LineageOS 16.0 (v4.4.153) kernel with Halium 9 patches
Find a file
Greg Kroah-Hartman ebf4d7ea8d This is the 4.4.187 stable release
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAl1GiqYACgkQONu9yGCS
 aT5poQ//XNZuSNH5NeE8y37z/7EC5cnx5QOdgpVEz/RZF6Al7DzM0SK/oWiMJR9O
 +gJOoHEwlW/GmVw5O/yOll6ChnAlXfbGnZy9TlXkVUVIa9qU3xVrSFnh4lM1xiZy
 crEaIQ9ow6tfQHnq/DcODvfyEdZgaiW0xTBTB/ZBEKmN9//rBphTuZlFvAKX7bv5
 JBflHDCGl/1zO09xqR9jgWcrCW//a2Ip/O2D61IW1l3oqp7eVGDZMBHMbac45zQ0
 4tpD/ppzv8ak3+HTknIujuZSMlMkCJ6FYBlTqpp44e/qQ8ZvQ2s0OdP3iHwlC5HA
 E60F2ynewg1JJ6RnhmnTn2g4C1MEvL7QMroo3fo1TujpHYLJBpLiQpggXnweTfYN
 eR+Ux1i38SyyqhYSMncp42vttsIXnYTpAGzZi0gLOenVj9MnrNjQueBI4o5PmJwF
 CcYP8SIaadSZhBPv/FDo0mKFdepb10g1PBi/0Dk+tqJuxSDbqc+cD5BywkJh67T5
 y+3LBVOIZCYA6WY8v7J65x9gNZI50RGKcoX0YWsbEKhBjnfCmW0B0qB17HwWpPWz
 UvSIGY7Vj7ufhCMSgzuqOPSVKQ5gL36BsJOZPyrnqz2GdMebSpKRMPEGsNSdPvnl
 8M8GuZFotgKmW7m2aU5nr8+Mwh82zXir9He1aShxd172caefGIk=
 =ml+6
 -----END PGP SIGNATURE-----

Merge 4.4.187 into android-4.4-p

Changes in 4.4.187
	MIPS: ath79: fix ar933x uart parity mode
	MIPS: fix build on non-linux hosts
	dmaengine: imx-sdma: fix use-after-free on probe error path
	ath10k: Do not send probe response template for mesh
	ath9k: Check for errors when reading SREV register
	ath6kl: add some bounds checking
	ath: DFS JP domain W56 fixed pulse type 3 RADAR detection
	batman-adv: fix for leaked TVLV handler.
	media: dvb: usb: fix use after free in dvb_usb_device_exit
	crypto: talitos - fix skcipher failure due to wrong output IV
	media: marvell-ccic: fix DMA s/g desc number calculation
	media: vpss: fix a potential NULL pointer dereference
	net: stmmac: dwmac1000: Clear unused address entries
	signal/pid_namespace: Fix reboot_pid_ns to use send_sig not force_sig
	af_key: fix leaks in key_pol_get_resp and dump_sp.
	xfrm: Fix xfrm sel prefix length validation
	media: staging: media: davinci_vpfe: - Fix for memory leak if decoder initialization fails.
	net: phy: Check against net_device being NULL
	tua6100: Avoid build warnings.
	locking/lockdep: Fix merging of hlocks with non-zero references
	media: wl128x: Fix some error handling in fm_v4l2_init_video_device()
	cpupower : frequency-set -r option misses the last cpu in related cpu list
	net: fec: Do not use netdev messages too early
	net: axienet: Fix race condition causing TX hang
	s390/qdio: handle PENDING state for QEBSM devices
	perf test 6: Fix missing kvm module load for s390
	gpio: omap: fix lack of irqstatus_raw0 for OMAP4
	gpio: omap: ensure irq is enabled before wakeup
	regmap: fix bulk writes on paged registers
	bpf: silence warning messages in core
	rcu: Force inlining of rcu_read_lock()
	xfrm: fix sa selector validation
	perf evsel: Make perf_evsel__name() accept a NULL argument
	vhost_net: disable zerocopy by default
	EDAC/sysfs: Fix memory leak when creating a csrow object
	media: i2c: fix warning same module names
	ntp: Limit TAI-UTC offset
	timer_list: Guard procfs specific code
	acpi/arm64: ignore 5.1 FADTs that are reported as 5.0
	media: coda: fix mpeg2 sequence number handling
	media: coda: increment sequence offset for the last returned frame
	mt7601u: do not schedule rx_tasklet when the device has been disconnected
	x86/build: Add 'set -e' to mkcapflags.sh to delete broken capflags.c
	mt7601u: fix possible memory leak when the device is disconnected
	ath10k: fix PCIE device wake up failed
	rslib: Fix decoding of shortened codes
	rslib: Fix handling of of caller provided syndrome
	ixgbe: Check DDM existence in transceiver before access
	EDAC: Fix global-out-of-bounds write when setting edac_mc_poll_msec
	bcache: check c->gc_thread by IS_ERR_OR_NULL in cache_set_flush()
	Bluetooth: hci_bcsp: Fix memory leak in rx_skb
	Bluetooth: 6lowpan: search for destination address in all peers
	Bluetooth: Check state in l2cap_disconnect_rsp
	Bluetooth: validate BLE connection interval updates
	crypto: ghash - fix unaligned memory access in ghash_setkey()
	crypto: arm64/sha1-ce - correct digest for empty data in finup
	crypto: arm64/sha2-ce - correct digest for empty data in finup
	Input: gtco - bounds check collection indent level
	regulator: s2mps11: Fix buck7 and buck8 wrong voltages
	tracing/snapshot: Resize spare buffer if size changed
	NFSv4: Handle the special Linux file open access mode
	lib/scatterlist: Fix mapping iterator when sg->offset is greater than PAGE_SIZE
	ALSA: seq: Break too long mutex context in the write loop
	media: v4l2: Test type instead of cfg->type in v4l2_ctrl_new_custom()
	media: coda: Remove unbalanced and unneeded mutex unlock
	KVM: x86/vPMU: refine kvm_pmu err msg when event creation failed
	drm/nouveau/i2c: Enable i2c pads & busses during preinit
	padata: use smp_mb in padata_reorder to avoid orphaned padata jobs
	9p/virtio: Add cleanup path in p9_virtio_init
	PCI: Do not poll for PME if the device is in D3cold
	take floppy compat ioctls to sodding floppy.c
	floppy: fix div-by-zero in setup_format_params
	floppy: fix out-of-bounds read in next_valid_format
	floppy: fix invalid pointer dereference in drive_name
	floppy: fix out-of-bounds read in copy_buffer
	coda: pass the host file in vma->vm_file on mmap
	gpu: ipu-v3: ipu-ic: Fix saturation bit offset in TPMEM
	parisc: Fix kernel panic due invalid values in IAOQ0 or IAOQ1
	powerpc/32s: fix suspend/resume when IBATs 4-7 are used
	powerpc/watchpoint: Restore NV GPRs while returning from exception
	eCryptfs: fix a couple type promotion bugs
	intel_th: msu: Fix single mode with disabled IOMMU
	Bluetooth: Add SMP workaround Microsoft Surface Precision Mouse bug
	usb: Handle USB3 remote wakeup for LPM enabled devices correctly
	dm bufio: fix deadlock with loop device
	bnx2x: Prevent load reordering in tx completion processing
	caif-hsi: fix possible deadlock in cfhsi_exit_module()
	ipv4: don't set IPv6 only flags to IPv4 addresses
	net: bcmgenet: use promisc for unsupported filters
	net: neigh: fix multiple neigh timer scheduling
	nfc: fix potential illegal memory access
	sky2: Disable MSI on ASUS P6T
	netrom: fix a memory leak in nr_rx_frame()
	netrom: hold sock when setting skb->destructor
	tcp: Reset bytes_acked and bytes_received when disconnecting
	bonding: validate ip header before check IPPROTO_IGMP
	net: bridge: mcast: fix stale nsrcs pointer in igmp3/mld2 report handling
	net: bridge: mcast: fix stale ipv6 hdr pointer when handling v6 query
	net: bridge: stp: don't cache eth dest pointer before skb pull
	elevator: fix truncation of icq_cache_name
	NFSv4: Fix open create exclusive when the server reboots
	nfsd: increase DRC cache limit
	nfsd: give out fewer session slots as limit approaches
	nfsd: fix performance-limiting session calculation
	nfsd: Fix overflow causing non-working mounts on 1 TB machines
	drm/panel: simple: Fix panel_simple_dsi_probe
	usb: core: hub: Disable hub-initiated U1/U2
	tty: max310x: Fix invalid baudrate divisors calculator
	pinctrl: rockchip: fix leaked of_node references
	tty: serial: cpm_uart - fix init when SMC is relocated
	memstick: Fix error cleanup path of memstick_init
	tty/serial: digicolor: Fix digicolor-usart already registered warning
	tty: serial: msm_serial: avoid system lockup condition
	drm/virtio: Add memory barriers for capset cache.
	phy: renesas: rcar-gen2: Fix memory leak at error paths
	usb: gadget: Zero ffs_io_data
	powerpc/pci/of: Fix OF flags parsing for 64bit BARs
	PCI: sysfs: Ignore lockdep for remove attribute
	iio: iio-utils: Fix possible incorrect mask calculation
	recordmcount: Fix spurious mcount entries on powerpc
	mfd: core: Set fwnode for created devices
	mfd: arizona: Fix undefined behavior
	um: Silence lockdep complaint about mmap_sem
	powerpc/4xx/uic: clear pending interrupt after irq type/pol change
	serial: sh-sci: Fix TX DMA buffer flushing and workqueue races
	kallsyms: exclude kasan local symbols on s390
	perf test mmap-thread-lookup: Initialize variable to suppress memory sanitizer warning
	f2fs: avoid out-of-range memory access
	mailbox: handle failed named mailbox channel request
	powerpc/eeh: Handle hugepages in ioremap space
	sh: prevent warnings when using iounmap
	mm/kmemleak.c: fix check for softirq context
	9p: pass the correct prototype to read_cache_page
	mm/mmu_notifier: use hlist_add_head_rcu()
	locking/lockdep: Fix lock used or unused stats error
	locking/lockdep: Hide unused 'class' variable
	usb: wusbcore: fix unbalanced get/put cluster_id
	usb: pci-quirks: Correct AMD PLL quirk detection
	x86/sysfb_efi: Add quirks for some devices with swapped width and height
	x86/speculation/mds: Apply more accurate check on hypervisor platform
	hpet: Fix division by zero in hpet_time_div()
	ALSA: line6: Fix wrong altsetting for LINE6_PODHD500_1
	ALSA: hda - Add a conexant codec entry to let mute led work
	powerpc/tm: Fix oops on sigreturn on systems without TM
	access: avoid the RCU grace period for the temporary subjective credentials
	vmstat: Remove BUG_ON from vmstat_update
	mm, vmstat: make quiet_vmstat lighter
	ipv6: check sk sk_type and protocol early in ip_mroute_set/getsockopt
	tcp: reset sk_send_head in tcp_write_queue_purge
	ISDN: hfcsusb: checking idx of ep configuration
	media: cpia2_usb: first wake up, then free in disconnect
	media: radio-raremono: change devm_k*alloc to k*alloc
	Bluetooth: hci_uart: check for missing tty operations
	sched/fair: Don't free p->numa_faults with concurrent readers
	drivers/pps/pps.c: clear offset flags in PPS_SETPARAMS ioctl
	ceph: hold i_ceph_lock when removing caps for freeing inode
	Linux 4.4.187

Change-Id: I6086b23376cdf9f6a905f727fb07175a7ebdd356
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
2019-08-04 09:53:45 +02:00
android/configs ANDROID: add script to fetch android kernel config fragments 2017-10-03 10:59:04 -07:00
arch This is the 4.4.187 stable release 2019-08-04 09:53:45 +02:00
block This is the 4.4.187 stable release 2019-08-04 09:53:45 +02:00
certs modsign: hide openssl output in silent builds 2018-02-25 11:03:46 +01:00
crypto This is the 4.4.187 stable release 2019-08-04 09:53:45 +02:00
Documentation This is the 4.4.186 stable release 2019-07-22 15:54:20 +02:00
drivers This is the 4.4.187 stable release 2019-08-04 09:53:45 +02:00
firmware
fs This is the 4.4.187 stable release 2019-08-04 09:53:45 +02:00
include This is the 4.4.187 stable release 2019-08-04 09:53:45 +02:00
init This is the 4.4.180 stable release 2019-05-16 22:34:35 +02:00
ipc This is the 4.4.183 stable release 2019-06-22 09:45:38 +02:00
kernel This is the 4.4.187 stable release 2019-08-04 09:53:45 +02:00
lib This is the 4.4.187 stable release 2019-08-04 09:53:45 +02:00
mm This is the 4.4.187 stable release 2019-08-04 09:53:45 +02:00
net This is the 4.4.187 stable release 2019-08-04 09:53:45 +02:00
samples samples, bpf: fix to change the buffer size for read() 2019-07-21 09:07:06 +02:00
scripts This is the 4.4.187 stable release 2019-08-04 09:53:45 +02:00
security This is the 4.4.185 stable release 2019-07-10 12:57:28 +02:00
sound ALSA: hda - Add a conexant codec entry to let mute led work 2019-08-04 09:35:00 +02:00
tools This is the 4.4.187 stable release 2019-08-04 09:53:45 +02:00
usr
virt KVM: Reject device ioctls from processes other than the VM's creator 2019-04-03 06:23:28 +02:00
.get_maintainer.ignore
.gitignore kbuild: Add support to generate LLVM assembly files 2018-11-27 16:07:58 +01:00
.mailmap UPSTREAM: MIPS: Update Goldfish RTC driver maintainer email address 2018-02-05 08:58:33 -08:00
build.config.cuttlefish.aarch64 ANDROID: Move from clang r349610 to r353983c. 2019-05-14 18:00:13 -07:00
build.config.cuttlefish.x86_64 ANDROID: Move from clang r349610 to r353983c. 2019-05-14 18:00:13 -07:00
build.config.goldfish.arm ANDROID: build.config: enforce trace_printk check 2018-05-07 23:47:03 +00:00
build.config.goldfish.arm64 ANDROID: build.config: enforce trace_printk check 2018-05-07 23:47:03 +00:00
build.config.goldfish.mips ANDROID: build.config: enforce trace_printk check 2018-05-07 23:47:03 +00:00
build.config.goldfish.mips64 ANDROID: build.config: enforce trace_printk check 2018-05-07 23:47:03 +00:00
build.config.goldfish.x86 ANDROID: build.config: enforce trace_printk check 2018-05-07 23:47:03 +00:00
build.config.goldfish.x86_64 ANDROID: build.config: enforce trace_printk check 2018-05-07 23:47:03 +00:00
COPYING
CREDITS MAINTAINERS/CREDITS: mark MaxRAID as Orphan, move Anil Ravindranath to CREDITS 2015-09-10 13:29:01 -07:00
Kbuild kbuild: Consolidate header generation from ASM offset information 2018-11-27 16:07:57 +01:00
Kconfig
MAINTAINERS UPSTREAM: VSOCK: Introduce vhost_vsock.ko 2019-05-14 17:56:57 -07:00
Makefile This is the 4.4.187 stable release 2019-08-04 09:53:45 +02:00
README README: Add ARC architecture 2015-09-18 10:05:29 -06:00
REPORTING-BUGS
verity_dev_keys.x509 x86_64_cuttlefish_defconfig: enable verity cert 2018-07-26 18:25:43 +00:00

        Linux kernel release 4.x <http://kernel.org/>

These are the release notes for Linux version 4.  Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong. 

WHAT IS LINUX?

  Linux is a clone of the operating system Unix, written from scratch by
  Linus Torvalds with assistance from a loosely-knit team of hackers across
  the Net. It aims towards POSIX and Single UNIX Specification compliance.

  It has all the features you would expect in a modern fully-fledged Unix,
  including true multitasking, virtual memory, shared libraries, demand
  loading, shared copy-on-write executables, proper memory management,
  and multistack networking including IPv4 and IPv6.

  It is distributed under the GNU General Public License - see the
  accompanying COPYING file for more details. 

ON WHAT HARDWARE DOES IT RUN?

  Although originally developed first for 32-bit x86-based PCs (386 or higher),
  today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
  UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
  IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS,
  Xtensa, Tilera TILE, AVR32, ARC and Renesas M32R architectures.

  Linux is easily portable to most general-purpose 32- or 64-bit architectures
  as long as they have a paged memory management unit (PMMU) and a port of the
  GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
  also been ported to a number of architectures without a PMMU, although
  functionality is then obviously somewhat limited.
  Linux has also been ported to itself. You can now run the kernel as a
  userspace application - this is called UserMode Linux (UML).

DOCUMENTATION:

 - There is a lot of documentation available both in electronic form on
   the Internet and in books, both Linux-specific and pertaining to
   general UNIX questions.  I'd recommend looking into the documentation
   subdirectories on any Linux FTP site for the LDP (Linux Documentation
   Project) books.  This README is not meant to be documentation on the
   system: there are much better sources available.

 - There are various README files in the Documentation/ subdirectory:
   these typically contain kernel-specific installation notes for some 
   drivers for example. See Documentation/00-INDEX for a list of what
   is contained in each file.  Please read the Changes file, as it
   contains information about the problems, which may result by upgrading
   your kernel.

 - The Documentation/DocBook/ subdirectory contains several guides for
   kernel developers and users.  These guides can be rendered in a
   number of formats:  PostScript (.ps), PDF, HTML, & man-pages, among others.
   After installation, "make psdocs", "make pdfdocs", "make htmldocs",
   or "make mandocs" will render the documentation in the requested format.

INSTALLING the kernel source:

 - If you install the full sources, put the kernel tarball in a
   directory where you have permissions (eg. your home directory) and
   unpack it:

     xz -cd linux-4.X.tar.xz | tar xvf -

   Replace "X" with the version number of the latest kernel.

   Do NOT use the /usr/src/linux area! This area has a (usually
   incomplete) set of kernel headers that are used by the library header
   files.  They should match the library, and not get messed up by
   whatever the kernel-du-jour happens to be.

 - You can also upgrade between 4.x releases by patching.  Patches are
   distributed in the xz format.  To install by patching, get all the
   newer patch files, enter the top level directory of the kernel source
   (linux-4.X) and execute:

     xz -cd ../patch-4.x.xz | patch -p1

   Replace "x" for all versions bigger than the version "X" of your current
   source tree, _in_order_, and you should be ok.  You may want to remove
   the backup files (some-file-name~ or some-file-name.orig), and make sure
   that there are no failed patches (some-file-name# or some-file-name.rej).
   If there are, either you or I have made a mistake.

   Unlike patches for the 4.x kernels, patches for the 4.x.y kernels
   (also known as the -stable kernels) are not incremental but instead apply
   directly to the base 4.x kernel.  For example, if your base kernel is 4.0
   and you want to apply the 4.0.3 patch, you must not first apply the 4.0.1
   and 4.0.2 patches. Similarly, if you are running kernel version 4.0.2 and
   want to jump to 4.0.3, you must first reverse the 4.0.2 patch (that is,
   patch -R) _before_ applying the 4.0.3 patch. You can read more on this in
   Documentation/applying-patches.txt

   Alternatively, the script patch-kernel can be used to automate this
   process.  It determines the current kernel version and applies any
   patches found.

     linux/scripts/patch-kernel linux

   The first argument in the command above is the location of the
   kernel source.  Patches are applied from the current directory, but
   an alternative directory can be specified as the second argument.

 - Make sure you have no stale .o files and dependencies lying around:

     cd linux
     make mrproper

   You should now have the sources correctly installed.

SOFTWARE REQUIREMENTS

   Compiling and running the 4.x kernels requires up-to-date
   versions of various software packages.  Consult
   Documentation/Changes for the minimum version numbers required
   and how to get updates for these packages.  Beware that using
   excessively old versions of these packages can cause indirect
   errors that are very difficult to track down, so don't assume that
   you can just update packages when obvious problems arise during
   build or operation.

BUILD directory for the kernel:

   When compiling the kernel, all output files will per default be
   stored together with the kernel source code.
   Using the option "make O=output/dir" allow you to specify an alternate
   place for the output files (including .config).
   Example:

     kernel source code: /usr/src/linux-4.X
     build directory:    /home/name/build/kernel

   To configure and build the kernel, use:

     cd /usr/src/linux-4.X
     make O=/home/name/build/kernel menuconfig
     make O=/home/name/build/kernel
     sudo make O=/home/name/build/kernel modules_install install

   Please note: If the 'O=output/dir' option is used, then it must be
   used for all invocations of make.

CONFIGURING the kernel:

   Do not skip this step even if you are only upgrading one minor
   version.  New configuration options are added in each release, and
   odd problems will turn up if the configuration files are not set up
   as expected.  If you want to carry your existing configuration to a
   new version with minimal work, use "make oldconfig", which will
   only ask you for the answers to new questions.

 - Alternative configuration commands are:

     "make config"      Plain text interface.

     "make menuconfig"  Text based color menus, radiolists & dialogs.

     "make nconfig"     Enhanced text based color menus.

     "make xconfig"     X windows (Qt) based configuration tool.

     "make gconfig"     X windows (GTK+) based configuration tool.

     "make oldconfig"   Default all questions based on the contents of
                        your existing ./.config file and asking about
                        new config symbols.

     "make silentoldconfig"
                        Like above, but avoids cluttering the screen
                        with questions already answered.
                        Additionally updates the dependencies.

     "make olddefconfig"
                        Like above, but sets new symbols to their default
                        values without prompting.

     "make defconfig"   Create a ./.config file by using the default
                        symbol values from either arch/$ARCH/defconfig
                        or arch/$ARCH/configs/${PLATFORM}_defconfig,
                        depending on the architecture.

     "make ${PLATFORM}_defconfig"
                        Create a ./.config file by using the default
                        symbol values from
                        arch/$ARCH/configs/${PLATFORM}_defconfig.
                        Use "make help" to get a list of all available
                        platforms of your architecture.

     "make allyesconfig"
                        Create a ./.config file by setting symbol
                        values to 'y' as much as possible.

     "make allmodconfig"
                        Create a ./.config file by setting symbol
                        values to 'm' as much as possible.

     "make allnoconfig" Create a ./.config file by setting symbol
                        values to 'n' as much as possible.

     "make randconfig"  Create a ./.config file by setting symbol
                        values to random values.

     "make localmodconfig" Create a config based on current config and
                           loaded modules (lsmod). Disables any module
                           option that is not needed for the loaded modules.

                           To create a localmodconfig for another machine,
                           store the lsmod of that machine into a file
                           and pass it in as a LSMOD parameter.

                   target$ lsmod > /tmp/mylsmod
                   target$ scp /tmp/mylsmod host:/tmp

                   host$ make LSMOD=/tmp/mylsmod localmodconfig

                           The above also works when cross compiling.

     "make localyesconfig" Similar to localmodconfig, except it will convert
                           all module options to built in (=y) options.

   You can find more information on using the Linux kernel config tools
   in Documentation/kbuild/kconfig.txt.

 - NOTES on "make config":

    - Having unnecessary drivers will make the kernel bigger, and can
      under some circumstances lead to problems: probing for a
      nonexistent controller card may confuse your other controllers

    - Compiling the kernel with "Processor type" set higher than 386
      will result in a kernel that does NOT work on a 386.  The
      kernel will detect this on bootup, and give up.

    - A kernel with math-emulation compiled in will still use the
      coprocessor if one is present: the math emulation will just
      never get used in that case.  The kernel will be slightly larger,
      but will work on different machines regardless of whether they
      have a math coprocessor or not.

    - The "kernel hacking" configuration details usually result in a
      bigger or slower kernel (or both), and can even make the kernel
      less stable by configuring some routines to actively try to
      break bad code to find kernel problems (kmalloc()).  Thus you
      should probably answer 'n' to the questions for "development",
      "experimental", or "debugging" features.

COMPILING the kernel:

 - Make sure you have at least gcc 3.2 available.
   For more information, refer to Documentation/Changes.

   Please note that you can still run a.out user programs with this kernel.

 - Do a "make" to create a compressed kernel image. It is also
   possible to do "make install" if you have lilo installed to suit the
   kernel makefiles, but you may want to check your particular lilo setup first.

   To do the actual install, you have to be root, but none of the normal
   build should require that. Don't take the name of root in vain.

 - If you configured any of the parts of the kernel as `modules', you
   will also have to do "make modules_install".

 - Verbose kernel compile/build output:

   Normally, the kernel build system runs in a fairly quiet mode (but not
   totally silent).  However, sometimes you or other kernel developers need
   to see compile, link, or other commands exactly as they are executed.
   For this, use "verbose" build mode.  This is done by inserting
   "V=1" in the "make" command.  E.g.:

     make V=1 all

   To have the build system also tell the reason for the rebuild of each
   target, use "V=2".  The default is "V=0".

 - Keep a backup kernel handy in case something goes wrong.  This is 
   especially true for the development releases, since each new release
   contains new code which has not been debugged.  Make sure you keep a
   backup of the modules corresponding to that kernel, as well.  If you
   are installing a new kernel with the same version number as your
   working kernel, make a backup of your modules directory before you
   do a "make modules_install".

   Alternatively, before compiling, use the kernel config option
   "LOCALVERSION" to append a unique suffix to the regular kernel version.
   LOCALVERSION can be set in the "General Setup" menu.

 - In order to boot your new kernel, you'll need to copy the kernel
   image (e.g. .../linux/arch/i386/boot/bzImage after compilation)
   to the place where your regular bootable kernel is found. 

 - Booting a kernel directly from a floppy without the assistance of a
   bootloader such as LILO, is no longer supported.

   If you boot Linux from the hard drive, chances are you use LILO, which
   uses the kernel image as specified in the file /etc/lilo.conf.  The
   kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
   /boot/bzImage.  To use the new kernel, save a copy of the old image
   and copy the new image over the old one.  Then, you MUST RERUN LILO
   to update the loading map!! If you don't, you won't be able to boot
   the new kernel image.

   Reinstalling LILO is usually a matter of running /sbin/lilo. 
   You may wish to edit /etc/lilo.conf to specify an entry for your
   old kernel image (say, /vmlinux.old) in case the new one does not
   work.  See the LILO docs for more information. 

   After reinstalling LILO, you should be all set.  Shutdown the system,
   reboot, and enjoy!

   If you ever need to change the default root device, video mode,
   ramdisk size, etc.  in the kernel image, use the 'rdev' program (or
   alternatively the LILO boot options when appropriate).  No need to
   recompile the kernel to change these parameters. 

 - Reboot with the new kernel and enjoy. 

IF SOMETHING GOES WRONG:

 - If you have problems that seem to be due to kernel bugs, please check
   the file MAINTAINERS to see if there is a particular person associated
   with the part of the kernel that you are having trouble with. If there
   isn't anyone listed there, then the second best thing is to mail
   them to me (torvalds@linux-foundation.org), and possibly to any other
   relevant mailing-list or to the newsgroup.

 - In all bug-reports, *please* tell what kernel you are talking about,
   how to duplicate the problem, and what your setup is (use your common
   sense).  If the problem is new, tell me so, and if the problem is
   old, please try to tell me when you first noticed it.

 - If the bug results in a message like

     unable to handle kernel paging request at address C0000010
     Oops: 0002
     EIP:   0010:XXXXXXXX
     eax: xxxxxxxx   ebx: xxxxxxxx   ecx: xxxxxxxx   edx: xxxxxxxx
     esi: xxxxxxxx   edi: xxxxxxxx   ebp: xxxxxxxx
     ds: xxxx  es: xxxx  fs: xxxx  gs: xxxx
     Pid: xx, process nr: xx
     xx xx xx xx xx xx xx xx xx xx

   or similar kernel debugging information on your screen or in your
   system log, please duplicate it *exactly*.  The dump may look
   incomprehensible to you, but it does contain information that may
   help debugging the problem.  The text above the dump is also
   important: it tells something about why the kernel dumped code (in
   the above example, it's due to a bad kernel pointer). More information
   on making sense of the dump is in Documentation/oops-tracing.txt

 - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
   as is, otherwise you will have to use the "ksymoops" program to make
   sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred).
   This utility can be downloaded from
   ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops/ .
   Alternatively, you can do the dump lookup by hand:

 - In debugging dumps like the above, it helps enormously if you can
   look up what the EIP value means.  The hex value as such doesn't help
   me or anybody else very much: it will depend on your particular
   kernel setup.  What you should do is take the hex value from the EIP
   line (ignore the "0010:"), and look it up in the kernel namelist to
   see which kernel function contains the offending address.

   To find out the kernel function name, you'll need to find the system
   binary associated with the kernel that exhibited the symptom.  This is
   the file 'linux/vmlinux'.  To extract the namelist and match it against
   the EIP from the kernel crash, do:

     nm vmlinux | sort | less

   This will give you a list of kernel addresses sorted in ascending
   order, from which it is simple to find the function that contains the
   offending address.  Note that the address given by the kernel
   debugging messages will not necessarily match exactly with the
   function addresses (in fact, that is very unlikely), so you can't
   just 'grep' the list: the list will, however, give you the starting
   point of each kernel function, so by looking for the function that
   has a starting address lower than the one you are searching for but
   is followed by a function with a higher address you will find the one
   you want.  In fact, it may be a good idea to include a bit of
   "context" in your problem report, giving a few lines around the
   interesting one. 

   If you for some reason cannot do the above (you have a pre-compiled
   kernel image or similar), telling me as much about your setup as
   possible will help.  Please read the REPORTING-BUGS document for details.

 - Alternatively, you can use gdb on a running kernel. (read-only; i.e. you
   cannot change values or set break points.) To do this, first compile the
   kernel with -g; edit arch/i386/Makefile appropriately, then do a "make
   clean". You'll also need to enable CONFIG_PROC_FS (via "make config").

   After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore".
   You can now use all the usual gdb commands. The command to look up the
   point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes
   with the EIP value.)

   gdb'ing a non-running kernel currently fails because gdb (wrongly)
   disregards the starting offset for which the kernel is compiled.