = 0;
int tag;
int step = 0;
pagevec_init(&pvec, 0);
next:
if (wbc->range_cyclic) {
writeback_index = mapping->writeback_index; /* prev offset */
index = writeback_index;
if (index == 0)
cycled = 1;
else
cycled = 0;
end = -1;
} else {
index = wbc->range_start >> PAGE_CACHE_SHIFT;
end = wbc->range_end >> PAGE_CACHE_SHIFT;
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
range_whole = 1;
cycled = 1; /* ignore range_cyclic tests */
}
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
tag = PAGECACHE_TAG_TOWRITE;
else
tag = PAGECACHE_TAG_DIRTY;
retry:
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
tag_pages_for_writeback(mapping, index, end);
done_index = index;
while (!done && (index <= end)) {
int i;
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
if (nr_pages == 0)
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
if (page->index > end) {
done = 1;
break;
}
done_index = page->index;
lock_page(page);
if (unlikely(page->mapping != mapping)) {
continue_unlock:
unlock_page(page);
continue;
}
if (!PageDirty(page)) {
/* someone wrote it for us */
goto continue_unlock;
}
if (step == is_cold_data(page))
goto continue_unlock;
if (PageWriteback(page)) {
if (wbc->sync_mode != WB_SYNC_NONE)
f2fs_wait_on_page_writeback(page, DATA);
else
goto continue_unlock;
}
BUG_ON(PageWriteback(page));
if (!clear_page_dirty_for_io(page))
goto continue_unlock;
ret = (*writepage)(page, wbc, data);
if (unlikely(ret)) {
if (ret == AOP_WRITEPAGE_ACTIVATE) {
unlock_page(page);
ret = 0;
} else {
done_index = page->index + 1;
done = 1;
break;
}
}
if (--wbc->nr_to_write <= 0 &&
wbc->sync_mode == WB_SYNC_NONE) {
done = 1;
break;
}
}
pagevec_release(&pvec);
cond_resched();
}
if (step < 1) {
step++;
goto next;
}
if (!cycled && !done) {
cycled = 1;
index = 0;
end = writeback_index - 1;
goto retry;
}
if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
mapping->writeback_index = done_index;
return ret;
}
static int f2fs_write_data_pages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct inode *inode = mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
bool locked = false;
int ret;
long diff;
trace_f2fs_writepages(mapping->host, wbc, DATA);
/* deal with chardevs and other special file */
if (!mapping->a_ops->writepage)
return 0;
/* skip writing if there is no dirty page in this inode */
if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
return 0;
if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
available_free_memory(sbi, DIRTY_DENTS))
goto skip_write;
/* during POR, we don't need to trigger writepage at all. */
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
goto skip_write;
diff = nr_pages_to_write(sbi, DATA, wbc);
if (!S_ISDIR(inode->i_mode)) {
mutex_lock(&sbi->writepages);
locked = true;
}
ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
f2fs_submit_merged_bio(sbi, DATA, WRITE);
if (locked)
mutex_unlock(&sbi->writepages);
remove_dirty_dir_inode(inode);
wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
return ret;
skip_write:
wbc->pages_skipped += get_dirty_pages(inode);
return 0;
}
static void f2fs_write_failed(struct address_space *mapping, loff_t to)
{
struct inode *inode = mapping->host;
if (to > inode->i_size) {
truncate_pagecache(inode, inode->i_size);
truncate_blocks(inode, inode->i_size, true);
}
}
static int f2fs_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
struct inode *inode = mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct page *page = NULL;
struct page *ipage;
pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
struct dnode_of_data dn;
int err = 0;
trace_f2fs_write_begin(inode, pos, len, flags);
f2fs_balance_fs(sbi);
/*
* We should check this at this moment to avoid deadlock on inode page
* and #0 page. The locking rule for inline_data conversion should be:
* lock_page(page #0) -> lock_page(inode_page)
*/
if (index != 0) {
err = f2fs_convert_inline_inode(inode);
if (err)
goto fail;
}
repeat:
/*
* Do not use grab_cache_page_write_begin() to avoid deadlock due to
* wait_for_stable_page. Will wait that below with our IO control.
*/
page = pagecache_get_page(mapping, index,
FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
if (!page) {
err = -ENOMEM;
goto fail;
}
*pagep = page;
f2fs_lock_op(sbi);
/* check inline_data */
ipage = get_node_page(sbi, inode->i_ino);
if (IS_ERR(ipage)) {
err = PTR_ERR(ipage);
goto unlock_fail;
}
set_new_dnode(&dn, inode, ipage, ipage, 0);
if (f2fs_has_inline_data(inode)) {
if (pos + len <= MAX_INLINE_DATA) {
read_inline_data(page, ipage);
set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
sync_inode_page(&dn);
goto put_next;
}
err = f2fs_convert_inline_page(&dn, page);
if (err)
goto put_fail;
}
err = f2fs_get_block(&dn, index);
if (err)
goto put_fail;
put_next:
f2fs_put_dnode(&dn);
f2fs_unlock_op(sbi);
f2fs_wait_on_page_writeback(page, DATA);
/* wait for GCed encrypted page writeback */
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
if (len == PAGE_CACHE_SIZE)
goto out_update;
if (PageUptodate(page))
goto out_clear;
if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
unsigned start = pos & (PAGE_CACHE_SIZE - 1);
unsigned end = start + len;
/* Reading beyond i_size is simple: memset to zero */
zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
goto out_update;
}
if (dn.data_blkaddr == NEW_ADDR) {
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
} else {
struct bio *bio;
bio = f2fs_grab_bio(inode, dn.data_blkaddr, 1);
if (IS_ERR(bio)) {
err = PTR_ERR(bio);
goto fail;
}
if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
bio_put(bio);
err = -EFAULT;
goto fail;
}
submit_bio(READ_SYNC, bio);
lock_page(page);
if (unlikely(!PageUptodate(page))) {
err = -EIO;
goto fail;
}
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
}
out_update:
SetPageUptodate(page);
out_clear:
clear_cold_data(page);
return 0;
put_fail:
f2fs_put_dnode(&dn);
unlock_fail:
f2fs_unlock_op(sbi);
fail:
f2fs_put_page(page, 1);
f2fs_write_failed(mapping, pos + len);
return err;
}
static int f2fs_write_end(struct file *file,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct inode *inode = page->mapping->host;
trace_f2fs_write_end(inode, pos, len, copied);
set_page_dirty(page);
if (pos + copied > i_size_read(inode)) {
i_size_write(inode, pos + copied);
mark_inode_dirty(inode);
update_inode_page(inode);
}
f2fs_put_page(page, 1);
return copied;
}
static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
loff_t offset)
{
unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
if (offset & blocksize_mask)
return -EINVAL;
if (iov_iter_alignment(iter) & blocksize_mask)
return -EINVAL;
return 0;
}
static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
loff_t offset)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
size_t count = iov_iter_count(iter);
int err;
/* we don't need to use inline_data strictly */
if (f2fs_has_inline_data(inode)) {
err = f2fs_convert_inline_inode(inode);
if (err)
return err;
}
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
return 0;
err = check_direct_IO(inode, iter, offset);
if (err)
return err;
trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
if (iov_iter_rw(iter) == WRITE) {
__allocate_data_blocks(inode, offset, count);
if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
err = -EIO;
goto out;
}
}
err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block_dio);
out:
if (err < 0 && iov_iter_rw(iter) == WRITE)
f2fs_write_failed(mapping, offset + count);
trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
return err;
}
void f2fs_invalidate_page(struct page *page, unsigned int offset,
unsigned int length)
{
struct inode *inode = page->mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
(offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
return;
if (PageDirty(page)) {
if (inode->i_ino == F2FS_META_INO(sbi))
dec_page_count(sbi, F2FS_DIRTY_META);
else if (inode->i_ino == F2FS_NODE_INO(sbi))
dec_page_count(sbi, F2FS_DIRTY_NODES);
else
inode_dec_dirty_pages(inode);
}
/* This is atomic written page, keep Private */
if (IS_ATOMIC_WRITTEN_PAGE(page))
return;
ClearPagePrivate(page);
}
int f2fs_release_page(struct page *page, gfp_t wait)
{
/* If this is dirty page, keep PagePrivate */
if (PageDirty(page))
return 0;
/* This is atomic written page, keep Private */
if (IS_ATOMIC_WRITTEN_PAGE(page))
return 0;
ClearPagePrivate(page);
return 1;
}
static int f2fs_set_data_page_dirty(struct page *page)
{
struct address_space *mapping = page->mapping;
struct inode *inode = mapping->host;
trace_f2fs_set_page_dirty(page, DATA);
SetPageUptodate(page);
if (f2fs_is_atomic_file(inode)) {
if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
register_inmem_page(inode, page);
return 1;
}
/*
* Previously, this page has been registered, we just
* return here.
*/
return 0;
}
if (!PageDirty(page)) {
__set_page_dirty_nobuffers(page);
update_dirty_page(inode, page);
return 1;
}
return 0;
}
static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
{
struct inode *inode = mapping->host;
if (f2fs_has_inline_data(inode))
return 0;
/* make sure allocating whole blocks */
if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
filemap_write_and_wait(mapping);
return generic_block_bmap(mapping, block, get_data_block_bmap);
}
const struct address_space_operations f2fs_dblock_aops = {
.readpage = f2fs_read_data_page,
.readpages = f2fs_read_data_pages,
.writepage = f2fs_write_data_page,
.writepages = f2fs_write_data_pages,
.write_begin = f2fs_write_begin,
.write_end = f2fs_write_end,
.set_page_dirty = f2fs_set_data_page_dirty,
.invalidatepage = f2fs_invalidate_page,
.releasepage = f2fs_release_page,
.direct_IO = f2fs_direct_IO,
.bmap = f2fs_bmap,
};