LineageOS 16.0 (v4.4.153) kernel with Halium 9 patches
Find a file
Srinivasarao P dd4f1e35fa Merge android-4.4.106 (2fea039) into msm-4.4
* refs/heads/tmp-2fea039
  Linux 4.4.106
  usb: gadget: ffs: Forbid usb_ep_alloc_request from sleeping
  arm: KVM: Fix VTTBR_BADDR_MASK BUG_ON off-by-one
  Revert "x86/mm/pat: Ensure cpa->pfn only contains page frame numbers"
  Revert "x86/efi: Hoist page table switching code into efi_call_virt()"
  Revert "x86/efi: Build our own page table structures"
  net/packet: fix a race in packet_bind() and packet_notifier()
  packet: fix crash in fanout_demux_rollover()
  sit: update frag_off info
  rds: Fix NULL pointer dereference in __rds_rdma_map
  tipc: fix memory leak in tipc_accept_from_sock()
  more bio_map_user_iov() leak fixes
  s390: always save and restore all registers on context switch
  ipmi: Stop timers before cleaning up the module
  audit: ensure that 'audit=1' actually enables audit for PID 1
  ipvlan: fix ipv6 outbound device
  afs: Connect up the CB.ProbeUuid
  IB/mlx5: Assign send CQ and recv CQ of UMR QP
  IB/mlx4: Increase maximal message size under UD QP
  xfrm: Copy policy family in clone_policy
  jump_label: Invoke jump_label_test() via early_initcall()
  atm: horizon: Fix irq release error
  sctp: use the right sk after waking up from wait_buf sleep
  sctp: do not free asoc when it is already dead in sctp_sendmsg
  sparc64/mm: set fields in deferred pages
  block: wake up all tasks blocked in get_request()
  sunrpc: Fix rpc_task_begin trace point
  NFS: Fix a typo in nfs_rename()
  dynamic-debug-howto: fix optional/omitted ending line number to be LARGE instead of 0
  lib/genalloc.c: make the avail variable an atomic_long_t
  route: update fnhe_expires for redirect when the fnhe exists
  route: also update fnhe_genid when updating a route cache
  mac80211_hwsim: Fix memory leak in hwsim_new_radio_nl()
  kbuild: pkg: use --transform option to prefix paths in tar
  EDAC, i5000, i5400: Fix definition of NRECMEMB register
  EDAC, i5000, i5400: Fix use of MTR_DRAM_WIDTH macro
  powerpc/powernv/ioda2: Gracefully fail if too many TCE levels requested
  drm/amd/amdgpu: fix console deadlock if late init failed
  axonram: Fix gendisk handling
  netfilter: don't track fragmented packets
  zram: set physical queue limits to avoid array out of bounds accesses
  i2c: riic: fix restart condition
  crypto: s5p-sss - Fix completing crypto request in IRQ handler
  ipv6: reorder icmpv6_init() and ip6_mr_init()
  bnx2x: do not rollback VF MAC/VLAN filters we did not configure
  bnx2x: fix possible overrun of VFPF multicast addresses array
  bnx2x: prevent crash when accessing PTP with interface down
  spi_ks8995: fix "BUG: key accdaa28 not in .data!"
  arm64: KVM: Survive unknown traps from guests
  arm: KVM: Survive unknown traps from guests
  KVM: nVMX: reset nested_run_pending if the vCPU is going to be reset
  irqchip/crossbar: Fix incorrect type of register size
  scsi: lpfc: Fix crash during Hardware error recovery on SLI3 adapters
  workqueue: trigger WARN if queue_delayed_work() is called with NULL @wq
  libata: drop WARN from protocol error in ata_sff_qc_issue()
  kvm: nVMX: VMCLEAR should not cause the vCPU to shut down
  USB: gadgetfs: Fix a potential memory leak in 'dev_config()'
  usb: gadget: configs: plug memory leak
  HID: chicony: Add support for another ASUS Zen AiO keyboard
  gpio: altera: Use handle_level_irq when configured as a level_high
  ARM: OMAP2+: Release device node after it is no longer needed.
  ARM: OMAP2+: Fix device node reference counts
  module: set __jump_table alignment to 8
  selftest/powerpc: Fix false failures for skipped tests
  x86/hpet: Prevent might sleep splat on resume
  ARM: OMAP2+: gpmc-onenand: propagate error on initialization failure
  vti6: Don't report path MTU below IPV6_MIN_MTU.
  Revert "s390/kbuild: enable modversions for symbols exported from asm"
  Revert "spi: SPI_FSL_DSPI should depend on HAS_DMA"
  Revert "drm/armada: Fix compile fail"
  mm: drop unused pmdp_huge_get_and_clear_notify()
  thp: fix MADV_DONTNEED vs. numa balancing race
  thp: reduce indentation level in change_huge_pmd()
  scsi: storvsc: Workaround for virtual DVD SCSI version
  ARM: avoid faulting on qemu
  ARM: BUG if jumping to usermode address in kernel mode
  arm64: fpsimd: Prevent registers leaking from dead tasks
  KVM: VMX: remove I/O port 0x80 bypass on Intel hosts
  arm64: KVM: fix VTTBR_BADDR_MASK BUG_ON off-by-one
  media: dvb: i2c transfers over usb cannot be done from stack
  drm/exynos: gem: Drop NONCONTIG flag for buffers allocated without IOMMU
  drm: extra printk() wrapper macros
  kdb: Fix handling of kallsyms_symbol_next() return value
  s390: fix compat system call table
  iommu/vt-d: Fix scatterlist offset handling
  ALSA: usb-audio: Add check return value for usb_string()
  ALSA: usb-audio: Fix out-of-bound error
  ALSA: seq: Remove spurious WARN_ON() at timer check
  ALSA: pcm: prevent UAF in snd_pcm_info
  x86/PCI: Make broadcom_postcore_init() check acpi_disabled
  X.509: reject invalid BIT STRING for subjectPublicKey
  ASN.1: check for error from ASN1_OP_END__ACT actions
  ASN.1: fix out-of-bounds read when parsing indefinite length item
  efi: Move some sysfs files to be read-only by root
  scsi: libsas: align sata_device's rps_resp on a cacheline
  isa: Prevent NULL dereference in isa_bus driver callbacks
  hv: kvp: Avoid reading past allocated blocks from KVP file
  virtio: release virtio index when fail to device_register
  can: usb_8dev: cancel urb on -EPIPE and -EPROTO
  can: esd_usb2: cancel urb on -EPIPE and -EPROTO
  can: ems_usb: cancel urb on -EPIPE and -EPROTO
  can: kvaser_usb: cancel urb on -EPIPE and -EPROTO
  can: kvaser_usb: ratelimit errors if incomplete messages are received
  can: kvaser_usb: Fix comparison bug in kvaser_usb_read_bulk_callback()
  can: kvaser_usb: free buf in error paths
  can: ti_hecc: Fix napi poll return value for repoll
  BACKPORT: irq: Make the irqentry text section unconditional
  UPSTREAM: arch, ftrace: for KASAN put hard/soft IRQ entries into separate sections
  UPSTREAM: x86, kasan, ftrace: Put APIC interrupt handlers into .irqentry.text
  UPSTREAM: kasan: make get_wild_bug_type() static
  UPSTREAM: kasan: separate report parts by empty lines
  UPSTREAM: kasan: improve double-free report format
  UPSTREAM: kasan: print page description after stacks
  UPSTREAM: kasan: improve slab object description
  UPSTREAM: kasan: change report header
  UPSTREAM: kasan: simplify address description logic
  UPSTREAM: kasan: change allocation and freeing stack traces headers
  UPSTREAM: kasan: unify report headers
  UPSTREAM: kasan: introduce helper functions for determining bug type
  BACKPORT: kasan: report only the first error by default
  UPSTREAM: kasan: fix races in quarantine_remove_cache()
  UPSTREAM: kasan: resched in quarantine_remove_cache()
  BACKPORT: kasan, sched/headers: Uninline kasan_enable/disable_current()
  BACKPORT: kasan: drain quarantine of memcg slab objects
  UPSTREAM: kasan: eliminate long stalls during quarantine reduction
  UPSTREAM: kasan: support panic_on_warn
  UPSTREAM: x86/suspend: fix false positive KASAN warning on suspend/resume
  UPSTREAM: kasan: support use-after-scope detection
  UPSTREAM: kasan/tests: add tests for user memory access functions
  UPSTREAM: mm, kasan: add a ksize() test
  UPSTREAM: kasan: test fix: warn if the UAF could not be detected in kmalloc_uaf2
  UPSTREAM: kasan: modify kmalloc_large_oob_right(), add kmalloc_pagealloc_oob_right()
  UPSTREAM: lib/stackdepot: export save/fetch stack for drivers
  UPSTREAM: lib/stackdepot.c: bump stackdepot capacity from 16MB to 128MB
  BACKPORT: kprobes: Unpoison stack in jprobe_return() for KASAN
  UPSTREAM: kasan: remove the unnecessary WARN_ONCE from quarantine.c
  UPSTREAM: kasan: avoid overflowing quarantine size on low memory systems
  UPSTREAM: kasan: improve double-free reports
  BACKPORT: mm: coalesce split strings
  BACKPORT: mm/kasan: get rid of ->state in struct kasan_alloc_meta
  UPSTREAM: mm/kasan: get rid of ->alloc_size in struct kasan_alloc_meta
  UPSTREAM: mm: kasan: remove unused 'reserved' field from struct kasan_alloc_meta
  UPSTREAM: mm/kasan, slub: don't disable interrupts when object leaves quarantine
  UPSTREAM: mm/kasan: don't reduce quarantine in atomic contexts
  UPSTREAM: mm/kasan: fix corruptions and false positive reports
  UPSTREAM: lib/stackdepot.c: use __GFP_NOWARN for stack allocations
  BACKPORT: mm, kasan: switch SLUB to stackdepot, enable memory quarantine for SLUB
  UPSTREAM: kasan/quarantine: fix bugs on qlist_move_cache()
  UPSTREAM: mm: mempool: kasan: don't poot mempool objects in quarantine
  UPSTREAM: kasan: change memory hot-add error messages to info messages
  BACKPORT: mm/kasan: add API to check memory regions
  UPSTREAM: mm/kasan: print name of mem[set,cpy,move]() caller in report
  UPSTREAM: mm: kasan: initial memory quarantine implementation
  UPSTREAM: lib/stackdepot: avoid to return 0 handle
  UPSTREAM: lib/stackdepot.c: allow the stack trace hash to be zero
  UPSTREAM: mm, kasan: fix compilation for CONFIG_SLAB
  BACKPORT: mm, kasan: stackdepot implementation. Enable stackdepot for SLAB
  BACKPORT: mm, kasan: add GFP flags to KASAN API
  UPSTREAM: mm, kasan: SLAB support
  UPSTREAM: mm/slab: align cache size first before determination of OFF_SLAB candidate
  UPSTREAM: mm/slab: use more appropriate condition check for debug_pagealloc
  UPSTREAM: mm/slab: factor out debugging initialization in cache_init_objs()
  UPSTREAM: mm/slab: remove object status buffer for DEBUG_SLAB_LEAK
  UPSTREAM: mm/slab: alternative implementation for DEBUG_SLAB_LEAK
  UPSTREAM: mm/slab: clean up DEBUG_PAGEALLOC processing code
  UPSTREAM: mm/slab: activate debug_pagealloc in SLAB when it is actually enabled
  sched: EAS/WALT: Don't take into account of running task's util
  BACKPORT: schedutil: Reset cached freq if it is not in sync with next_freq
  UPSTREAM: kasan: add functions to clear stack poison

Conflicts:
	arch/arm/include/asm/kvm_arm.h
	arch/arm64/kernel/vmlinux.lds.S
	include/linux/kasan.h
	kernel/softirq.c
	lib/Kconfig
	lib/Kconfig.kasan
	lib/Makefile
	lib/stackdepot.c
	mm/kasan/kasan.c
	sound/usb/mixer.c

Change-Id: If70ced6da5f19be3dd92d10a8d8cd4d5841e5870
Signed-off-by: Srinivasarao P <spathi@codeaurora.org>
2018-01-18 12:45:07 +05:30
android/configs ANDROID: add script to fetch android kernel config fragments 2017-10-03 10:59:04 -07:00
arch Merge android-4.4.106 (2fea039) into msm-4.4 2018-01-18 12:45:07 +05:30
block Merge android-4.4.106 (2fea039) into msm-4.4 2018-01-18 12:45:07 +05:30
certs certs: dm-verity: add keyring certification for verity 2017-02-16 17:58:04 -08:00
crypto This is the 4.4.106 stable release 2017-12-18 10:49:53 +01:00
Documentation Merge android-4.4.106 (2fea039) into msm-4.4 2018-01-18 12:45:07 +05:30
drivers Merge android-4.4.106 (2fea039) into msm-4.4 2018-01-18 12:45:07 +05:30
firmware firmware: Update information in linux.git about adding firmware 2015-05-07 09:48:42 -06:00
fs Merge android-4.4.106 (2fea039) into msm-4.4 2018-01-18 12:45:07 +05:30
include Merge android-4.4.106 (2fea039) into msm-4.4 2018-01-18 12:45:07 +05:30
init Merge android-4.4.105 (8a53962) into msm-4.4 2018-01-08 10:02:41 +05:30
ipc Merge android-4.4@59ff2e1 (v4.4.78) into msm-4.4 2017-08-04 07:53:32 -07:00
kernel Merge android-4.4.106 (2fea039) into msm-4.4 2018-01-18 12:45:07 +05:30
lib Merge android-4.4.106 (2fea039) into msm-4.4 2018-01-18 12:45:07 +05:30
mm Merge android-4.4.106 (2fea039) into msm-4.4 2018-01-18 12:45:07 +05:30
net Merge android-4.4.106 (2fea039) into msm-4.4 2018-01-18 12:45:07 +05:30
samples Merge android-4.4.97 (46d256d) into msm-4.4 2017-12-18 14:23:14 +05:30
scripts Merge android-4.4.106 (2fea039) into msm-4.4 2018-01-18 12:45:07 +05:30
security Merge android-4.4.105 (8a53962) into msm-4.4 2018-01-08 10:02:41 +05:30
sound Merge android-4.4.106 (2fea039) into msm-4.4 2018-01-18 12:45:07 +05:30
tools Merge android-4.4.106 (2fea039) into msm-4.4 2018-01-18 12:45:07 +05:30
usr usr/Kconfig: make initrd compression algorithm selection not expert 2014-12-13 12:42:52 -08:00
virt Merge android-4.4.105 (8a53962) into msm-4.4 2018-01-08 10:02:41 +05:30
.get_maintainer.ignore Add hch to .get_maintainer.ignore 2015-08-21 14:30:10 -07:00
.gitignore BACKPORT: kbuild: Add support to generate LLVM assembly files 2017-10-09 14:00:13 -07:00
.mailmap mailmap: update Javier Martinez Canillas' email 2015-10-23 17:55:10 +09:00
AndroidKernel.mk AndroidKernel: add support to configure DLKM install path 2017-04-06 11:24:57 -07:00
backported-features backporting: a brief introduce of backported feautures on 4.4 2016-09-13 11:46:34 +08:00
build.config.goldfish.arm build: fix build config kernel_dir 2016-12-07 18:11:48 -08:00
build.config.goldfish.arm64 build: fix build config kernel_dir 2016-12-07 18:11:48 -08:00
build.config.goldfish.mips build: fix build config kernel_dir 2016-12-07 18:11:48 -08:00
build.config.goldfish.mips64 build: fix build config kernel_dir 2016-12-07 18:11:48 -08:00
build.config.goldfish.x86 build: fix build config kernel_dir 2016-12-07 18:11:48 -08:00
build.config.goldfish.x86_64 build: fix build config kernel_dir 2016-12-07 18:11:48 -08:00
COPYING
CREDITS MAINTAINERS/CREDITS: mark MaxRAID as Orphan, move Anil Ravindranath to CREDITS 2015-09-10 13:29:01 -07:00
Kbuild UPSTREAM: kbuild: Consolidate header generation from ASM offset information 2017-10-09 14:00:12 -07:00
Kconfig kbuild: migrate all arch to the kconfig mainmenu upgrade 2010-09-19 22:54:11 -04:00
MAINTAINERS Merge android-4.4.106 (2fea039) into msm-4.4 2018-01-18 12:45:07 +05:30
Makefile Merge android-4.4.106 (2fea039) into msm-4.4 2018-01-18 12:45:07 +05:30
README README: Add ARC architecture 2015-09-18 10:05:29 -06:00
REPORTING-BUGS Docs: Move ref to Frohwalt Egerer to end of REPORTING-BUGS 2013-04-18 16:55:09 -07:00

        Linux kernel release 4.x <http://kernel.org/>

These are the release notes for Linux version 4.  Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong. 

WHAT IS LINUX?

  Linux is a clone of the operating system Unix, written from scratch by
  Linus Torvalds with assistance from a loosely-knit team of hackers across
  the Net. It aims towards POSIX and Single UNIX Specification compliance.

  It has all the features you would expect in a modern fully-fledged Unix,
  including true multitasking, virtual memory, shared libraries, demand
  loading, shared copy-on-write executables, proper memory management,
  and multistack networking including IPv4 and IPv6.

  It is distributed under the GNU General Public License - see the
  accompanying COPYING file for more details. 

ON WHAT HARDWARE DOES IT RUN?

  Although originally developed first for 32-bit x86-based PCs (386 or higher),
  today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
  UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
  IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS,
  Xtensa, Tilera TILE, AVR32, ARC and Renesas M32R architectures.

  Linux is easily portable to most general-purpose 32- or 64-bit architectures
  as long as they have a paged memory management unit (PMMU) and a port of the
  GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
  also been ported to a number of architectures without a PMMU, although
  functionality is then obviously somewhat limited.
  Linux has also been ported to itself. You can now run the kernel as a
  userspace application - this is called UserMode Linux (UML).

DOCUMENTATION:

 - There is a lot of documentation available both in electronic form on
   the Internet and in books, both Linux-specific and pertaining to
   general UNIX questions.  I'd recommend looking into the documentation
   subdirectories on any Linux FTP site for the LDP (Linux Documentation
   Project) books.  This README is not meant to be documentation on the
   system: there are much better sources available.

 - There are various README files in the Documentation/ subdirectory:
   these typically contain kernel-specific installation notes for some 
   drivers for example. See Documentation/00-INDEX for a list of what
   is contained in each file.  Please read the Changes file, as it
   contains information about the problems, which may result by upgrading
   your kernel.

 - The Documentation/DocBook/ subdirectory contains several guides for
   kernel developers and users.  These guides can be rendered in a
   number of formats:  PostScript (.ps), PDF, HTML, & man-pages, among others.
   After installation, "make psdocs", "make pdfdocs", "make htmldocs",
   or "make mandocs" will render the documentation in the requested format.

INSTALLING the kernel source:

 - If you install the full sources, put the kernel tarball in a
   directory where you have permissions (eg. your home directory) and
   unpack it:

     xz -cd linux-4.X.tar.xz | tar xvf -

   Replace "X" with the version number of the latest kernel.

   Do NOT use the /usr/src/linux area! This area has a (usually
   incomplete) set of kernel headers that are used by the library header
   files.  They should match the library, and not get messed up by
   whatever the kernel-du-jour happens to be.

 - You can also upgrade between 4.x releases by patching.  Patches are
   distributed in the xz format.  To install by patching, get all the
   newer patch files, enter the top level directory of the kernel source
   (linux-4.X) and execute:

     xz -cd ../patch-4.x.xz | patch -p1

   Replace "x" for all versions bigger than the version "X" of your current
   source tree, _in_order_, and you should be ok.  You may want to remove
   the backup files (some-file-name~ or some-file-name.orig), and make sure
   that there are no failed patches (some-file-name# or some-file-name.rej).
   If there are, either you or I have made a mistake.

   Unlike patches for the 4.x kernels, patches for the 4.x.y kernels
   (also known as the -stable kernels) are not incremental but instead apply
   directly to the base 4.x kernel.  For example, if your base kernel is 4.0
   and you want to apply the 4.0.3 patch, you must not first apply the 4.0.1
   and 4.0.2 patches. Similarly, if you are running kernel version 4.0.2 and
   want to jump to 4.0.3, you must first reverse the 4.0.2 patch (that is,
   patch -R) _before_ applying the 4.0.3 patch. You can read more on this in
   Documentation/applying-patches.txt

   Alternatively, the script patch-kernel can be used to automate this
   process.  It determines the current kernel version and applies any
   patches found.

     linux/scripts/patch-kernel linux

   The first argument in the command above is the location of the
   kernel source.  Patches are applied from the current directory, but
   an alternative directory can be specified as the second argument.

 - Make sure you have no stale .o files and dependencies lying around:

     cd linux
     make mrproper

   You should now have the sources correctly installed.

SOFTWARE REQUIREMENTS

   Compiling and running the 4.x kernels requires up-to-date
   versions of various software packages.  Consult
   Documentation/Changes for the minimum version numbers required
   and how to get updates for these packages.  Beware that using
   excessively old versions of these packages can cause indirect
   errors that are very difficult to track down, so don't assume that
   you can just update packages when obvious problems arise during
   build or operation.

BUILD directory for the kernel:

   When compiling the kernel, all output files will per default be
   stored together with the kernel source code.
   Using the option "make O=output/dir" allow you to specify an alternate
   place for the output files (including .config).
   Example:

     kernel source code: /usr/src/linux-4.X
     build directory:    /home/name/build/kernel

   To configure and build the kernel, use:

     cd /usr/src/linux-4.X
     make O=/home/name/build/kernel menuconfig
     make O=/home/name/build/kernel
     sudo make O=/home/name/build/kernel modules_install install

   Please note: If the 'O=output/dir' option is used, then it must be
   used for all invocations of make.

CONFIGURING the kernel:

   Do not skip this step even if you are only upgrading one minor
   version.  New configuration options are added in each release, and
   odd problems will turn up if the configuration files are not set up
   as expected.  If you want to carry your existing configuration to a
   new version with minimal work, use "make oldconfig", which will
   only ask you for the answers to new questions.

 - Alternative configuration commands are:

     "make config"      Plain text interface.

     "make menuconfig"  Text based color menus, radiolists & dialogs.

     "make nconfig"     Enhanced text based color menus.

     "make xconfig"     X windows (Qt) based configuration tool.

     "make gconfig"     X windows (GTK+) based configuration tool.

     "make oldconfig"   Default all questions based on the contents of
                        your existing ./.config file and asking about
                        new config symbols.

     "make silentoldconfig"
                        Like above, but avoids cluttering the screen
                        with questions already answered.
                        Additionally updates the dependencies.

     "make olddefconfig"
                        Like above, but sets new symbols to their default
                        values without prompting.

     "make defconfig"   Create a ./.config file by using the default
                        symbol values from either arch/$ARCH/defconfig
                        or arch/$ARCH/configs/${PLATFORM}_defconfig,
                        depending on the architecture.

     "make ${PLATFORM}_defconfig"
                        Create a ./.config file by using the default
                        symbol values from
                        arch/$ARCH/configs/${PLATFORM}_defconfig.
                        Use "make help" to get a list of all available
                        platforms of your architecture.

     "make allyesconfig"
                        Create a ./.config file by setting symbol
                        values to 'y' as much as possible.

     "make allmodconfig"
                        Create a ./.config file by setting symbol
                        values to 'm' as much as possible.

     "make allnoconfig" Create a ./.config file by setting symbol
                        values to 'n' as much as possible.

     "make randconfig"  Create a ./.config file by setting symbol
                        values to random values.

     "make localmodconfig" Create a config based on current config and
                           loaded modules (lsmod). Disables any module
                           option that is not needed for the loaded modules.

                           To create a localmodconfig for another machine,
                           store the lsmod of that machine into a file
                           and pass it in as a LSMOD parameter.

                   target$ lsmod > /tmp/mylsmod
                   target$ scp /tmp/mylsmod host:/tmp

                   host$ make LSMOD=/tmp/mylsmod localmodconfig

                           The above also works when cross compiling.

     "make localyesconfig" Similar to localmodconfig, except it will convert
                           all module options to built in (=y) options.

   You can find more information on using the Linux kernel config tools
   in Documentation/kbuild/kconfig.txt.

 - NOTES on "make config":

    - Having unnecessary drivers will make the kernel bigger, and can
      under some circumstances lead to problems: probing for a
      nonexistent controller card may confuse your other controllers

    - Compiling the kernel with "Processor type" set higher than 386
      will result in a kernel that does NOT work on a 386.  The
      kernel will detect this on bootup, and give up.

    - A kernel with math-emulation compiled in will still use the
      coprocessor if one is present: the math emulation will just
      never get used in that case.  The kernel will be slightly larger,
      but will work on different machines regardless of whether they
      have a math coprocessor or not.

    - The "kernel hacking" configuration details usually result in a
      bigger or slower kernel (or both), and can even make the kernel
      less stable by configuring some routines to actively try to
      break bad code to find kernel problems (kmalloc()).  Thus you
      should probably answer 'n' to the questions for "development",
      "experimental", or "debugging" features.

COMPILING the kernel:

 - Make sure you have at least gcc 3.2 available.
   For more information, refer to Documentation/Changes.

   Please note that you can still run a.out user programs with this kernel.

 - Do a "make" to create a compressed kernel image. It is also
   possible to do "make install" if you have lilo installed to suit the
   kernel makefiles, but you may want to check your particular lilo setup first.

   To do the actual install, you have to be root, but none of the normal
   build should require that. Don't take the name of root in vain.

 - If you configured any of the parts of the kernel as `modules', you
   will also have to do "make modules_install".

 - Verbose kernel compile/build output:

   Normally, the kernel build system runs in a fairly quiet mode (but not
   totally silent).  However, sometimes you or other kernel developers need
   to see compile, link, or other commands exactly as they are executed.
   For this, use "verbose" build mode.  This is done by inserting
   "V=1" in the "make" command.  E.g.:

     make V=1 all

   To have the build system also tell the reason for the rebuild of each
   target, use "V=2".  The default is "V=0".

 - Keep a backup kernel handy in case something goes wrong.  This is 
   especially true for the development releases, since each new release
   contains new code which has not been debugged.  Make sure you keep a
   backup of the modules corresponding to that kernel, as well.  If you
   are installing a new kernel with the same version number as your
   working kernel, make a backup of your modules directory before you
   do a "make modules_install".

   Alternatively, before compiling, use the kernel config option
   "LOCALVERSION" to append a unique suffix to the regular kernel version.
   LOCALVERSION can be set in the "General Setup" menu.

 - In order to boot your new kernel, you'll need to copy the kernel
   image (e.g. .../linux/arch/i386/boot/bzImage after compilation)
   to the place where your regular bootable kernel is found. 

 - Booting a kernel directly from a floppy without the assistance of a
   bootloader such as LILO, is no longer supported.

   If you boot Linux from the hard drive, chances are you use LILO, which
   uses the kernel image as specified in the file /etc/lilo.conf.  The
   kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
   /boot/bzImage.  To use the new kernel, save a copy of the old image
   and copy the new image over the old one.  Then, you MUST RERUN LILO
   to update the loading map!! If you don't, you won't be able to boot
   the new kernel image.

   Reinstalling LILO is usually a matter of running /sbin/lilo. 
   You may wish to edit /etc/lilo.conf to specify an entry for your
   old kernel image (say, /vmlinux.old) in case the new one does not
   work.  See the LILO docs for more information. 

   After reinstalling LILO, you should be all set.  Shutdown the system,
   reboot, and enjoy!

   If you ever need to change the default root device, video mode,
   ramdisk size, etc.  in the kernel image, use the 'rdev' program (or
   alternatively the LILO boot options when appropriate).  No need to
   recompile the kernel to change these parameters. 

 - Reboot with the new kernel and enjoy. 

IF SOMETHING GOES WRONG:

 - If you have problems that seem to be due to kernel bugs, please check
   the file MAINTAINERS to see if there is a particular person associated
   with the part of the kernel that you are having trouble with. If there
   isn't anyone listed there, then the second best thing is to mail
   them to me (torvalds@linux-foundation.org), and possibly to any other
   relevant mailing-list or to the newsgroup.

 - In all bug-reports, *please* tell what kernel you are talking about,
   how to duplicate the problem, and what your setup is (use your common
   sense).  If the problem is new, tell me so, and if the problem is
   old, please try to tell me when you first noticed it.

 - If the bug results in a message like

     unable to handle kernel paging request at address C0000010
     Oops: 0002
     EIP:   0010:XXXXXXXX
     eax: xxxxxxxx   ebx: xxxxxxxx   ecx: xxxxxxxx   edx: xxxxxxxx
     esi: xxxxxxxx   edi: xxxxxxxx   ebp: xxxxxxxx
     ds: xxxx  es: xxxx  fs: xxxx  gs: xxxx
     Pid: xx, process nr: xx
     xx xx xx xx xx xx xx xx xx xx

   or similar kernel debugging information on your screen or in your
   system log, please duplicate it *exactly*.  The dump may look
   incomprehensible to you, but it does contain information that may
   help debugging the problem.  The text above the dump is also
   important: it tells something about why the kernel dumped code (in
   the above example, it's due to a bad kernel pointer). More information
   on making sense of the dump is in Documentation/oops-tracing.txt

 - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
   as is, otherwise you will have to use the "ksymoops" program to make
   sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred).
   This utility can be downloaded from
   ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops/ .
   Alternatively, you can do the dump lookup by hand:

 - In debugging dumps like the above, it helps enormously if you can
   look up what the EIP value means.  The hex value as such doesn't help
   me or anybody else very much: it will depend on your particular
   kernel setup.  What you should do is take the hex value from the EIP
   line (ignore the "0010:"), and look it up in the kernel namelist to
   see which kernel function contains the offending address.

   To find out the kernel function name, you'll need to find the system
   binary associated with the kernel that exhibited the symptom.  This is
   the file 'linux/vmlinux'.  To extract the namelist and match it against
   the EIP from the kernel crash, do:

     nm vmlinux | sort | less

   This will give you a list of kernel addresses sorted in ascending
   order, from which it is simple to find the function that contains the
   offending address.  Note that the address given by the kernel
   debugging messages will not necessarily match exactly with the
   function addresses (in fact, that is very unlikely), so you can't
   just 'grep' the list: the list will, however, give you the starting
   point of each kernel function, so by looking for the function that
   has a starting address lower than the one you are searching for but
   is followed by a function with a higher address you will find the one
   you want.  In fact, it may be a good idea to include a bit of
   "context" in your problem report, giving a few lines around the
   interesting one. 

   If you for some reason cannot do the above (you have a pre-compiled
   kernel image or similar), telling me as much about your setup as
   possible will help.  Please read the REPORTING-BUGS document for details.

 - Alternatively, you can use gdb on a running kernel. (read-only; i.e. you
   cannot change values or set break points.) To do this, first compile the
   kernel with -g; edit arch/i386/Makefile appropriately, then do a "make
   clean". You'll also need to enable CONFIG_PROC_FS (via "make config").

   After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore".
   You can now use all the usual gdb commands. The command to look up the
   point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes
   with the EIP value.)

   gdb'ing a non-running kernel currently fails because gdb (wrongly)
   disregards the starting offset for which the kernel is compiled.