Change the PIC frequency calculation to use the register that has the current configuration. The existing code used the register that is written to change frequency, which can have an invalid value if the firmware did not set it up correctly. Signed-off-by: Ganesan Ramalingam <ganesanr@broadcom.com> Signed-off-by: Jayachandran C <jchandra@broadcom.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/8885/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
494 lines
12 KiB
C
494 lines
12 KiB
C
/*
|
|
* Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights
|
|
* reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the NetLogic
|
|
* license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
|
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
|
|
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/time.h>
|
|
|
|
#include <asm/netlogic/common.h>
|
|
#include <asm/netlogic/haldefs.h>
|
|
#include <asm/netlogic/xlp-hal/iomap.h>
|
|
#include <asm/netlogic/xlp-hal/xlp.h>
|
|
#include <asm/netlogic/xlp-hal/bridge.h>
|
|
#include <asm/netlogic/xlp-hal/pic.h>
|
|
#include <asm/netlogic/xlp-hal/sys.h>
|
|
|
|
/* Main initialization */
|
|
void nlm_node_init(int node)
|
|
{
|
|
struct nlm_soc_info *nodep;
|
|
|
|
nodep = nlm_get_node(node);
|
|
if (node == 0)
|
|
nodep->coremask = 1; /* node 0, boot cpu */
|
|
nodep->sysbase = nlm_get_sys_regbase(node);
|
|
nodep->picbase = nlm_get_pic_regbase(node);
|
|
nodep->ebase = read_c0_ebase() & (~((1 << 12) - 1));
|
|
if (cpu_is_xlp9xx())
|
|
nodep->socbus = xlp9xx_get_socbus(node);
|
|
else
|
|
nodep->socbus = 0;
|
|
spin_lock_init(&nodep->piclock);
|
|
}
|
|
|
|
static int xlp9xx_irq_to_irt(int irq)
|
|
{
|
|
switch (irq) {
|
|
case PIC_GPIO_IRQ:
|
|
return 12;
|
|
case PIC_9XX_XHCI_0_IRQ:
|
|
return 114;
|
|
case PIC_9XX_XHCI_1_IRQ:
|
|
return 115;
|
|
case PIC_UART_0_IRQ:
|
|
return 133;
|
|
case PIC_UART_1_IRQ:
|
|
return 134;
|
|
case PIC_SATA_IRQ:
|
|
return 143;
|
|
case PIC_SPI_IRQ:
|
|
return 152;
|
|
case PIC_MMC_IRQ:
|
|
return 153;
|
|
case PIC_PCIE_LINK_LEGACY_IRQ(0):
|
|
case PIC_PCIE_LINK_LEGACY_IRQ(1):
|
|
case PIC_PCIE_LINK_LEGACY_IRQ(2):
|
|
case PIC_PCIE_LINK_LEGACY_IRQ(3):
|
|
return 191 + irq - PIC_PCIE_LINK_LEGACY_IRQ_BASE;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int xlp_irq_to_irt(int irq)
|
|
{
|
|
uint64_t pcibase;
|
|
int devoff, irt;
|
|
|
|
devoff = 0;
|
|
switch (irq) {
|
|
case PIC_UART_0_IRQ:
|
|
devoff = XLP_IO_UART0_OFFSET(0);
|
|
break;
|
|
case PIC_UART_1_IRQ:
|
|
devoff = XLP_IO_UART1_OFFSET(0);
|
|
break;
|
|
case PIC_MMC_IRQ:
|
|
devoff = XLP_IO_MMC_OFFSET(0);
|
|
break;
|
|
case PIC_I2C_0_IRQ: /* I2C will be fixed up */
|
|
case PIC_I2C_1_IRQ:
|
|
case PIC_I2C_2_IRQ:
|
|
case PIC_I2C_3_IRQ:
|
|
if (cpu_is_xlpii())
|
|
devoff = XLP2XX_IO_I2C_OFFSET(0);
|
|
else
|
|
devoff = XLP_IO_I2C0_OFFSET(0);
|
|
break;
|
|
case PIC_SATA_IRQ:
|
|
devoff = XLP_IO_SATA_OFFSET(0);
|
|
break;
|
|
case PIC_GPIO_IRQ:
|
|
devoff = XLP_IO_GPIO_OFFSET(0);
|
|
break;
|
|
case PIC_NAND_IRQ:
|
|
devoff = XLP_IO_NAND_OFFSET(0);
|
|
break;
|
|
case PIC_SPI_IRQ:
|
|
devoff = XLP_IO_SPI_OFFSET(0);
|
|
break;
|
|
default:
|
|
if (cpu_is_xlpii()) {
|
|
switch (irq) {
|
|
/* XLP2XX has three XHCI USB controller */
|
|
case PIC_2XX_XHCI_0_IRQ:
|
|
devoff = XLP2XX_IO_USB_XHCI0_OFFSET(0);
|
|
break;
|
|
case PIC_2XX_XHCI_1_IRQ:
|
|
devoff = XLP2XX_IO_USB_XHCI1_OFFSET(0);
|
|
break;
|
|
case PIC_2XX_XHCI_2_IRQ:
|
|
devoff = XLP2XX_IO_USB_XHCI2_OFFSET(0);
|
|
break;
|
|
}
|
|
} else {
|
|
switch (irq) {
|
|
case PIC_EHCI_0_IRQ:
|
|
devoff = XLP_IO_USB_EHCI0_OFFSET(0);
|
|
break;
|
|
case PIC_EHCI_1_IRQ:
|
|
devoff = XLP_IO_USB_EHCI1_OFFSET(0);
|
|
break;
|
|
case PIC_OHCI_0_IRQ:
|
|
devoff = XLP_IO_USB_OHCI0_OFFSET(0);
|
|
break;
|
|
case PIC_OHCI_1_IRQ:
|
|
devoff = XLP_IO_USB_OHCI1_OFFSET(0);
|
|
break;
|
|
case PIC_OHCI_2_IRQ:
|
|
devoff = XLP_IO_USB_OHCI2_OFFSET(0);
|
|
break;
|
|
case PIC_OHCI_3_IRQ:
|
|
devoff = XLP_IO_USB_OHCI3_OFFSET(0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (devoff != 0) {
|
|
uint32_t val;
|
|
|
|
pcibase = nlm_pcicfg_base(devoff);
|
|
val = nlm_read_reg(pcibase, XLP_PCI_IRTINFO_REG);
|
|
if (val == 0xffffffff) {
|
|
irt = -1;
|
|
} else {
|
|
irt = val & 0xffff;
|
|
/* HW weirdness, I2C IRT entry has to be fixed up */
|
|
switch (irq) {
|
|
case PIC_I2C_1_IRQ:
|
|
irt = irt + 1; break;
|
|
case PIC_I2C_2_IRQ:
|
|
irt = irt + 2; break;
|
|
case PIC_I2C_3_IRQ:
|
|
irt = irt + 3; break;
|
|
}
|
|
}
|
|
} else if (irq >= PIC_PCIE_LINK_LEGACY_IRQ(0) &&
|
|
irq <= PIC_PCIE_LINK_LEGACY_IRQ(3)) {
|
|
/* HW bug, PCI IRT entries are bad on early silicon, fix */
|
|
irt = PIC_IRT_PCIE_LINK_INDEX(irq -
|
|
PIC_PCIE_LINK_LEGACY_IRQ_BASE);
|
|
} else {
|
|
irt = -1;
|
|
}
|
|
return irt;
|
|
}
|
|
|
|
int nlm_irq_to_irt(int irq)
|
|
{
|
|
/* return -2 for irqs without 1-1 mapping */
|
|
if (irq >= PIC_PCIE_LINK_MSI_IRQ(0) && irq <= PIC_PCIE_LINK_MSI_IRQ(3))
|
|
return -2;
|
|
if (irq >= PIC_PCIE_MSIX_IRQ(0) && irq <= PIC_PCIE_MSIX_IRQ(3))
|
|
return -2;
|
|
|
|
if (cpu_is_xlp9xx())
|
|
return xlp9xx_irq_to_irt(irq);
|
|
else
|
|
return xlp_irq_to_irt(irq);
|
|
}
|
|
|
|
static unsigned int nlm_xlp2_get_core_frequency(int node, int core)
|
|
{
|
|
unsigned int pll_post_div, ctrl_val0, ctrl_val1, denom;
|
|
uint64_t num, sysbase, clockbase;
|
|
|
|
if (cpu_is_xlp9xx()) {
|
|
clockbase = nlm_get_clock_regbase(node);
|
|
ctrl_val0 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_CPU_PLL_CTRL0(core));
|
|
ctrl_val1 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_CPU_PLL_CTRL1(core));
|
|
} else {
|
|
sysbase = nlm_get_node(node)->sysbase;
|
|
ctrl_val0 = nlm_read_sys_reg(sysbase,
|
|
SYS_CPU_PLL_CTRL0(core));
|
|
ctrl_val1 = nlm_read_sys_reg(sysbase,
|
|
SYS_CPU_PLL_CTRL1(core));
|
|
}
|
|
|
|
/* Find PLL post divider value */
|
|
switch ((ctrl_val0 >> 24) & 0x7) {
|
|
case 1:
|
|
pll_post_div = 2;
|
|
break;
|
|
case 3:
|
|
pll_post_div = 4;
|
|
break;
|
|
case 7:
|
|
pll_post_div = 8;
|
|
break;
|
|
case 6:
|
|
pll_post_div = 16;
|
|
break;
|
|
case 0:
|
|
default:
|
|
pll_post_div = 1;
|
|
break;
|
|
}
|
|
|
|
num = 1000000ULL * (400 * 3 + 100 * (ctrl_val1 & 0x3f));
|
|
denom = 3 * pll_post_div;
|
|
do_div(num, denom);
|
|
|
|
return (unsigned int)num;
|
|
}
|
|
|
|
static unsigned int nlm_xlp_get_core_frequency(int node, int core)
|
|
{
|
|
unsigned int pll_divf, pll_divr, dfs_div, ext_div;
|
|
unsigned int rstval, dfsval, denom;
|
|
uint64_t num, sysbase;
|
|
|
|
sysbase = nlm_get_node(node)->sysbase;
|
|
rstval = nlm_read_sys_reg(sysbase, SYS_POWER_ON_RESET_CFG);
|
|
dfsval = nlm_read_sys_reg(sysbase, SYS_CORE_DFS_DIV_VALUE);
|
|
pll_divf = ((rstval >> 10) & 0x7f) + 1;
|
|
pll_divr = ((rstval >> 8) & 0x3) + 1;
|
|
ext_div = ((rstval >> 30) & 0x3) + 1;
|
|
dfs_div = ((dfsval >> (core * 4)) & 0xf) + 1;
|
|
|
|
num = 800000000ULL * pll_divf;
|
|
denom = 3 * pll_divr * ext_div * dfs_div;
|
|
do_div(num, denom);
|
|
|
|
return (unsigned int)num;
|
|
}
|
|
|
|
unsigned int nlm_get_core_frequency(int node, int core)
|
|
{
|
|
if (cpu_is_xlpii())
|
|
return nlm_xlp2_get_core_frequency(node, core);
|
|
else
|
|
return nlm_xlp_get_core_frequency(node, core);
|
|
}
|
|
|
|
/*
|
|
* Calculate PIC frequency from PLL registers.
|
|
* freq_out = (ref_freq/2 * (6 + ctrl2[7:0]) + ctrl2[20:8]/2^13) /
|
|
* ((2^ctrl0[7:5]) * Table(ctrl0[26:24]))
|
|
*/
|
|
static unsigned int nlm_xlp2_get_pic_frequency(int node)
|
|
{
|
|
u32 ctrl_val0, ctrl_val2, vco_post_div, pll_post_div, cpu_xlp9xx;
|
|
u32 mdiv, fdiv, pll_out_freq_den, reg_select, ref_div, pic_div;
|
|
u64 sysbase, pll_out_freq_num, ref_clk_select, clockbase, ref_clk;
|
|
|
|
sysbase = nlm_get_node(node)->sysbase;
|
|
clockbase = nlm_get_clock_regbase(node);
|
|
cpu_xlp9xx = cpu_is_xlp9xx();
|
|
|
|
/* Find ref_clk_base */
|
|
if (cpu_xlp9xx)
|
|
ref_clk_select = (nlm_read_sys_reg(sysbase,
|
|
SYS_9XX_POWER_ON_RESET_CFG) >> 18) & 0x3;
|
|
else
|
|
ref_clk_select = (nlm_read_sys_reg(sysbase,
|
|
SYS_POWER_ON_RESET_CFG) >> 18) & 0x3;
|
|
switch (ref_clk_select) {
|
|
case 0:
|
|
ref_clk = 200000000ULL;
|
|
ref_div = 3;
|
|
break;
|
|
case 1:
|
|
ref_clk = 100000000ULL;
|
|
ref_div = 1;
|
|
break;
|
|
case 2:
|
|
ref_clk = 125000000ULL;
|
|
ref_div = 1;
|
|
break;
|
|
case 3:
|
|
ref_clk = 400000000ULL;
|
|
ref_div = 3;
|
|
break;
|
|
}
|
|
|
|
/* Find the clock source PLL device for PIC */
|
|
if (cpu_xlp9xx) {
|
|
reg_select = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_CLK_DEV_SEL_REG) & 0x3;
|
|
switch (reg_select) {
|
|
case 0:
|
|
ctrl_val0 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_PLL_CTRL0);
|
|
ctrl_val2 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_PLL_CTRL2);
|
|
break;
|
|
case 1:
|
|
ctrl_val0 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_PLL_CTRL0_DEVX(0));
|
|
ctrl_val2 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_PLL_CTRL2_DEVX(0));
|
|
break;
|
|
case 2:
|
|
ctrl_val0 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_PLL_CTRL0_DEVX(1));
|
|
ctrl_val2 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_PLL_CTRL2_DEVX(1));
|
|
break;
|
|
case 3:
|
|
ctrl_val0 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_PLL_CTRL0_DEVX(2));
|
|
ctrl_val2 = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_PLL_CTRL2_DEVX(2));
|
|
break;
|
|
}
|
|
} else {
|
|
reg_select = (nlm_read_sys_reg(sysbase,
|
|
SYS_CLK_DEV_SEL_REG) >> 22) & 0x3;
|
|
switch (reg_select) {
|
|
case 0:
|
|
ctrl_val0 = nlm_read_sys_reg(sysbase,
|
|
SYS_PLL_CTRL0);
|
|
ctrl_val2 = nlm_read_sys_reg(sysbase,
|
|
SYS_PLL_CTRL2);
|
|
break;
|
|
case 1:
|
|
ctrl_val0 = nlm_read_sys_reg(sysbase,
|
|
SYS_PLL_CTRL0_DEVX(0));
|
|
ctrl_val2 = nlm_read_sys_reg(sysbase,
|
|
SYS_PLL_CTRL2_DEVX(0));
|
|
break;
|
|
case 2:
|
|
ctrl_val0 = nlm_read_sys_reg(sysbase,
|
|
SYS_PLL_CTRL0_DEVX(1));
|
|
ctrl_val2 = nlm_read_sys_reg(sysbase,
|
|
SYS_PLL_CTRL2_DEVX(1));
|
|
break;
|
|
case 3:
|
|
ctrl_val0 = nlm_read_sys_reg(sysbase,
|
|
SYS_PLL_CTRL0_DEVX(2));
|
|
ctrl_val2 = nlm_read_sys_reg(sysbase,
|
|
SYS_PLL_CTRL2_DEVX(2));
|
|
break;
|
|
}
|
|
}
|
|
|
|
vco_post_div = (ctrl_val0 >> 5) & 0x7;
|
|
pll_post_div = (ctrl_val0 >> 24) & 0x7;
|
|
mdiv = ctrl_val2 & 0xff;
|
|
fdiv = (ctrl_val2 >> 8) & 0x1fff;
|
|
|
|
/* Find PLL post divider value */
|
|
switch (pll_post_div) {
|
|
case 1:
|
|
pll_post_div = 2;
|
|
break;
|
|
case 3:
|
|
pll_post_div = 4;
|
|
break;
|
|
case 7:
|
|
pll_post_div = 8;
|
|
break;
|
|
case 6:
|
|
pll_post_div = 16;
|
|
break;
|
|
case 0:
|
|
default:
|
|
pll_post_div = 1;
|
|
break;
|
|
}
|
|
|
|
fdiv = fdiv/(1 << 13);
|
|
pll_out_freq_num = ((ref_clk >> 1) * (6 + mdiv)) + fdiv;
|
|
pll_out_freq_den = (1 << vco_post_div) * pll_post_div * ref_div;
|
|
|
|
if (pll_out_freq_den > 0)
|
|
do_div(pll_out_freq_num, pll_out_freq_den);
|
|
|
|
/* PIC post divider, which happens after PLL */
|
|
if (cpu_xlp9xx)
|
|
pic_div = nlm_read_sys_reg(clockbase,
|
|
SYS_9XX_CLK_DEV_DIV_REG) & 0x3;
|
|
else
|
|
pic_div = (nlm_read_sys_reg(sysbase,
|
|
SYS_CLK_DEV_DIV_REG) >> 22) & 0x3;
|
|
do_div(pll_out_freq_num, 1 << pic_div);
|
|
|
|
return pll_out_freq_num;
|
|
}
|
|
|
|
unsigned int nlm_get_pic_frequency(int node)
|
|
{
|
|
if (cpu_is_xlpii())
|
|
return nlm_xlp2_get_pic_frequency(node);
|
|
else
|
|
return 133333333;
|
|
}
|
|
|
|
unsigned int nlm_get_cpu_frequency(void)
|
|
{
|
|
return nlm_get_core_frequency(0, 0);
|
|
}
|
|
|
|
/*
|
|
* Fills upto 8 pairs of entries containing the DRAM map of a node
|
|
* if n < 0, get dram map for all nodes
|
|
*/
|
|
int xlp_get_dram_map(int n, uint64_t *dram_map)
|
|
{
|
|
uint64_t bridgebase, base, lim;
|
|
uint32_t val;
|
|
unsigned int barreg, limreg, xlatreg;
|
|
int i, node, rv;
|
|
|
|
/* Look only at mapping on Node 0, we don't handle crazy configs */
|
|
bridgebase = nlm_get_bridge_regbase(0);
|
|
rv = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
if (cpu_is_xlp9xx()) {
|
|
barreg = BRIDGE_9XX_DRAM_BAR(i);
|
|
limreg = BRIDGE_9XX_DRAM_LIMIT(i);
|
|
xlatreg = BRIDGE_9XX_DRAM_NODE_TRANSLN(i);
|
|
} else {
|
|
barreg = BRIDGE_DRAM_BAR(i);
|
|
limreg = BRIDGE_DRAM_LIMIT(i);
|
|
xlatreg = BRIDGE_DRAM_NODE_TRANSLN(i);
|
|
}
|
|
if (n >= 0) {
|
|
/* node specified, get node mapping of BAR */
|
|
val = nlm_read_bridge_reg(bridgebase, xlatreg);
|
|
node = (val >> 1) & 0x3;
|
|
if (n != node)
|
|
continue;
|
|
}
|
|
val = nlm_read_bridge_reg(bridgebase, barreg);
|
|
val = (val >> 12) & 0xfffff;
|
|
base = (uint64_t) val << 20;
|
|
val = nlm_read_bridge_reg(bridgebase, limreg);
|
|
val = (val >> 12) & 0xfffff;
|
|
if (val == 0) /* BAR not used */
|
|
continue;
|
|
lim = ((uint64_t)val + 1) << 20;
|
|
dram_map[rv] = base;
|
|
dram_map[rv + 1] = lim;
|
|
rv += 2;
|
|
}
|
|
return rv;
|
|
}
|