LineageOS 16.0 (v4.4.153) kernel with Halium 9 patches
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAl1GiqYACgkQONu9yGCS aT5poQ//XNZuSNH5NeE8y37z/7EC5cnx5QOdgpVEz/RZF6Al7DzM0SK/oWiMJR9O +gJOoHEwlW/GmVw5O/yOll6ChnAlXfbGnZy9TlXkVUVIa9qU3xVrSFnh4lM1xiZy crEaIQ9ow6tfQHnq/DcODvfyEdZgaiW0xTBTB/ZBEKmN9//rBphTuZlFvAKX7bv5 JBflHDCGl/1zO09xqR9jgWcrCW//a2Ip/O2D61IW1l3oqp7eVGDZMBHMbac45zQ0 4tpD/ppzv8ak3+HTknIujuZSMlMkCJ6FYBlTqpp44e/qQ8ZvQ2s0OdP3iHwlC5HA E60F2ynewg1JJ6RnhmnTn2g4C1MEvL7QMroo3fo1TujpHYLJBpLiQpggXnweTfYN eR+Ux1i38SyyqhYSMncp42vttsIXnYTpAGzZi0gLOenVj9MnrNjQueBI4o5PmJwF CcYP8SIaadSZhBPv/FDo0mKFdepb10g1PBi/0Dk+tqJuxSDbqc+cD5BywkJh67T5 y+3LBVOIZCYA6WY8v7J65x9gNZI50RGKcoX0YWsbEKhBjnfCmW0B0qB17HwWpPWz UvSIGY7Vj7ufhCMSgzuqOPSVKQ5gL36BsJOZPyrnqz2GdMebSpKRMPEGsNSdPvnl 8M8GuZFotgKmW7m2aU5nr8+Mwh82zXir9He1aShxd172caefGIk= =ml+6 -----END PGP SIGNATURE----- Merge 4.4.187 into android-4.4-p Changes in 4.4.187 MIPS: ath79: fix ar933x uart parity mode MIPS: fix build on non-linux hosts dmaengine: imx-sdma: fix use-after-free on probe error path ath10k: Do not send probe response template for mesh ath9k: Check for errors when reading SREV register ath6kl: add some bounds checking ath: DFS JP domain W56 fixed pulse type 3 RADAR detection batman-adv: fix for leaked TVLV handler. media: dvb: usb: fix use after free in dvb_usb_device_exit crypto: talitos - fix skcipher failure due to wrong output IV media: marvell-ccic: fix DMA s/g desc number calculation media: vpss: fix a potential NULL pointer dereference net: stmmac: dwmac1000: Clear unused address entries signal/pid_namespace: Fix reboot_pid_ns to use send_sig not force_sig af_key: fix leaks in key_pol_get_resp and dump_sp. xfrm: Fix xfrm sel prefix length validation media: staging: media: davinci_vpfe: - Fix for memory leak if decoder initialization fails. net: phy: Check against net_device being NULL tua6100: Avoid build warnings. locking/lockdep: Fix merging of hlocks with non-zero references media: wl128x: Fix some error handling in fm_v4l2_init_video_device() cpupower : frequency-set -r option misses the last cpu in related cpu list net: fec: Do not use netdev messages too early net: axienet: Fix race condition causing TX hang s390/qdio: handle PENDING state for QEBSM devices perf test 6: Fix missing kvm module load for s390 gpio: omap: fix lack of irqstatus_raw0 for OMAP4 gpio: omap: ensure irq is enabled before wakeup regmap: fix bulk writes on paged registers bpf: silence warning messages in core rcu: Force inlining of rcu_read_lock() xfrm: fix sa selector validation perf evsel: Make perf_evsel__name() accept a NULL argument vhost_net: disable zerocopy by default EDAC/sysfs: Fix memory leak when creating a csrow object media: i2c: fix warning same module names ntp: Limit TAI-UTC offset timer_list: Guard procfs specific code acpi/arm64: ignore 5.1 FADTs that are reported as 5.0 media: coda: fix mpeg2 sequence number handling media: coda: increment sequence offset for the last returned frame mt7601u: do not schedule rx_tasklet when the device has been disconnected x86/build: Add 'set -e' to mkcapflags.sh to delete broken capflags.c mt7601u: fix possible memory leak when the device is disconnected ath10k: fix PCIE device wake up failed rslib: Fix decoding of shortened codes rslib: Fix handling of of caller provided syndrome ixgbe: Check DDM existence in transceiver before access EDAC: Fix global-out-of-bounds write when setting edac_mc_poll_msec bcache: check c->gc_thread by IS_ERR_OR_NULL in cache_set_flush() Bluetooth: hci_bcsp: Fix memory leak in rx_skb Bluetooth: 6lowpan: search for destination address in all peers Bluetooth: Check state in l2cap_disconnect_rsp Bluetooth: validate BLE connection interval updates crypto: ghash - fix unaligned memory access in ghash_setkey() crypto: arm64/sha1-ce - correct digest for empty data in finup crypto: arm64/sha2-ce - correct digest for empty data in finup Input: gtco - bounds check collection indent level regulator: s2mps11: Fix buck7 and buck8 wrong voltages tracing/snapshot: Resize spare buffer if size changed NFSv4: Handle the special Linux file open access mode lib/scatterlist: Fix mapping iterator when sg->offset is greater than PAGE_SIZE ALSA: seq: Break too long mutex context in the write loop media: v4l2: Test type instead of cfg->type in v4l2_ctrl_new_custom() media: coda: Remove unbalanced and unneeded mutex unlock KVM: x86/vPMU: refine kvm_pmu err msg when event creation failed drm/nouveau/i2c: Enable i2c pads & busses during preinit padata: use smp_mb in padata_reorder to avoid orphaned padata jobs 9p/virtio: Add cleanup path in p9_virtio_init PCI: Do not poll for PME if the device is in D3cold take floppy compat ioctls to sodding floppy.c floppy: fix div-by-zero in setup_format_params floppy: fix out-of-bounds read in next_valid_format floppy: fix invalid pointer dereference in drive_name floppy: fix out-of-bounds read in copy_buffer coda: pass the host file in vma->vm_file on mmap gpu: ipu-v3: ipu-ic: Fix saturation bit offset in TPMEM parisc: Fix kernel panic due invalid values in IAOQ0 or IAOQ1 powerpc/32s: fix suspend/resume when IBATs 4-7 are used powerpc/watchpoint: Restore NV GPRs while returning from exception eCryptfs: fix a couple type promotion bugs intel_th: msu: Fix single mode with disabled IOMMU Bluetooth: Add SMP workaround Microsoft Surface Precision Mouse bug usb: Handle USB3 remote wakeup for LPM enabled devices correctly dm bufio: fix deadlock with loop device bnx2x: Prevent load reordering in tx completion processing caif-hsi: fix possible deadlock in cfhsi_exit_module() ipv4: don't set IPv6 only flags to IPv4 addresses net: bcmgenet: use promisc for unsupported filters net: neigh: fix multiple neigh timer scheduling nfc: fix potential illegal memory access sky2: Disable MSI on ASUS P6T netrom: fix a memory leak in nr_rx_frame() netrom: hold sock when setting skb->destructor tcp: Reset bytes_acked and bytes_received when disconnecting bonding: validate ip header before check IPPROTO_IGMP net: bridge: mcast: fix stale nsrcs pointer in igmp3/mld2 report handling net: bridge: mcast: fix stale ipv6 hdr pointer when handling v6 query net: bridge: stp: don't cache eth dest pointer before skb pull elevator: fix truncation of icq_cache_name NFSv4: Fix open create exclusive when the server reboots nfsd: increase DRC cache limit nfsd: give out fewer session slots as limit approaches nfsd: fix performance-limiting session calculation nfsd: Fix overflow causing non-working mounts on 1 TB machines drm/panel: simple: Fix panel_simple_dsi_probe usb: core: hub: Disable hub-initiated U1/U2 tty: max310x: Fix invalid baudrate divisors calculator pinctrl: rockchip: fix leaked of_node references tty: serial: cpm_uart - fix init when SMC is relocated memstick: Fix error cleanup path of memstick_init tty/serial: digicolor: Fix digicolor-usart already registered warning tty: serial: msm_serial: avoid system lockup condition drm/virtio: Add memory barriers for capset cache. phy: renesas: rcar-gen2: Fix memory leak at error paths usb: gadget: Zero ffs_io_data powerpc/pci/of: Fix OF flags parsing for 64bit BARs PCI: sysfs: Ignore lockdep for remove attribute iio: iio-utils: Fix possible incorrect mask calculation recordmcount: Fix spurious mcount entries on powerpc mfd: core: Set fwnode for created devices mfd: arizona: Fix undefined behavior um: Silence lockdep complaint about mmap_sem powerpc/4xx/uic: clear pending interrupt after irq type/pol change serial: sh-sci: Fix TX DMA buffer flushing and workqueue races kallsyms: exclude kasan local symbols on s390 perf test mmap-thread-lookup: Initialize variable to suppress memory sanitizer warning f2fs: avoid out-of-range memory access mailbox: handle failed named mailbox channel request powerpc/eeh: Handle hugepages in ioremap space sh: prevent warnings when using iounmap mm/kmemleak.c: fix check for softirq context 9p: pass the correct prototype to read_cache_page mm/mmu_notifier: use hlist_add_head_rcu() locking/lockdep: Fix lock used or unused stats error locking/lockdep: Hide unused 'class' variable usb: wusbcore: fix unbalanced get/put cluster_id usb: pci-quirks: Correct AMD PLL quirk detection x86/sysfb_efi: Add quirks for some devices with swapped width and height x86/speculation/mds: Apply more accurate check on hypervisor platform hpet: Fix division by zero in hpet_time_div() ALSA: line6: Fix wrong altsetting for LINE6_PODHD500_1 ALSA: hda - Add a conexant codec entry to let mute led work powerpc/tm: Fix oops on sigreturn on systems without TM access: avoid the RCU grace period for the temporary subjective credentials vmstat: Remove BUG_ON from vmstat_update mm, vmstat: make quiet_vmstat lighter ipv6: check sk sk_type and protocol early in ip_mroute_set/getsockopt tcp: reset sk_send_head in tcp_write_queue_purge ISDN: hfcsusb: checking idx of ep configuration media: cpia2_usb: first wake up, then free in disconnect media: radio-raremono: change devm_k*alloc to k*alloc Bluetooth: hci_uart: check for missing tty operations sched/fair: Don't free p->numa_faults with concurrent readers drivers/pps/pps.c: clear offset flags in PPS_SETPARAMS ioctl ceph: hold i_ceph_lock when removing caps for freeing inode Linux 4.4.187 Change-Id: I6086b23376cdf9f6a905f727fb07175a7ebdd356 Signed-off-by: Greg Kroah-Hartman <gregkh@google.com> |
||
---|---|---|
android/configs | ||
arch | ||
block | ||
certs | ||
crypto | ||
Documentation | ||
drivers | ||
firmware | ||
fs | ||
include | ||
init | ||
ipc | ||
kernel | ||
lib | ||
mm | ||
net | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt | ||
.get_maintainer.ignore | ||
.gitignore | ||
.mailmap | ||
build.config.cuttlefish.aarch64 | ||
build.config.cuttlefish.x86_64 | ||
build.config.goldfish.arm | ||
build.config.goldfish.arm64 | ||
build.config.goldfish.mips | ||
build.config.goldfish.mips64 | ||
build.config.goldfish.x86 | ||
build.config.goldfish.x86_64 | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README | ||
REPORTING-BUGS | ||
verity_dev_keys.x509 |
Linux kernel release 4.x <http://kernel.org/> These are the release notes for Linux version 4. Read them carefully, as they tell you what this is all about, explain how to install the kernel, and what to do if something goes wrong. WHAT IS LINUX? Linux is a clone of the operating system Unix, written from scratch by Linus Torvalds with assistance from a loosely-knit team of hackers across the Net. It aims towards POSIX and Single UNIX Specification compliance. It has all the features you would expect in a modern fully-fledged Unix, including true multitasking, virtual memory, shared libraries, demand loading, shared copy-on-write executables, proper memory management, and multistack networking including IPv4 and IPv6. It is distributed under the GNU General Public License - see the accompanying COPYING file for more details. ON WHAT HARDWARE DOES IT RUN? Although originally developed first for 32-bit x86-based PCs (386 or higher), today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell, IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS, Xtensa, Tilera TILE, AVR32, ARC and Renesas M32R architectures. Linux is easily portable to most general-purpose 32- or 64-bit architectures as long as they have a paged memory management unit (PMMU) and a port of the GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has also been ported to a number of architectures without a PMMU, although functionality is then obviously somewhat limited. Linux has also been ported to itself. You can now run the kernel as a userspace application - this is called UserMode Linux (UML). DOCUMENTATION: - There is a lot of documentation available both in electronic form on the Internet and in books, both Linux-specific and pertaining to general UNIX questions. I'd recommend looking into the documentation subdirectories on any Linux FTP site for the LDP (Linux Documentation Project) books. This README is not meant to be documentation on the system: there are much better sources available. - There are various README files in the Documentation/ subdirectory: these typically contain kernel-specific installation notes for some drivers for example. See Documentation/00-INDEX for a list of what is contained in each file. Please read the Changes file, as it contains information about the problems, which may result by upgrading your kernel. - The Documentation/DocBook/ subdirectory contains several guides for kernel developers and users. These guides can be rendered in a number of formats: PostScript (.ps), PDF, HTML, & man-pages, among others. After installation, "make psdocs", "make pdfdocs", "make htmldocs", or "make mandocs" will render the documentation in the requested format. INSTALLING the kernel source: - If you install the full sources, put the kernel tarball in a directory where you have permissions (eg. your home directory) and unpack it: xz -cd linux-4.X.tar.xz | tar xvf - Replace "X" with the version number of the latest kernel. Do NOT use the /usr/src/linux area! This area has a (usually incomplete) set of kernel headers that are used by the library header files. They should match the library, and not get messed up by whatever the kernel-du-jour happens to be. - You can also upgrade between 4.x releases by patching. Patches are distributed in the xz format. To install by patching, get all the newer patch files, enter the top level directory of the kernel source (linux-4.X) and execute: xz -cd ../patch-4.x.xz | patch -p1 Replace "x" for all versions bigger than the version "X" of your current source tree, _in_order_, and you should be ok. You may want to remove the backup files (some-file-name~ or some-file-name.orig), and make sure that there are no failed patches (some-file-name# or some-file-name.rej). If there are, either you or I have made a mistake. Unlike patches for the 4.x kernels, patches for the 4.x.y kernels (also known as the -stable kernels) are not incremental but instead apply directly to the base 4.x kernel. For example, if your base kernel is 4.0 and you want to apply the 4.0.3 patch, you must not first apply the 4.0.1 and 4.0.2 patches. Similarly, if you are running kernel version 4.0.2 and want to jump to 4.0.3, you must first reverse the 4.0.2 patch (that is, patch -R) _before_ applying the 4.0.3 patch. You can read more on this in Documentation/applying-patches.txt Alternatively, the script patch-kernel can be used to automate this process. It determines the current kernel version and applies any patches found. linux/scripts/patch-kernel linux The first argument in the command above is the location of the kernel source. Patches are applied from the current directory, but an alternative directory can be specified as the second argument. - Make sure you have no stale .o files and dependencies lying around: cd linux make mrproper You should now have the sources correctly installed. SOFTWARE REQUIREMENTS Compiling and running the 4.x kernels requires up-to-date versions of various software packages. Consult Documentation/Changes for the minimum version numbers required and how to get updates for these packages. Beware that using excessively old versions of these packages can cause indirect errors that are very difficult to track down, so don't assume that you can just update packages when obvious problems arise during build or operation. BUILD directory for the kernel: When compiling the kernel, all output files will per default be stored together with the kernel source code. Using the option "make O=output/dir" allow you to specify an alternate place for the output files (including .config). Example: kernel source code: /usr/src/linux-4.X build directory: /home/name/build/kernel To configure and build the kernel, use: cd /usr/src/linux-4.X make O=/home/name/build/kernel menuconfig make O=/home/name/build/kernel sudo make O=/home/name/build/kernel modules_install install Please note: If the 'O=output/dir' option is used, then it must be used for all invocations of make. CONFIGURING the kernel: Do not skip this step even if you are only upgrading one minor version. New configuration options are added in each release, and odd problems will turn up if the configuration files are not set up as expected. If you want to carry your existing configuration to a new version with minimal work, use "make oldconfig", which will only ask you for the answers to new questions. - Alternative configuration commands are: "make config" Plain text interface. "make menuconfig" Text based color menus, radiolists & dialogs. "make nconfig" Enhanced text based color menus. "make xconfig" X windows (Qt) based configuration tool. "make gconfig" X windows (GTK+) based configuration tool. "make oldconfig" Default all questions based on the contents of your existing ./.config file and asking about new config symbols. "make silentoldconfig" Like above, but avoids cluttering the screen with questions already answered. Additionally updates the dependencies. "make olddefconfig" Like above, but sets new symbols to their default values without prompting. "make defconfig" Create a ./.config file by using the default symbol values from either arch/$ARCH/defconfig or arch/$ARCH/configs/${PLATFORM}_defconfig, depending on the architecture. "make ${PLATFORM}_defconfig" Create a ./.config file by using the default symbol values from arch/$ARCH/configs/${PLATFORM}_defconfig. Use "make help" to get a list of all available platforms of your architecture. "make allyesconfig" Create a ./.config file by setting symbol values to 'y' as much as possible. "make allmodconfig" Create a ./.config file by setting symbol values to 'm' as much as possible. "make allnoconfig" Create a ./.config file by setting symbol values to 'n' as much as possible. "make randconfig" Create a ./.config file by setting symbol values to random values. "make localmodconfig" Create a config based on current config and loaded modules (lsmod). Disables any module option that is not needed for the loaded modules. To create a localmodconfig for another machine, store the lsmod of that machine into a file and pass it in as a LSMOD parameter. target$ lsmod > /tmp/mylsmod target$ scp /tmp/mylsmod host:/tmp host$ make LSMOD=/tmp/mylsmod localmodconfig The above also works when cross compiling. "make localyesconfig" Similar to localmodconfig, except it will convert all module options to built in (=y) options. You can find more information on using the Linux kernel config tools in Documentation/kbuild/kconfig.txt. - NOTES on "make config": - Having unnecessary drivers will make the kernel bigger, and can under some circumstances lead to problems: probing for a nonexistent controller card may confuse your other controllers - Compiling the kernel with "Processor type" set higher than 386 will result in a kernel that does NOT work on a 386. The kernel will detect this on bootup, and give up. - A kernel with math-emulation compiled in will still use the coprocessor if one is present: the math emulation will just never get used in that case. The kernel will be slightly larger, but will work on different machines regardless of whether they have a math coprocessor or not. - The "kernel hacking" configuration details usually result in a bigger or slower kernel (or both), and can even make the kernel less stable by configuring some routines to actively try to break bad code to find kernel problems (kmalloc()). Thus you should probably answer 'n' to the questions for "development", "experimental", or "debugging" features. COMPILING the kernel: - Make sure you have at least gcc 3.2 available. For more information, refer to Documentation/Changes. Please note that you can still run a.out user programs with this kernel. - Do a "make" to create a compressed kernel image. It is also possible to do "make install" if you have lilo installed to suit the kernel makefiles, but you may want to check your particular lilo setup first. To do the actual install, you have to be root, but none of the normal build should require that. Don't take the name of root in vain. - If you configured any of the parts of the kernel as `modules', you will also have to do "make modules_install". - Verbose kernel compile/build output: Normally, the kernel build system runs in a fairly quiet mode (but not totally silent). However, sometimes you or other kernel developers need to see compile, link, or other commands exactly as they are executed. For this, use "verbose" build mode. This is done by inserting "V=1" in the "make" command. E.g.: make V=1 all To have the build system also tell the reason for the rebuild of each target, use "V=2". The default is "V=0". - Keep a backup kernel handy in case something goes wrong. This is especially true for the development releases, since each new release contains new code which has not been debugged. Make sure you keep a backup of the modules corresponding to that kernel, as well. If you are installing a new kernel with the same version number as your working kernel, make a backup of your modules directory before you do a "make modules_install". Alternatively, before compiling, use the kernel config option "LOCALVERSION" to append a unique suffix to the regular kernel version. LOCALVERSION can be set in the "General Setup" menu. - In order to boot your new kernel, you'll need to copy the kernel image (e.g. .../linux/arch/i386/boot/bzImage after compilation) to the place where your regular bootable kernel is found. - Booting a kernel directly from a floppy without the assistance of a bootloader such as LILO, is no longer supported. If you boot Linux from the hard drive, chances are you use LILO, which uses the kernel image as specified in the file /etc/lilo.conf. The kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or /boot/bzImage. To use the new kernel, save a copy of the old image and copy the new image over the old one. Then, you MUST RERUN LILO to update the loading map!! If you don't, you won't be able to boot the new kernel image. Reinstalling LILO is usually a matter of running /sbin/lilo. You may wish to edit /etc/lilo.conf to specify an entry for your old kernel image (say, /vmlinux.old) in case the new one does not work. See the LILO docs for more information. After reinstalling LILO, you should be all set. Shutdown the system, reboot, and enjoy! If you ever need to change the default root device, video mode, ramdisk size, etc. in the kernel image, use the 'rdev' program (or alternatively the LILO boot options when appropriate). No need to recompile the kernel to change these parameters. - Reboot with the new kernel and enjoy. IF SOMETHING GOES WRONG: - If you have problems that seem to be due to kernel bugs, please check the file MAINTAINERS to see if there is a particular person associated with the part of the kernel that you are having trouble with. If there isn't anyone listed there, then the second best thing is to mail them to me (torvalds@linux-foundation.org), and possibly to any other relevant mailing-list or to the newsgroup. - In all bug-reports, *please* tell what kernel you are talking about, how to duplicate the problem, and what your setup is (use your common sense). If the problem is new, tell me so, and if the problem is old, please try to tell me when you first noticed it. - If the bug results in a message like unable to handle kernel paging request at address C0000010 Oops: 0002 EIP: 0010:XXXXXXXX eax: xxxxxxxx ebx: xxxxxxxx ecx: xxxxxxxx edx: xxxxxxxx esi: xxxxxxxx edi: xxxxxxxx ebp: xxxxxxxx ds: xxxx es: xxxx fs: xxxx gs: xxxx Pid: xx, process nr: xx xx xx xx xx xx xx xx xx xx xx or similar kernel debugging information on your screen or in your system log, please duplicate it *exactly*. The dump may look incomprehensible to you, but it does contain information that may help debugging the problem. The text above the dump is also important: it tells something about why the kernel dumped code (in the above example, it's due to a bad kernel pointer). More information on making sense of the dump is in Documentation/oops-tracing.txt - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump as is, otherwise you will have to use the "ksymoops" program to make sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred). This utility can be downloaded from ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops/ . Alternatively, you can do the dump lookup by hand: - In debugging dumps like the above, it helps enormously if you can look up what the EIP value means. The hex value as such doesn't help me or anybody else very much: it will depend on your particular kernel setup. What you should do is take the hex value from the EIP line (ignore the "0010:"), and look it up in the kernel namelist to see which kernel function contains the offending address. To find out the kernel function name, you'll need to find the system binary associated with the kernel that exhibited the symptom. This is the file 'linux/vmlinux'. To extract the namelist and match it against the EIP from the kernel crash, do: nm vmlinux | sort | less This will give you a list of kernel addresses sorted in ascending order, from which it is simple to find the function that contains the offending address. Note that the address given by the kernel debugging messages will not necessarily match exactly with the function addresses (in fact, that is very unlikely), so you can't just 'grep' the list: the list will, however, give you the starting point of each kernel function, so by looking for the function that has a starting address lower than the one you are searching for but is followed by a function with a higher address you will find the one you want. In fact, it may be a good idea to include a bit of "context" in your problem report, giving a few lines around the interesting one. If you for some reason cannot do the above (you have a pre-compiled kernel image or similar), telling me as much about your setup as possible will help. Please read the REPORTING-BUGS document for details. - Alternatively, you can use gdb on a running kernel. (read-only; i.e. you cannot change values or set break points.) To do this, first compile the kernel with -g; edit arch/i386/Makefile appropriately, then do a "make clean". You'll also need to enable CONFIG_PROC_FS (via "make config"). After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore". You can now use all the usual gdb commands. The command to look up the point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes with the EIP value.) gdb'ing a non-running kernel currently fails because gdb (wrongly) disregards the starting offset for which the kernel is compiled.