Commit graph

21586 commits

Author SHA1 Message Date
Paolo Bonzini
71ef2c1131 locking/static_key: Fix concurrent static_key_slow_inc()
commit 4c5ea0a9cd02d6aa8adc86e100b2a4cff8d614ff upstream.

The following scenario is possible:

    CPU 1                                   CPU 2
    static_key_slow_inc()
     atomic_inc_not_zero()
      -> key.enabled == 0, no increment
     jump_label_lock()
     atomic_inc_return()
      -> key.enabled == 1 now
                                            static_key_slow_inc()
                                             atomic_inc_not_zero()
                                              -> key.enabled == 1, inc to 2
                                             return
                                            ** static key is wrong!
     jump_label_update()
     jump_label_unlock()

Testing the static key at the point marked by (**) will follow the
wrong path for jumps that have not been patched yet.  This can
actually happen when creating many KVM virtual machines with userspace
LAPIC emulation; just run several copies of the following program:

    #include <fcntl.h>
    #include <unistd.h>
    #include <sys/ioctl.h>
    #include <linux/kvm.h>

    int main(void)
    {
        for (;;) {
            int kvmfd = open("/dev/kvm", O_RDONLY);
            int vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
            close(ioctl(vmfd, KVM_CREATE_VCPU, 1));
            close(vmfd);
            close(kvmfd);
        }
        return 0;
    }

Every KVM_CREATE_VCPU ioctl will attempt a static_key_slow_inc() call.
The static key's purpose is to skip NULL pointer checks and indeed one
of the processes eventually dereferences NULL.

As explained in the commit that introduced the bug:

  706249c222 ("locking/static_keys: Rework update logic")

jump_label_update() needs key.enabled to be true.  The solution adopted
here is to temporarily make key.enabled == -1, and use go down the
slow path when key.enabled <= 0.

Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 706249c222 ("locking/static_keys: Rework update logic")
Link: http://lkml.kernel.org/r/1466527937-69798-1-git-send-email-pbonzini@redhat.com
[ Small stylistic edits to the changelog and the code. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-07-27 09:47:29 -07:00
Peter Zijlstra
a39e660a55 locking/qspinlock: Fix spin_unlock_wait() some more
commit 2c610022711675ee908b903d242f0b90e1db661f upstream.

While this prior commit:

  54cf809b9512 ("locking,qspinlock: Fix spin_is_locked() and spin_unlock_wait()")

... fixes spin_is_locked() and spin_unlock_wait() for the usage
in ipc/sem and netfilter, it does not in fact work right for the
usage in task_work and futex.

So while the 2 locks crossed problem:

	spin_lock(A)		spin_lock(B)
	if (!spin_is_locked(B)) spin_unlock_wait(A)
	  foo()			foo();

... works with the smp_mb() injected by both spin_is_locked() and
spin_unlock_wait(), this is not sufficient for:

	flag = 1;
	smp_mb();		spin_lock()
	spin_unlock_wait()	if (!flag)
				  // add to lockless list
	// iterate lockless list

... because in this scenario, the store from spin_lock() can be delayed
past the load of flag, uncrossing the variables and loosing the
guarantee.

This patch reworks spin_is_locked() and spin_unlock_wait() to work in
both cases by exploiting the observation that while the lock byte
store can be delayed, the contender must have registered itself
visibly in other state contained in the word.

It also allows for architectures to override both functions, as PPC
and ARM64 have an additional issue for which we currently have no
generic solution.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Giovanni Gherdovich <ggherdovich@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pan Xinhui <xinhui.pan@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <waiman.long@hpe.com>
Cc: Will Deacon <will.deacon@arm.com>
Fixes: 54cf809b9512 ("locking,qspinlock: Fix spin_is_locked() and spin_unlock_wait()")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-07-27 09:47:29 -07:00
Chris Wilson
c7f47e59c3 locking/ww_mutex: Report recursive ww_mutex locking early
commit 0422e83d84ae24b933e4b0d4c1e0f0b4ae8a0a3b upstream.

Recursive locking for ww_mutexes was originally conceived as an
exception. However, it is heavily used by the DRM atomic modesetting
code. Currently, the recursive deadlock is checked after we have queued
up for a busy-spin and as we never release the lock, we spin until
kicked, whereupon the deadlock is discovered and reported.

A simple solution for the now common problem is to move the recursive
deadlock discovery to the first action when taking the ww_mutex.

Suggested-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1464293297-19777-1-git-send-email-chris@chris-wilson.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-07-27 09:47:29 -07:00
Daniel Borkmann
11bef1439d bpf, perf: delay release of BPF prog after grace period
[ Upstream commit ceb56070359b7329b5678b5d95a376fcb24767be ]

Commit dead9f29dd ("perf: Fix race in BPF program unregister") moved
destruction of BPF program from free_event_rcu() callback to __free_event(),
which is problematic if used with tail calls: if prog A is attached as
trace event directly, but at the same time present in a tail call map used
by another trace event program elsewhere, then we need to delay destruction
via RCU grace period since it can still be in use by the program doing the
tail call (the prog first needs to be dropped from the tail call map, then
trace event with prog A attached destroyed, so we get immediate destruction).

Fixes: dead9f29dd ("perf: Fix race in BPF program unregister")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Jann Horn <jann@thejh.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-07-11 09:31:11 -07:00
Jann Horn
c08b1a593a sched: panic on corrupted stack end
commit 29d6455178a09e1dc340380c582b13356227e8df upstream.

Until now, hitting this BUG_ON caused a recursive oops (because oops
handling involves do_exit(), which calls into the scheduler, which in
turn raises an oops), which caused stuff below the stack to be
overwritten until a panic happened (e.g.  via an oops in interrupt
context, caused by the overwritten CPU index in the thread_info).

Just panic directly.

Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-24 10:18:20 -07:00
Daniel Borkmann
bfe951d547 bpf, inode: disallow userns mounts
[ Upstream commit 612bacad78ba6d0a91166fc4487af114bac172a8 ]

Follow-up to commit e27f4a942a0e ("bpf: Use mount_nodev not mount_ns
to mount the bpf filesystem"), which removes the FS_USERNS_MOUNT flag.

The original idea was to have a per mountns instance instead of a
single global fs instance, but that didn't work out and we had to
switch to mount_nodev() model. The intent of that middle ground was
that we avoid users who don't play nice to create endless instances
of bpf fs which are difficult to control and discover from an admin
point of view, but at the same time it would have allowed us to be
more flexible with regard to namespaces.

Therefore, since we now did the switch to mount_nodev() as a fix
where individual instances are created, we also need to remove userns
mount flag along with it to avoid running into mentioned situation.
I don't expect any breakage at this early point in time with removing
the flag and we can revisit this later should the requirement for
this come up with future users. This and commit e27f4a942a0e have
been split to facilitate tracking should any of them run into the
unlikely case of causing a regression.

Fixes: b2197755b2 ("bpf: add support for persistent maps/progs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-24 10:18:17 -07:00
Eric W. Biederman
5b7ea922e1 bpf: Use mount_nodev not mount_ns to mount the bpf filesystem
[ Upstream commit e27f4a942a0ee4b84567a3c6cfa84f273e55cbb7 ]

While reviewing the filesystems that set FS_USERNS_MOUNT I spotted the
bpf filesystem.  Looking at the code I saw a broken usage of mount_ns
with current->nsproxy->mnt_ns. As the code does not acquire a
reference to the mount namespace it can not possibly be correct to
store the mount namespace on the superblock as it does.

Replace mount_ns with mount_nodev so that each mount of the bpf
filesystem returns a distinct instance, and the code is not buggy.

In discussion with Hannes Frederic Sowa it was reported that the use
of mount_ns was an attempt to have one bpf instance per mount
namespace, in an attempt to keep resources that pin resources from
hiding.  That intent simply does not work, the vfs is not built to
allow that kind of behavior.  Which means that the bpf filesystem
really is buggy both semantically and in it's implemenation as it does
not nor can it implement the original intent.

This change is userspace visible, but my experience with similar
filesystems leads me to believe nothing will break with a model of each
mount of the bpf filesystem is distinct from all others.

Fixes: b2197755b2 ("bpf: add support for persistent maps/progs")
Cc: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-24 10:18:16 -07:00
Willy Tarreau
fa6d0ba12a pipe: limit the per-user amount of pages allocated in pipes
commit 759c01142a5d0f364a462346168a56de28a80f52 upstream.

On no-so-small systems, it is possible for a single process to cause an
OOM condition by filling large pipes with data that are never read. A
typical process filling 4000 pipes with 1 MB of data will use 4 GB of
memory. On small systems it may be tricky to set the pipe max size to
prevent this from happening.

This patch makes it possible to enforce a per-user soft limit above
which new pipes will be limited to a single page, effectively limiting
them to 4 kB each, as well as a hard limit above which no new pipes may
be created for this user. This has the effect of protecting the system
against memory abuse without hurting other users, and still allowing
pipes to work correctly though with less data at once.

The limit are controlled by two new sysctls : pipe-user-pages-soft, and
pipe-user-pages-hard. Both may be disabled by setting them to zero. The
default soft limit allows the default number of FDs per process (1024)
to create pipes of the default size (64kB), thus reaching a limit of 64MB
before starting to create only smaller pipes. With 256 processes limited
to 1024 FDs each, this results in 1024*64kB + (256*1024 - 1024) * 4kB =
1084 MB of memory allocated for a user. The hard limit is disabled by
default to avoid breaking existing applications that make intensive use
of pipes (eg: for splicing).

Reported-by: socketpair@gmail.com
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Mitigates: CVE-2013-4312 (Linux 2.0+)
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Moritz Muehlenhoff <moritz@wikimedia.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-07 18:14:35 -07:00
Oleg Nesterov
0eea2e24fc wait/ptrace: assume __WALL if the child is traced
commit bf959931ddb88c4e4366e96dd22e68fa0db9527c upstream.

The following program (simplified version of generated by syzkaller)

	#include <pthread.h>
	#include <unistd.h>
	#include <sys/ptrace.h>
	#include <stdio.h>
	#include <signal.h>

	void *thread_func(void *arg)
	{
		ptrace(PTRACE_TRACEME, 0,0,0);
		return 0;
	}

	int main(void)
	{
		pthread_t thread;

		if (fork())
			return 0;

		while (getppid() != 1)
			;

		pthread_create(&thread, NULL, thread_func, NULL);
		pthread_join(thread, NULL);
		return 0;
	}

creates an unreapable zombie if /sbin/init doesn't use __WALL.

This is not a kernel bug, at least in a sense that everything works as
expected: debugger should reap a traced sub-thread before it can reap the
leader, but without __WALL/__WCLONE do_wait() ignores sub-threads.

Unfortunately, it seems that /sbin/init in most (all?) distributions
doesn't use it and we have to change the kernel to avoid the problem.
Note also that most init's use sys_waitid() which doesn't allow __WALL, so
the necessary user-space fix is not that trivial.

This patch just adds the "ptrace" check into eligible_child().  To some
degree this matches the "tsk->ptrace" in exit_notify(), ->exit_signal is
mostly ignored when the tracee reports to debugger.  Or WSTOPPED, the
tracer doesn't need to set this flag to wait for the stopped tracee.

This obviously means the user-visible change: __WCLONE and __WALL no
longer have any meaning for debugger.  And I can only hope that this won't
break something, but at least strace/gdb won't suffer.

We could make a more conservative change.  Say, we can take __WCLONE into
account, or !thread_group_leader().  But it would be nice to not
complicate these historical/confusing checks.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
Cc: "Michael Kerrisk (man-pages)" <mtk.manpages@gmail.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Roland McGrath <roland@hack.frob.com>
Cc: <syzkaller@googlegroups.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-07 18:14:35 -07:00
Vik Heyndrickx
1df73f1884 sched/loadavg: Fix loadavg artifacts on fully idle and on fully loaded systems
commit 20878232c52329f92423d27a60e48b6a6389e0dd upstream.

Systems show a minimal load average of 0.00, 0.01, 0.05 even when they
have no load at all.

Uptime and /proc/loadavg on all systems with kernels released during the
last five years up until kernel version 4.6-rc5, show a 5- and 15-minute
minimum loadavg of 0.01 and 0.05 respectively. This should be 0.00 on
idle systems, but the way the kernel calculates this value prevents it
from getting lower than the mentioned values.

Likewise but not as obviously noticeable, a fully loaded system with no
processes waiting, shows a maximum 1/5/15 loadavg of 1.00, 0.99, 0.95
(multiplied by number of cores).

Once the (old) load becomes 93 or higher, it mathematically can never
get lower than 93, even when the active (load) remains 0 forever.
This results in the strange 0.00, 0.01, 0.05 uptime values on idle
systems.  Note: 93/2048 = 0.0454..., which rounds up to 0.05.

It is not correct to add a 0.5 rounding (=1024/2048) here, since the
result from this function is fed back into the next iteration again,
so the result of that +0.5 rounding value then gets multiplied by
(2048-2037), and then rounded again, so there is a virtual "ghost"
load created, next to the old and active load terms.

By changing the way the internally kept value is rounded, that internal
value equivalent now can reach 0.00 on idle, and 1.00 on full load. Upon
increasing load, the internally kept load value is rounded up, when the
load is decreasing, the load value is rounded down.

The modified code was tested on nohz=off and nohz kernels. It was tested
on vanilla kernel 4.6-rc5 and on centos 7.1 kernel 3.10.0-327. It was
tested on single, dual, and octal cores system. It was tested on virtual
hosts and bare hardware. No unwanted effects have been observed, and the
problems that the patch intended to fix were indeed gone.

Tested-by: Damien Wyart <damien.wyart@free.fr>
Signed-off-by: Vik Heyndrickx <vik.heyndrickx@veribox.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Doug Smythies <dsmythies@telus.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 0f004f5a69 ("sched: Cure more NO_HZ load average woes")
Link: http://lkml.kernel.org/r/e8d32bff-d544-7748-72b5-3c86cc71f09f@veribox.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-01 12:15:49 -07:00
Steven Rostedt (Red Hat)
f199023137 ring-buffer: Prevent overflow of size in ring_buffer_resize()
commit 59643d1535eb220668692a5359de22545af579f6 upstream.

If the size passed to ring_buffer_resize() is greater than MAX_LONG - BUF_PAGE_SIZE
then the DIV_ROUND_UP() will return zero.

Here's the details:

  # echo 18014398509481980 > /sys/kernel/debug/tracing/buffer_size_kb

tracing_entries_write() processes this and converts kb to bytes.

 18014398509481980 << 10 = 18446744073709547520

and this is passed to ring_buffer_resize() as unsigned long size.

 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);

Where DIV_ROUND_UP(a, b) is (a + b - 1)/b

BUF_PAGE_SIZE is 4080 and here

 18446744073709547520 + 4080 - 1 = 18446744073709551599

where 18446744073709551599 is still smaller than 2^64

 2^64 - 18446744073709551599 = 17

But now 18446744073709551599 / 4080 = 4521260802379792

and size = size * 4080 = 18446744073709551360

This is checked to make sure its still greater than 2 * 4080,
which it is.

Then we convert to the number of buffer pages needed.

 nr_page = DIV_ROUND_UP(size, BUF_PAGE_SIZE)

but this time size is 18446744073709551360 and

 2^64 - (18446744073709551360 + 4080 - 1) = -3823

Thus it overflows and the resulting number is less than 4080, which makes

  3823 / 4080 = 0

an nr_pages is set to this. As we already checked against the minimum that
nr_pages may be, this causes the logic to fail as well, and we crash the
kernel.

There's no reason to have the two DIV_ROUND_UP() (that's just result of
historical code changes), clean up the code and fix this bug.

Fixes: 83f40318da ("ring-buffer: Make removal of ring buffer pages atomic")
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-01 12:15:49 -07:00
Steven Rostedt (Red Hat)
dfb71aefc9 ring-buffer: Use long for nr_pages to avoid overflow failures
commit 9b94a8fba501f38368aef6ac1b30e7335252a220 upstream.

The size variable to change the ring buffer in ftrace is a long. The
nr_pages used to update the ring buffer based on the size is int. On 64 bit
machines this can cause an overflow problem.

For example, the following will cause the ring buffer to crash:

 # cd /sys/kernel/debug/tracing
 # echo 10 > buffer_size_kb
 # echo 8556384240 > buffer_size_kb

Then you get the warning of:

 WARNING: CPU: 1 PID: 318 at kernel/trace/ring_buffer.c:1527 rb_update_pages+0x22f/0x260

Which is:

  RB_WARN_ON(cpu_buffer, nr_removed);

Note each ring buffer page holds 4080 bytes.

This is because:

 1) 10 causes the ring buffer to have 3 pages.
    (10kb requires 3 * 4080 pages to hold)

 2) (2^31 / 2^10  + 1) * 4080 = 8556384240
    The value written into buffer_size_kb is shifted by 10 and then passed
    to ring_buffer_resize(). 8556384240 * 2^10 = 8761737461760

 3) The size passed to ring_buffer_resize() is then divided by BUF_PAGE_SIZE
    which is 4080. 8761737461760 / 4080 = 2147484672

 4) nr_pages is subtracted from the current nr_pages (3) and we get:
    2147484669. This value is saved in a signed integer nr_pages_to_update

 5) 2147484669 is greater than 2^31 but smaller than 2^32, a signed int
    turns into the value of -2147482627

 6) As the value is a negative number, in update_pages_handler() it is
    negated and passed to rb_remove_pages() and 2147482627 pages will
    be removed, which is much larger than 3 and it causes the warning
    because not all the pages asked to be removed were removed.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=118001

Fixes: 7a8e76a382 ("tracing: unified trace buffer")
Reported-by: Hao Qin <QEver.cn@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-01 12:15:49 -07:00
Peter Zijlstra
c5174678e2 perf/core: Fix perf_event_open() vs. execve() race
commit 79c9ce57eb2d5f1497546a3946b4ae21b6fdc438 upstream.

Jann reported that the ptrace_may_access() check in
find_lively_task_by_vpid() is racy against exec().

Specifically:

  perf_event_open()		execve()

  ptrace_may_access()
				commit_creds()
  ...				if (get_dumpable() != SUID_DUMP_USER)
				  perf_event_exit_task();
  perf_install_in_context()

would result in installing a counter across the creds boundary.

Fix this by wrapping lots of perf_event_open() in cred_guard_mutex.
This should be fine as perf_event_exit_task() is already called with
cred_guard_mutex held, so all perf locks already nest inside it.

Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: He Kuang <hekuang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-01 12:15:47 -07:00
Wanpeng Li
cf73d8ad76 workqueue: fix rebind bound workers warning
commit f7c17d26f43d5cc1b7a6b896cd2fa24a079739b9 upstream.

------------[ cut here ]------------
WARNING: CPU: 0 PID: 16 at kernel/workqueue.c:4559 rebind_workers+0x1c0/0x1d0
Modules linked in:
CPU: 0 PID: 16 Comm: cpuhp/0 Not tainted 4.6.0-rc4+ #31
Hardware name: IBM IBM System x3550 M4 Server -[7914IUW]-/00Y8603, BIOS -[D7E128FUS-1.40]- 07/23/2013
 0000000000000000 ffff881037babb58 ffffffff8139d885 0000000000000010
 0000000000000000 0000000000000000 0000000000000000 ffff881037babba8
 ffffffff8108505d ffff881037ba0000 000011cf3e7d6e60 0000000000000046
Call Trace:
 dump_stack+0x89/0xd4
 __warn+0xfd/0x120
 warn_slowpath_null+0x1d/0x20
 rebind_workers+0x1c0/0x1d0
 workqueue_cpu_up_callback+0xf5/0x1d0
 notifier_call_chain+0x64/0x90
 ? trace_hardirqs_on_caller+0xf2/0x220
 ? notify_prepare+0x80/0x80
 __raw_notifier_call_chain+0xe/0x10
 __cpu_notify+0x35/0x50
 notify_down_prepare+0x5e/0x80
 ? notify_prepare+0x80/0x80
 cpuhp_invoke_callback+0x73/0x330
 ? __schedule+0x33e/0x8a0
 cpuhp_down_callbacks+0x51/0xc0
 cpuhp_thread_fun+0xc1/0xf0
 smpboot_thread_fn+0x159/0x2a0
 ? smpboot_create_threads+0x80/0x80
 kthread+0xef/0x110
 ? wait_for_completion+0xf0/0x120
 ? schedule_tail+0x35/0xf0
 ret_from_fork+0x22/0x50
 ? __init_kthread_worker+0x70/0x70
---[ end trace eb12ae47d2382d8f ]---
notify_down_prepare: attempt to take down CPU 0 failed

This bug can be reproduced by below config w/ nohz_full= all cpus:

CONFIG_BOOTPARAM_HOTPLUG_CPU0=y
CONFIG_DEBUG_HOTPLUG_CPU0=y
CONFIG_NO_HZ_FULL=y

As Thomas pointed out:

| If a down prepare callback fails, then DOWN_FAILED is invoked for all
| callbacks which have successfully executed DOWN_PREPARE.
|
| But, workqueue has actually two notifiers. One which handles
| UP/DOWN_FAILED/ONLINE and one which handles DOWN_PREPARE.
|
| Now look at the priorities of those callbacks:
|
| CPU_PRI_WORKQUEUE_UP        = 5
| CPU_PRI_WORKQUEUE_DOWN      = -5
|
| So the call order on DOWN_PREPARE is:
|
| CB 1
| CB ...
| CB workqueue_up() -> Ignores DOWN_PREPARE
| CB ...
| CB X ---> Fails
|
| So we call up to CB X with DOWN_FAILED
|
| CB 1
| CB ...
| CB workqueue_up() -> Handles DOWN_FAILED
| CB ...
| CB X-1
|
| So the problem is that the workqueue stuff handles DOWN_FAILED in the up
| callback, while it should do it in the down callback. Which is not a good idea
| either because it wants to be called early on rollback...
|
| Brilliant stuff, isn't it? The hotplug rework will solve this problem because
| the callbacks become symetric, but for the existing mess, we need some
| workaround in the workqueue code.

The boot CPU handles housekeeping duty(unbound timers, workqueues,
timekeeping, ...) on behalf of full dynticks CPUs. It must remain
online when nohz full is enabled. There is a priority set to every
notifier_blocks:

workqueue_cpu_up > tick_nohz_cpu_down > workqueue_cpu_down

So tick_nohz_cpu_down callback failed when down prepare cpu 0, and
notifier_blocks behind tick_nohz_cpu_down will not be called any
more, which leads to workers are actually not unbound. Then hotplug
state machine will fallback to undo and online cpu 0 again. Workers
will be rebound unconditionally even if they are not unbound and
trigger the warning in this progress.

This patch fix it by catching !DISASSOCIATED to avoid rebind bound
workers.

Cc: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Suggested-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-18 17:06:50 -07:00
Alexander Shishkin
e54c41be42 perf/core: Disable the event on a truncated AUX record
commit 9f448cd3cbcec8995935e60b27802ae56aac8cc0 upstream.

When the PMU driver reports a truncated AUX record, it effectively means
that there is no more usable room in the event's AUX buffer (even though
there may still be some room, so that perf_aux_output_begin() doesn't take
action). At this point the consumer still has to be woken up and the event
has to be disabled, otherwise the event will just keep spinning between
perf_aux_output_begin() and perf_aux_output_end() until its context gets
unscheduled.

Again, for cpu-wide events this means never, so once in this condition,
they will be forever losing data.

Fix this by disabling the event and waking up the consumer in case of a
truncated AUX record.

Reported-by: Markus Metzger <markus.t.metzger@intel.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/1462886313-13660-3-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-18 17:06:48 -07:00
Alexei Starovoitov
bb10156f57 bpf: fix check_map_func_compatibility logic
[ Upstream commit 6aff67c85c9e5a4bc99e5211c1bac547936626ca ]

The commit 35578d7984 ("bpf: Implement function bpf_perf_event_read() that get the selected hardware PMU conuter")
introduced clever way to check bpf_helper<->map_type compatibility.
Later on commit a43eec3042 ("bpf: introduce bpf_perf_event_output() helper") adjusted
the logic and inadvertently broke it.
Get rid of the clever bool compare and go back to two-way check
from map and from helper perspective.

Fixes: a43eec3042 ("bpf: introduce bpf_perf_event_output() helper")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-18 17:06:38 -07:00
Alexei Starovoitov
3899251bdb bpf: fix refcnt overflow
[ Upstream commit 92117d8443bc5afacc8d5ba82e541946310f106e ]

On a system with >32Gbyte of phyiscal memory and infinite RLIMIT_MEMLOCK,
the malicious application may overflow 32-bit bpf program refcnt.
It's also possible to overflow map refcnt on 1Tb system.
Impose 32k hard limit which means that the same bpf program or
map cannot be shared by more than 32k processes.

Fixes: 1be7f75d16 ("bpf: enable non-root eBPF programs")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-18 17:06:37 -07:00
Jann Horn
608d2c3c7a bpf: fix double-fdput in replace_map_fd_with_map_ptr()
[ Upstream commit 8358b02bf67d3a5d8a825070e1aa73f25fb2e4c7 ]

When bpf(BPF_PROG_LOAD, ...) was invoked with a BPF program whose bytecode
references a non-map file descriptor as a map file descriptor, the error
handling code called fdput() twice instead of once (in __bpf_map_get() and
in replace_map_fd_with_map_ptr()). If the file descriptor table of the
current task is shared, this causes f_count to be decremented too much,
allowing the struct file to be freed while it is still in use
(use-after-free). This can be exploited to gain root privileges by an
unprivileged user.

This bug was introduced in
commit 0246e64d9a ("bpf: handle pseudo BPF_LD_IMM64 insn"), but is only
exploitable since
commit 1be7f75d16 ("bpf: enable non-root eBPF programs") because
previously, CAP_SYS_ADMIN was required to reach the vulnerable code.

(posted publicly according to request by maintainer)

Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-18 17:06:37 -07:00
Alexei Starovoitov
8427d5547d bpf/verifier: reject invalid LD_ABS | BPF_DW instruction
[ Upstream commit d82bccc69041a51f7b7b9b4a36db0772f4cdba21 ]

verifier must check for reserved size bits in instruction opcode and
reject BPF_LD | BPF_ABS | BPF_DW and BPF_LD | BPF_IND | BPF_DW instructions,
otherwise interpreter will WARN_RATELIMIT on them during execution.

Fixes: ddd872bc30 ("bpf: verifier: add checks for BPF_ABS | BPF_IND instructions")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-18 17:06:35 -07:00
Chunyu Hu
8d2923930b tracing: Don't display trigger file for events that can't be enabled
commit 854145e0a8e9a05f7366d240e2f99d9c1ca6d6dd upstream.

Currently register functions for events will be called
through the 'reg' field of event class directly without
any check when seting up triggers.

Triggers for events that don't support register through
debug fs (events under events/ftrace are for trace-cmd to
read event format, and most of them don't have a register
function except events/ftrace/functionx) can't be enabled
at all, and an oops will be hit when setting up trigger
for those events, so just not creating them is an easy way
to avoid the oops.

Link: http://lkml.kernel.org/r/1462275274-3911-1-git-send-email-chuhu@redhat.com

Fixes: 85f2b08268 ("tracing: Add basic event trigger framework")
Signed-off-by: Chunyu Hu <chuhu@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-11 11:21:13 +02:00
Peter Zijlstra
23a67ddd46 locking/mcs: Fix mcs_spin_lock() ordering
commit 920c720aa5aa3900a7f1689228fdfc2580a91e7e upstream.

Similar to commit b4b29f9485 ("locking/osq: Fix ordering of node
initialisation in osq_lock") the use of xchg_acquire() is
fundamentally broken with MCS like constructs.

Furthermore, it turns out we rely on the global transitivity of this
operation because the unlock path observes the pointer with a
READ_ONCE(), not an smp_load_acquire().

This is non-critical because the MCS code isn't actually used and
mostly serves as documentation, a stepping stone to the more complex
things we've build on top of the idea.

Reported-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Fixes: 3552a07a9c ("locking/mcs: Use acquire/release semantics")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-04 14:48:50 -07:00
Tejun Heo
3c6266d57c cgroup: make sure a parent css isn't freed before its children
commit 8bb5ef79bc0f4016ecf79e8dce6096a3c63603e4 upstream.

There are three subsystem callbacks in css shutdown path -
css_offline(), css_released() and css_free().  Except for
css_released(), cgroup core didn't guarantee the order of invocation.
css_offline() or css_free() could be called on a parent css before its
children.  This behavior is unexpected and led to bugs in cpu and
memory controller.

The previous patch updated ordering for css_offline() which fixes the
cpu controller issue.  While there currently isn't a known bug caused
by misordering of css_free() invocations, let's fix it too for
consistency.

css_free() ordering can be trivially fixed by moving putting of the
parent css below css_free() invocation.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-04 14:48:49 -07:00
Tejun Heo
d52097476c cgroup, cpuset: replace cpuset_post_attach_flush() with cgroup_subsys->post_attach callback
commit 5cf1cacb49aee39c3e02ae87068fc3c6430659b0 upstream.

Since e93ad19d0564 ("cpuset: make mm migration asynchronous"), cpuset
kicks off asynchronous NUMA node migration if necessary during task
migration and flushes it from cpuset_post_attach_flush() which is
called at the end of __cgroup_procs_write().  This is to avoid
performing migration with cgroup_threadgroup_rwsem write-locked which
can lead to deadlock through dependency on kworker creation.

memcg has a similar issue with charge moving, so let's convert it to
an official callback rather than the current one-off cpuset specific
function.  This patch adds cgroup_subsys->post_attach callback and
makes cpuset register cpuset_post_attach_flush() as its ->post_attach.

The conversion is mostly one-to-one except that the new callback is
called under cgroup_mutex.  This is to guarantee that no other
migration operations are started before ->post_attach callbacks are
finished.  cgroup_mutex is one of the outermost mutex in the system
and has never been and shouldn't be a problem.  We can add specialized
synchronization around __cgroup_procs_write() but I don't think
there's any noticeable benefit.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-04 14:48:49 -07:00
Roman Pen
2da9606aea workqueue: fix ghost PENDING flag while doing MQ IO
commit 346c09f80459a3ad97df1816d6d606169a51001a upstream.

The bug in a workqueue leads to a stalled IO request in MQ ctx->rq_list
with the following backtrace:

[  601.347452] INFO: task kworker/u129:5:1636 blocked for more than 120 seconds.
[  601.347574]       Tainted: G           O    4.4.5-1-storage+ #6
[  601.347651] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[  601.348142] kworker/u129:5  D ffff880803077988     0  1636      2 0x00000000
[  601.348519] Workqueue: ibnbd_server_fileio_wq ibnbd_dev_file_submit_io_worker [ibnbd_server]
[  601.348999]  ffff880803077988 ffff88080466b900 ffff8808033f9c80 ffff880803078000
[  601.349662]  ffff880807c95000 7fffffffffffffff ffffffff815b0920 ffff880803077ad0
[  601.350333]  ffff8808030779a0 ffffffff815b01d5 0000000000000000 ffff880803077a38
[  601.350965] Call Trace:
[  601.351203]  [<ffffffff815b0920>] ? bit_wait+0x60/0x60
[  601.351444]  [<ffffffff815b01d5>] schedule+0x35/0x80
[  601.351709]  [<ffffffff815b2dd2>] schedule_timeout+0x192/0x230
[  601.351958]  [<ffffffff812d43f7>] ? blk_flush_plug_list+0xc7/0x220
[  601.352208]  [<ffffffff810bd737>] ? ktime_get+0x37/0xa0
[  601.352446]  [<ffffffff815b0920>] ? bit_wait+0x60/0x60
[  601.352688]  [<ffffffff815af784>] io_schedule_timeout+0xa4/0x110
[  601.352951]  [<ffffffff815b3a4e>] ? _raw_spin_unlock_irqrestore+0xe/0x10
[  601.353196]  [<ffffffff815b093b>] bit_wait_io+0x1b/0x70
[  601.353440]  [<ffffffff815b056d>] __wait_on_bit+0x5d/0x90
[  601.353689]  [<ffffffff81127bd0>] wait_on_page_bit+0xc0/0xd0
[  601.353958]  [<ffffffff81096db0>] ? autoremove_wake_function+0x40/0x40
[  601.354200]  [<ffffffff81127cc4>] __filemap_fdatawait_range+0xe4/0x140
[  601.354441]  [<ffffffff81127d34>] filemap_fdatawait_range+0x14/0x30
[  601.354688]  [<ffffffff81129a9f>] filemap_write_and_wait_range+0x3f/0x70
[  601.354932]  [<ffffffff811ced3b>] blkdev_fsync+0x1b/0x50
[  601.355193]  [<ffffffff811c82d9>] vfs_fsync_range+0x49/0xa0
[  601.355432]  [<ffffffff811cf45a>] blkdev_write_iter+0xca/0x100
[  601.355679]  [<ffffffff81197b1a>] __vfs_write+0xaa/0xe0
[  601.355925]  [<ffffffff81198379>] vfs_write+0xa9/0x1a0
[  601.356164]  [<ffffffff811c59d8>] kernel_write+0x38/0x50

The underlying device is a null_blk, with default parameters:

  queue_mode    = MQ
  submit_queues = 1

Verification that nullb0 has something inflight:

root@pserver8:~# cat /sys/block/nullb0/inflight
       0        1
root@pserver8:~# find /sys/block/nullb0/mq/0/cpu* -name rq_list -print -exec cat {} \;
...
/sys/block/nullb0/mq/0/cpu2/rq_list
CTX pending:
        ffff8838038e2400
...

During debug it became clear that stalled request is always inserted in
the rq_list from the following path:

   save_stack_trace_tsk + 34
   blk_mq_insert_requests + 231
   blk_mq_flush_plug_list + 281
   blk_flush_plug_list + 199
   wait_on_page_bit + 192
   __filemap_fdatawait_range + 228
   filemap_fdatawait_range + 20
   filemap_write_and_wait_range + 63
   blkdev_fsync + 27
   vfs_fsync_range + 73
   blkdev_write_iter + 202
   __vfs_write + 170
   vfs_write + 169
   kernel_write + 56

So blk_flush_plug_list() was called with from_schedule == true.

If from_schedule is true, that means that finally blk_mq_insert_requests()
offloads execution of __blk_mq_run_hw_queue() and uses kblockd workqueue,
i.e. it calls kblockd_schedule_delayed_work_on().

That means, that we race with another CPU, which is about to execute
__blk_mq_run_hw_queue() work.

Further debugging shows the following traces from different CPUs:

  CPU#0                                  CPU#1
  ----------------------------------     -------------------------------
  reqeust A inserted
  STORE hctx->ctx_map[0] bit marked
  kblockd_schedule...() returns 1
  <schedule to kblockd workqueue>
                                         request B inserted
                                         STORE hctx->ctx_map[1] bit marked
                                         kblockd_schedule...() returns 0
  *** WORK PENDING bit is cleared ***
  flush_busy_ctxs() is executed, but
  bit 1, set by CPU#1, is not observed

As a result request B pended forever.

This behaviour can be explained by speculative LOAD of hctx->ctx_map on
CPU#0, which is reordered with clear of PENDING bit and executed _before_
actual STORE of bit 1 on CPU#1.

The proper fix is an explicit full barrier <mfence>, which guarantees
that clear of PENDING bit is to be executed before all possible
speculative LOADS or STORES inside actual work function.

Signed-off-by: Roman Pen <roman.penyaev@profitbricks.com>
Cc: Gioh Kim <gi-oh.kim@profitbricks.com>
Cc: Michael Wang <yun.wang@profitbricks.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: linux-block@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-04 14:48:49 -07:00
Davidlohr Bueso
ad4b209d19 futex: Acknowledge a new waiter in counter before plist
commit fe1bce9e2107ba3a8faffe572483b6974201a0e6 upstream.

Otherwise an incoming waker on the dest hash bucket can miss
the waiter adding itself to the plist during the lockless
check optimization (small window but still the correct way
of doing this); similarly to the decrement counterpart.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: bigeasy@linutronix.de
Cc: dvhart@infradead.org
Link: http://lkml.kernel.org/r/1461208164-29150-1-git-send-email-dave@stgolabs.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-04 14:48:43 -07:00
Sebastian Andrzej Siewior
61fc0ae42c futex: Handle unlock_pi race gracefully
commit 89e9e66ba1b3bde9d8ea90566c2aee20697ad681 upstream.

If userspace calls UNLOCK_PI unconditionally without trying the TID -> 0
transition in user space first then the user space value might not have the
waiters bit set. This opens the following race:

CPU0	    	      	    CPU1
uval = get_user(futex)
			    lock(hb)
lock(hb)
			    futex |= FUTEX_WAITERS
			    ....
			    unlock(hb)

cmpxchg(futex, uval, newval)

So the cmpxchg fails and returns -EINVAL to user space, which is wrong because
the futex value is valid.

To handle this (yes, yet another) corner case gracefully, check for a flag
change and retry.

[ tglx: Massaged changelog and slightly reworked implementation ]

Fixes: ccf9e6a80d ("futex: Make unlock_pi more robust")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Darren Hart <dvhart@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1460723739-5195-1-git-send-email-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-04 14:48:43 -07:00
Peter Zijlstra
c0944355a7 sched/cgroup: Fix/cleanup cgroup teardown/init
commit 2f5177f0fd7e531b26d54633be62d1d4cb94621c upstream.

The CPU controller hasn't kept up with the various changes in the whole
cgroup initialization / destruction sequence, and commit:

  2e91fa7f6d ("cgroup: keep zombies associated with their original cgroups")

caused it to explode.

The reason for this is that zombies do not inhibit css_offline() from
being called, but do stall css_released(). Now we tear down the cfs_rq
structures on css_offline() but zombies can run after that, leading to
use-after-free issues.

The solution is to move the tear-down to css_released(), which
guarantees nobody (including no zombies) is still using our cgroup.

Furthermore, a few simple cleanups are possible too. There doesn't
appear to be any point to us using css_online() (anymore?) so fold that
in css_alloc().

And since cgroup code guarantees an RCU grace period between
css_released() and css_free() we can forgo using call_rcu() and free the
stuff immediately.

Suggested-by: Tejun Heo <tj@kernel.org>
Reported-by: Kazuki Yamaguchi <k@rhe.jp>
Reported-by: Niklas Cassel <niklas.cassel@axis.com>
Tested-by: Niklas Cassel <niklas.cassel@axis.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 2e91fa7f6d ("cgroup: keep zombies associated with their original cgroups")
Link: http://lkml.kernel.org/r/20160316152245.GY6344@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-04 14:48:42 -07:00
Peter Zijlstra
695ca6389e perf: Cure event->pending_disable race
commit 28a967c3a2f99fa3b5f762f25cb2a319d933571b upstream.

Because event_sched_out() checks event->pending_disable _before_
actually disabling the event, it can happen that the event fires after
it checks but before it gets disabled.

This would leave event->pending_disable set and the queued irq_work
will try and process it.

However, if the event trigger was during schedule(), the event might
have been de-scheduled by the time the irq_work runs, and
perf_event_disable_local() will fail.

Fix this by checking event->pending_disable _after_ we call
event->pmu->del(). This depends on the latter being a compiler
barrier, such that the compiler does not lift the load and re-creates
the problem.

Tested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dvyukov@google.com
Cc: eranian@google.com
Cc: oleg@redhat.com
Cc: panand@redhat.com
Cc: sasha.levin@oracle.com
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160224174948.040469884@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-20 15:42:14 +09:00
Peter Zijlstra
3c1a5d344e perf: Do not double free
commit 130056275ade730e7a79c110212c8815202773ee upstream.

In case of: err_file: fput(event_file), we'll end up calling
perf_release() which in turn will free the event.

Do not then free the event _again_.

Tested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dvyukov@google.com
Cc: eranian@google.com
Cc: oleg@redhat.com
Cc: panand@redhat.com
Cc: sasha.levin@oracle.com
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160224174947.697350349@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-20 15:42:14 +09:00
Alexei Starovoitov
e8e4323262 bpf: avoid copying junk bytes in bpf_get_current_comm()
[ Upstream commit cdc4e47da8f4c32eeb6b2061a8a834f4362a12b7 ]

Lots of places in the kernel use memcpy(buf, comm, TASK_COMM_LEN); but
the result is typically passed to print("%s", buf) and extra bytes
after zero don't cause any harm.
In bpf the result of bpf_get_current_comm() is used as the part of
map key and was causing spurious hash map mismatches.
Use strlcpy() to guarantee zero-terminated string.
bpf verifier checks that output buffer is zero-initialized,
so even for short task names the output buffer don't have junk bytes.
Note it's not a security concern, since kprobe+bpf is root only.

Fixes: ffeedafbf0 ("bpf: introduce current->pid, tgid, uid, gid, comm accessors")
Reported-by: Tobias Waldekranz <tobias@waldekranz.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-20 15:42:01 +09:00
Thomas Gleixner
2a8225ef46 sched/cputime: Fix steal time accounting vs. CPU hotplug
commit e9532e69b8d1d1284e8ecf8d2586de34aec61244 upstream.

On CPU hotplug the steal time accounting can keep a stale rq->prev_steal_time
value over CPU down and up. So after the CPU comes up again the delta
calculation in steal_account_process_tick() wreckages itself due to the
unsigned math:

	 u64 steal = paravirt_steal_clock(smp_processor_id());

	 steal -= this_rq()->prev_steal_time;

So if steal is smaller than rq->prev_steal_time we end up with an insane large
value which then gets added to rq->prev_steal_time, resulting in a permanent
wreckage of the accounting. As a consequence the per CPU stats in /proc/stat
become stale.

Nice trick to tell the world how idle the system is (100%) while the CPU is
100% busy running tasks. Though we prefer realistic numbers.

None of the accounting values which use a previous value to account for
fractions is reset at CPU hotplug time. update_rq_clock_task() has a sanity
check for prev_irq_time and prev_steal_time_rq, but that sanity check solely
deals with clock warps and limits the /proc/stat visible wreckage. The
prev_time values are still wrong.

Solution is simple: Reset rq->prev_*_time when the CPU is plugged in again.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: commit 095c0aa83e "sched: adjust scheduler cpu power for stolen time"
Fixes: commit aa48380851 "sched: Remove irq time from available CPU power"
Fixes: commit e6e6685acc "KVM guest: Steal time accounting"
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1603041539490.3686@nanos
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12 09:09:05 -07:00
Lukas Wunner
4cd4ebbdf5 PM / sleep: Clear pm_suspend_global_flags upon hibernate
commit 276142730c39c9839465a36a90e5674a8c34e839 upstream.

When suspending to RAM, waking up and later suspending to disk,
we gratuitously runtime resume devices after the thaw phase.
This does not occur if we always suspend to RAM or always to disk.

pm_complete_with_resume_check(), which gets called from
pci_pm_complete() among others, schedules a runtime resume
if PM_SUSPEND_FLAG_FW_RESUME is set. The flag is set during
a suspend-to-RAM cycle. It is cleared at the beginning of
the suspend-to-RAM cycle but not afterwards and it is not
cleared during a suspend-to-disk cycle at all. Fix it.

Fixes: ef25ba0476 (PM / sleep: Add flags to indicate platform firmware involvement)
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12 09:09:05 -07:00
Steven Rostedt (Red Hat)
3dba3f672d tracing: Fix trace_printk() to print when not using bprintk()
commit 3debb0a9ddb16526de8b456491b7db60114f7b5e upstream.

The trace_printk() code will allocate extra buffers if the compile detects
that a trace_printk() is used. To do this, the format of the trace_printk()
is saved to the __trace_printk_fmt section, and if that section is bigger
than zero, the buffers are allocated (along with a message that this has
happened).

If trace_printk() uses a format that is not a constant, and thus something
not guaranteed to be around when the print happens, the compiler optimizes
the fmt out, as it is not used, and the __trace_printk_fmt section is not
filled. This means the kernel will not allocate the special buffers needed
for the trace_printk() and the trace_printk() will not write anything to the
tracing buffer.

Adding a "__used" to the variable in the __trace_printk_fmt section will
keep it around, even though it is set to NULL. This will keep the string
from being printed in the debugfs/tracing/printk_formats section as it is
not needed.

Reported-by: Vlastimil Babka <vbabka@suse.cz>
Fixes: 07d777fe8c "tracing: Add percpu buffers for trace_printk()"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12 09:09:00 -07:00
Steven Rostedt (Red Hat)
aab3ba82f8 tracing: Fix crash from reading trace_pipe with sendfile
commit a29054d9478d0435ab01b7544da4f674ab13f533 upstream.

If tracing contains data and the trace_pipe file is read with sendfile(),
then it can trigger a NULL pointer dereference and various BUG_ON within the
VM code.

There's a patch to fix this in the splice_to_pipe() code, but it's also a
good idea to not let that happen from trace_pipe either.

Link: http://lkml.kernel.org/r/1457641146-9068-1-git-send-email-rabin@rab.in

Reported-by: Rabin Vincent <rabin.vincent@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12 09:08:59 -07:00
Steven Rostedt (Red Hat)
aa60f652ee tracing: Have preempt(irqs)off trace preempt disabled functions
commit cb86e05390debcc084cfdb0a71ed4c5dbbec517d upstream.

Joel Fernandes reported that the function tracing of preempt disabled
sections was not being reported when running either the preemptirqsoff or
preemptoff tracers. This was due to the fact that the function tracer
callback for those tracers checked if irqs were disabled before tracing. But
this fails when we want to trace preempt off locations as well.

Joel explained that he wanted to see funcitons where interrupts are enabled
but preemption was disabled. The expected output he wanted:

   <...>-2265    1d.h1 3419us : preempt_count_sub <-irq_exit
   <...>-2265    1d..1 3419us : __do_softirq <-irq_exit
   <...>-2265    1d..1 3419us : msecs_to_jiffies <-__do_softirq
   <...>-2265    1d..1 3420us : irqtime_account_irq <-__do_softirq
   <...>-2265    1d..1 3420us : __local_bh_disable_ip <-__do_softirq
   <...>-2265    1..s1 3421us : run_timer_softirq <-__do_softirq
   <...>-2265    1..s1 3421us : hrtimer_run_pending <-run_timer_softirq
   <...>-2265    1..s1 3421us : _raw_spin_lock_irq <-run_timer_softirq
   <...>-2265    1d.s1 3422us : preempt_count_add <-_raw_spin_lock_irq
   <...>-2265    1d.s2 3422us : _raw_spin_unlock_irq <-run_timer_softirq
   <...>-2265    1..s2 3422us : preempt_count_sub <-_raw_spin_unlock_irq
   <...>-2265    1..s1 3423us : rcu_bh_qs <-__do_softirq
   <...>-2265    1d.s1 3423us : irqtime_account_irq <-__do_softirq
   <...>-2265    1d.s1 3423us : __local_bh_enable <-__do_softirq

There's a comment saying that the irq disabled check is because there's a
possible race that tracing_cpu may be set when the function is executed. But
I don't remember that race. For now, I added a check for preemption being
enabled too to not record the function, as there would be no race if that
was the case. I need to re-investigate this, as I'm now thinking that the
tracing_cpu will always be correct. But no harm in keeping the check for
now, except for the slight performance hit.

Link: http://lkml.kernel.org/r/1457770386-88717-1-git-send-email-agnel.joel@gmail.com

Fixes: 5e6d2b9cfa "tracing: Use one prologue for the preempt irqs off tracer function tracers"
Reported-by: Joel Fernandes <agnel.joel@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12 09:08:59 -07:00
Jann Horn
74b23f79f1 fs/coredump: prevent fsuid=0 dumps into user-controlled directories
commit 378c6520e7d29280f400ef2ceaf155c86f05a71a upstream.

This commit fixes the following security hole affecting systems where
all of the following conditions are fulfilled:

 - The fs.suid_dumpable sysctl is set to 2.
 - The kernel.core_pattern sysctl's value starts with "/". (Systems
   where kernel.core_pattern starts with "|/" are not affected.)
 - Unprivileged user namespace creation is permitted. (This is
   true on Linux >=3.8, but some distributions disallow it by
   default using a distro patch.)

Under these conditions, if a program executes under secure exec rules,
causing it to run with the SUID_DUMP_ROOT flag, then unshares its user
namespace, changes its root directory and crashes, the coredump will be
written using fsuid=0 and a path derived from kernel.core_pattern - but
this path is interpreted relative to the root directory of the process,
allowing the attacker to control where a coredump will be written with
root privileges.

To fix the security issue, always interpret core_pattern for dumps that
are written under SUID_DUMP_ROOT relative to the root directory of init.

Signed-off-by: Jann Horn <jann@thejh.net>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12 09:08:58 -07:00
Tejun Heo
36591ef19a cgroup: ignore css_sets associated with dead cgroups during migration
commit 2b021cbf3cb6208f0d40fd2f1869f237934340ed upstream.

Before 2e91fa7f6d ("cgroup: keep zombies associated with their
original cgroups"), all dead tasks were associated with init_css_set.
If a zombie task is requested for migration, while migration prep
operations would still be performed on init_css_set, the actual
migration would ignore zombie tasks.  As init_css_set is always valid,
this worked fine.

However, after 2e91fa7f6d, zombie tasks stay with the css_set it was
associated with at the time of death.  Let's say a task T associated
with cgroup A on hierarchy H-1 and cgroup B on hiearchy H-2.  After T
becomes a zombie, it would still remain associated with A and B.  If A
only contains zombie tasks, it can be removed.  On removal, A gets
marked offline but stays pinned until all zombies are drained.  At
this point, if migration is initiated on T to a cgroup C on hierarchy
H-2, migration path would try to prepare T's css_set for migration and
trigger the following.

 WARNING: CPU: 0 PID: 1576 at kernel/cgroup.c:474 cgroup_get+0x121/0x160()
 CPU: 0 PID: 1576 Comm: bash Not tainted 4.4.0-work+ #289
 ...
 Call Trace:
  [<ffffffff8127e63c>] dump_stack+0x4e/0x82
  [<ffffffff810445e8>] warn_slowpath_common+0x78/0xb0
  [<ffffffff810446d5>] warn_slowpath_null+0x15/0x20
  [<ffffffff810c33e1>] cgroup_get+0x121/0x160
  [<ffffffff810c349b>] link_css_set+0x7b/0x90
  [<ffffffff810c4fbc>] find_css_set+0x3bc/0x5e0
  [<ffffffff810c5269>] cgroup_migrate_prepare_dst+0x89/0x1f0
  [<ffffffff810c7547>] cgroup_attach_task+0x157/0x230
  [<ffffffff810c7a17>] __cgroup_procs_write+0x2b7/0x470
  [<ffffffff810c7bdc>] cgroup_tasks_write+0xc/0x10
  [<ffffffff810c4790>] cgroup_file_write+0x30/0x1b0
  [<ffffffff811c68fc>] kernfs_fop_write+0x13c/0x180
  [<ffffffff81151673>] __vfs_write+0x23/0xe0
  [<ffffffff81152494>] vfs_write+0xa4/0x1a0
  [<ffffffff811532d4>] SyS_write+0x44/0xa0
  [<ffffffff814af2d7>] entry_SYSCALL_64_fastpath+0x12/0x6f

It doesn't make sense to prepare migration for css_sets pointing to
dead cgroups as they are guaranteed to contain only zombies which are
ignored later during migration.  This patch makes cgroup destruction
path mark all affected css_sets as dead and updates the migration path
to ignore them during preparation.

Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 2e91fa7f6d ("cgroup: keep zombies associated with their original cgroups")
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12 09:08:54 -07:00
Joshua Hunt
5f4a82d5e3 watchdog: don't run proc_watchdog_update if new value is same as old
commit a1ee1932aa6bea0bb074f5e3ced112664e4637ed upstream.

While working on a script to restore all sysctl params before a series of
tests I found that writing any value into the
/proc/sys/kernel/{nmi_watchdog,soft_watchdog,watchdog,watchdog_thresh}
causes them to call proc_watchdog_update().

  NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter.
  NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter.
  NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter.
  NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter.

There doesn't appear to be a reason for doing this work every time a write
occurs, so only do it when the values change.

Signed-off-by: Josh Hunt <johunt@akamai.com>
Acked-by: Don Zickus <dzickus@redhat.com>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12 09:08:54 -07:00
Chris Friesen
af080e5802 sched/cputime: Fix steal_account_process_tick() to always return jiffies
commit f9c904b7613b8b4c85b10cd6b33ad41b2843fa9d upstream.

The callers of steal_account_process_tick() expect it to return
whether a jiffy should be considered stolen or not.

Currently the return value of steal_account_process_tick() is in
units of cputime, which vary between either jiffies or nsecs
depending on CONFIG_VIRT_CPU_ACCOUNTING_GEN.

If cputime has nsecs granularity and there is a tiny amount of
stolen time (a few nsecs, say) then we will consider the entire
tick stolen and will not account the tick on user/system/idle,
causing /proc/stats to show invalid data.

The fix is to change steal_account_process_tick() to accumulate
the stolen time and only account it once it's worth a jiffy.

(Thanks to Frederic Weisbecker for suggestions to fix a bug in my
first version of the patch.)

Signed-off-by: Chris Friesen <chris.friesen@windriver.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/56DBBDB8.40305@mail.usask.ca
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12 09:08:35 -07:00
Alexander Shishkin
37014e0c5c perf/core: Fix perf_sched_count derailment
commit 927a5570855836e5d5859a80ce7e91e963545e8f upstream.

The error path in perf_event_open() is such that asking for a sampling
event on a PMU that doesn't generate interrupts will end up in dropping
the perf_sched_count even though it hasn't been incremented for this
event yet.

Given a sufficient amount of these calls, we'll end up disabling
scheduler's jump label even though we'd still have active events in the
system, thereby facilitating the arrival of the infernal regions upon us.

I'm fixing this by moving account_event() inside perf_event_alloc().

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/1456917854-29427-1-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12 09:08:34 -07:00
Rusty Russell
610dde5afb modules: fix longstanding /proc/kallsyms vs module insertion race.
commit 8244062ef1e54502ef55f54cced659913f244c3e upstream.

For CONFIG_KALLSYMS, we keep two symbol tables and two string tables.
There's one full copy, marked SHF_ALLOC and laid out at the end of the
module's init section.  There's also a cut-down version that only
contains core symbols and strings, and lives in the module's core
section.

After module init (and before we free the module memory), we switch
the mod->symtab, mod->num_symtab and mod->strtab to point to the core
versions.  We do this under the module_mutex.

However, kallsyms doesn't take the module_mutex: it uses
preempt_disable() and rcu tricks to walk through the modules, because
it's used in the oops path.  It's also used in /proc/kallsyms.
There's nothing atomic about the change of these variables, so we can
get the old (larger!) num_symtab and the new symtab pointer; in fact
this is what I saw when trying to reproduce.

By grouping these variables together, we can use a
carefully-dereferenced pointer to ensure we always get one or the
other (the free of the module init section is already done in an RCU
callback, so that's safe).  We allocate the init one at the end of the
module init section, and keep the core one inside the struct module
itself (it could also have been allocated at the end of the module
core, but that's probably overkill).

[ Rebased for 4.4-stable and older, because the following changes aren't
  in the older trees:
  - e0224418516b4d8a6c2160574bac18447c354ef0: adds arg to is_core_symbol
  - 7523e4dc5057e157212b4741abd6256e03404cf1: module_init/module_core/init_size/core_size
    become init_layout.base/core_layout.base/init_layout.size/core_layout.size.
]

Reported-by: Weilong Chen <chenweilong@huawei.com>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=111541
Cc: stable@kernel.org
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-09 15:34:56 -08:00
Steven Rostedt (Red Hat)
180c86a4f0 tracing: Do not have 'comm' filter override event 'comm' field
commit e57cbaf0eb006eaa207395f3bfd7ce52c1b5539c upstream.

Commit 9f61668073 "tracing: Allow triggers to filter for CPU ids and
process names" added a 'comm' filter that will filter events based on the
current tasks struct 'comm'. But this now hides the ability to filter events
that have a 'comm' field too. For example, sched_migrate_task trace event.
That has a 'comm' field of the task to be migrated.

 echo 'comm == "bash"' > events/sched_migrate_task/filter

will now filter all sched_migrate_task events for tasks named "bash" that
migrates other tasks (in interrupt context), instead of seeing when "bash"
itself gets migrated.

This fix requires a couple of changes.

1) Change the look up order for filter predicates to look at the events
   fields before looking at the generic filters.

2) Instead of basing the filter function off of the "comm" name, have the
   generic "comm" filter have its own filter_type (FILTER_COMM). Test
   against the type instead of the name to assign the filter function.

3) Add a new "COMM" filter that works just like "comm" but will filter based
   on the current task, even if the trace event contains a "comm" field.

Do the same for "cpu" field, adding a FILTER_CPU and a filter "CPU".

Fixes: 9f61668073 "tracing: Allow triggers to filter for CPU ids and process names"
Reported-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-09 15:34:52 -08:00
Simon Guinot
f634ac98bd kernel/resource.c: fix muxed resource handling in __request_region()
commit 59ceeaaf355fa0fb16558ef7c24413c804932ada upstream.

In __request_region, if a conflict with a BUSY and MUXED resource is
detected, then the caller goes to sleep and waits for the resource to be
released.  A pointer on the conflicting resource is kept.  At wake-up
this pointer is used as a parent to retry to request the region.

A first problem is that this pointer might well be invalid (if for
example the conflicting resource have already been freed).  Another
problem is that the next call to __request_region() fails to detect a
remaining conflict.  The previously conflicting resource is passed as a
parameter and __request_region() will look for a conflict among the
children of this resource and not at the resource itself.  It is likely
to succeed anyway, even if there is still a conflict.

Instead, the parent of the conflicting resource should be passed to
__request_region().

As a fix, this patch doesn't update the parent resource pointer in the
case we have to wait for a muxed region right after.

Reported-and-tested-by: Vincent Pelletier <plr.vincent@gmail.com>
Signed-off-by: Simon Guinot <simon.guinot@sequanux.org>
Tested-by: Vincent Donnefort <vdonnefort@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-03 15:07:29 -08:00
Steven Rostedt (Red Hat)
36b53e8b2a tracing: Fix showing function event in available_events
commit d045437a169f899dfb0f6f7ede24cc042543ced9 upstream.

The ftrace:function event is only displayed for parsing the function tracer
data. It is not used to enable function tracing, and does not include an
"enable" file in its event directory.

Originally, this event was kept separate from other events because it did
not have a ->reg parameter. But perf added a "reg" parameter for its use
which caused issues, because it made the event available to functions where
it was not compatible for.

Commit 9b63776fa3 "tracing: Do not enable function event with enable"
added a TRACE_EVENT_FL_IGNORE_ENABLE flag that prevented the function event
from being enabled by normal trace events. But this commit missed keeping
the function event from being displayed by the "available_events" directory,
which is used to show what events can be enabled by set_event.

One documented way to enable all events is to:

 cat available_events > set_event

But because the function event is displayed in the available_events, this
now causes an INVALID error:

 cat: write error: Invalid argument

Reported-by: Chunyu Hu <chuhu@redhat.com>
Fixes: 9b63776fa3 "tracing: Do not enable function event with enable"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-03 15:07:29 -08:00
Tejun Heo
4cbd196324 cgroup: make sure a parent css isn't offlined before its children
commit aa226ff4a1ce79f229c6b7a4c0a14e17fececd01 upstream.

There are three subsystem callbacks in css shutdown path -
css_offline(), css_released() and css_free().  Except for
css_released(), cgroup core didn't guarantee the order of invocation.
css_offline() or css_free() could be called on a parent css before its
children.  This behavior is unexpected and led to bugs in cpu and
memory controller.

This patch updates offline path so that a parent css is never offlined
before its children.  Each css keeps online_cnt which reaches zero iff
itself and all its children are offline and offline_css() is invoked
only after online_cnt reaches zero.

This fixes the memory controller bug and allows the fix for cpu
controller.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reported-by: Brian Christiansen <brian.o.christiansen@gmail.com>
Link: http://lkml.kernel.org/g/5698A023.9070703@de.ibm.com
Link: http://lkml.kernel.org/g/CAKB58ikDkzc8REt31WBkD99+hxNzjK4+FBmhkgS+NVrC9vjMSg@mail.gmail.com
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-03 15:07:28 -08:00
Tejun Heo
fff4dc84e7 cpuset: make mm migration asynchronous
commit e93ad19d05648397ef3bcb838d26aec06c245dc0 upstream.

If "cpuset.memory_migrate" is set, when a process is moved from one
cpuset to another with a different memory node mask, pages in used by
the process are migrated to the new set of nodes.  This was performed
synchronously in the ->attach() callback, which is synchronized
against process management.  Recently, the synchronization was changed
from per-process rwsem to global percpu rwsem for simplicity and
optimization.

Combined with the synchronous mm migration, this led to deadlocks
because mm migration could schedule a work item which may in turn try
to create a new worker blocking on the process management lock held
from cgroup process migration path.

This heavy an operation shouldn't be performed synchronously from that
deep inside cgroup migration in the first place.  This patch punts the
actual migration to an ordered workqueue and updates cgroup process
migration and cpuset config update paths to flush the workqueue after
all locks are released.  This way, the operations still seem
synchronous to userland without entangling mm migration with process
management synchronization.  CPU hotplug can also invoke mm migration
but there's no reason for it to wait for mm migrations and thus
doesn't synchronize against their completions.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-03 15:07:28 -08:00
Tejun Heo
6684710434 Revert "workqueue: make sure delayed work run in local cpu"
commit 041bd12e272c53a35c54c13875839bcb98c999ce upstream.

This reverts commit 874bbfe600.

Workqueue used to implicity guarantee that work items queued without
explicit CPU specified are put on the local CPU.  Recent changes in
timer broke the guarantee and led to vmstat breakage which was fixed
by 176bed1de5 ("vmstat: explicitly schedule per-cpu work on the CPU
we need it to run on").

vmstat is the most likely to expose the issue and it's quite possible
that there are other similar problems which are a lot more difficult
to trigger.  As a preventive measure, 874bbfe600 ("workqueue: make
sure delayed work run in local cpu") was applied to restore the local
CPU guarnatee.  Unfortunately, the change exposed a bug in timer code
which got fixed by 22b886dd10 ("timers: Use proper base migration in
add_timer_on()").  Due to code restructuring, the commit couldn't be
backported beyond certain point and stable kernels which only had
874bbfe600 started crashing.

The local CPU guarantee was accidental more than anything else and we
want to get rid of it anyway.  As, with the vmstat case fixed,
874bbfe600 is causing more problems than it's fixing, it has been
decided to take the chance and officially break the guarantee by
reverting the commit.  A debug feature will be added to force foreign
CPU assignment to expose cases relying on the guarantee and fixes for
the individual cases will be backported to stable as necessary.

Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 874bbfe600 ("workqueue: make sure delayed work run in local cpu")
Link: http://lkml.kernel.org/g/20160120211926.GJ10810@quack.suse.cz
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Henrique de Moraes Holschuh <hmh@hmh.eng.br>
Cc: Daniel Bilik <daniel.bilik@neosystem.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shli@fb.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Daniel Bilik <daniel.bilik@neosystem.cz>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-03 15:07:27 -08:00
Tejun Heo
21b34b4574 workqueue: handle NUMA_NO_NODE for unbound pool_workqueue lookup
commit d6e022f1d207a161cd88e08ef0371554680ffc46 upstream.

When looking up the pool_workqueue to use for an unbound workqueue,
workqueue assumes that the target CPU is always bound to a valid NUMA
node.  However, currently, when a CPU goes offline, the mapping is
destroyed and cpu_to_node() returns NUMA_NO_NODE.

This has always been broken but hasn't triggered often enough before
874bbfe600 ("workqueue: make sure delayed work run in local cpu").
After the commit, workqueue forcifully assigns the local CPU for
delayed work items without explicit target CPU to fix a different
issue.  This widens the window where CPU can go offline while a
delayed work item is pending causing delayed work items dispatched
with target CPU set to an already offlined CPU.  The resulting
NUMA_NO_NODE mapping makes workqueue try to queue the work item on a
NULL pool_workqueue and thus crash.

While 874bbfe600 has been reverted for a different reason making the
bug less visible again, it can still happen.  Fix it by mapping
NUMA_NO_NODE to the default pool_workqueue from unbound_pwq_by_node().
This is a temporary workaround.  The long term solution is keeping CPU
-> NODE mapping stable across CPU off/online cycles which is being
worked on.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Link: http://lkml.kernel.org/g/1454424264.11183.46.camel@gmail.com
Link: http://lkml.kernel.org/g/1453702100-2597-1-git-send-email-tangchen@cn.fujitsu.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-03 15:07:27 -08:00
Wanpeng Li
d024d46ec5 tick/nohz: Set the correct expiry when switching to nohz/lowres mode
commit 1ca8ec532fc2d986f1f4a319857bb18e0c9739b4 upstream.

commit 0ff53d0964 sets the next tick interrupt to the last jiffies update,
i.e. in the past, because the forward operation is invoked before the set
operation. There is no resulting damage (yet), but we get an extra pointless
tick interrupt.

Revert the order so we get the next tick interrupt in the future.

Fixes: commit 0ff53d0964 "tick: sched: Force tick interrupt and get rid of softirq magic"
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1453893967-3458-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-03 15:07:26 -08:00
Jann Horn
df86161e44 seccomp: always propagate NO_NEW_PRIVS on tsync
commit 103502a35cfce0710909da874f092cb44823ca03 upstream.

Before this patch, a process with some permissive seccomp filter
that was applied by root without NO_NEW_PRIVS was able to add
more filters to itself without setting NO_NEW_PRIVS by setting
the new filter from a throwaway thread with NO_NEW_PRIVS.

Signed-off-by: Jann Horn <jann@thejh.net>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-03 15:07:25 -08:00