Hook up the entry trampoline to our exception vectors so that all
exceptions from and returns to EL0 go via the trampoline, which swizzles
the vector base register accordingly. Transitioning to and from the
kernel clobbers x30, so we use tpidrro_el0 and far_el1 as scratch
registers for native tasks.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
(cherry picked from git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git
commit 4bf3286d29f3a88425d8d8cd53428cbb8f865f04)
Change-Id: Id1e175bdaa0ec2bf8e59f941502183907902a710
[ghackmann@google.com: adjust context, replacing
alternative_if_not ARM64_WORKAROUND_845719 block with upstream version]
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
We will need to treat exceptions from EL0 differently in kernel_ventry,
so rework the macro to take the exception level as an argument and
construct the branch target using that.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
(cherry picked from git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git
commit 5b1f7fe41909cde40decad9f0e8ee585777a0538)
Change-Id: Iab10d2237e24c008d05856a4bd953504de6e10a8
[ghackmann@google.com: adjust context and kernel entry point names]
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
The exception entry trampoline needs to be mapped at the same virtual
address in both the trampoline page table (which maps nothing else)
and also the kernel page table, so that we can swizzle TTBR1_EL1 on
exceptions from and return to EL0.
This patch maps the trampoline at a fixed virtual address in the fixmap
area of the kernel virtual address space, which allows the kernel proper
to be randomized with respect to the trampoline when KASLR is enabled.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
(cherry picked from git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git
commit 51a0048beb449682d632d0af52a515adb9f9882e)
Change-Id: I31b2dcdf4db36c3e31181fe43ccb984f9efb6ac6
[ghackmann@google.com:
- adjust context
- tweak __create_pgd_mapping() call to match 4.4 APIs]
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
To allow unmapping of the kernel whilst running at EL0, we need to
point the exception vectors at an entry trampoline that can map/unmap
the kernel on entry/exit respectively.
This patch adds the trampoline page, although it is not yet plugged
into the vector table and is therefore unused.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
(cherry picked from git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git
commit c7b9adaf85f818d747eeff5145eb4095ccd587fb)
Change-Id: Idd27ab26f1ec1db2ff756fc33ebb782201806f7c
[ghackmann@google.com: adjust context]
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Since an mm has both a kernel and a user ASID, we need to ensure that
broadcast TLB maintenance targets both address spaces so that things
like CoW continue to work with the uaccess primitives in the kernel.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
(cherry picked from git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git
commit 9b0de864b5bc298ea53005ad812f3386f81aee9c)
Change-Id: I2369f242a6461795349568cc68ae6324244e6709
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
In order for code such as TLB invalidation to operate efficiently when
the decision to map the kernel at EL0 is determined at runtime, this
patch introduces a helper function, arm64_kernel_unmapped_at_el0, to
determine whether or not the kernel is mapped whilst running in userspace.
Currently, this just reports the value of CONFIG_UNMAP_KERNEL_AT_EL0,
but will later be hooked up to a fake CPU capability using a static key.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
(cherry picked from git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git
commit fc0e1299da548b32440051f58f08e0c1eb7edd0b)
Change-Id: I0f48eadf55ee97f09553380a62d9fffe54d9dc83
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
In preparation for separate kernel/user ASIDs, allocate them in pairs
for each mm_struct. The bottom bit distinguishes the two: if it is set,
then the ASID will map only userspace.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
(cherry picked from git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git
commit 0c8ea531b7740754cf374ca8b7510655f569c5e3)
Change-Id: I283c99292b165e04ff1b6b9cb5806805974ae915
[ghackmann@google.com: adjust context]
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
With the ASID now installed in TTBR1, we can re-enable ARM64_SW_TTBR0_PAN
by ensuring that we switch to a reserved ASID of zero when disabling
user access and restore the active user ASID on the uaccess enable path.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
(cherry picked from git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git
commit 27a921e75711d924617269e0ba4adb8bae9fd0d1)
Change-Id: I3b06e02766753c59fac975363a2ead5c5e45b8f3
[ghackmann@google.com: adjust context, applying asm-uaccess.h changes to
uaccess.h]
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
In preparation for mapping kernelspace and userspace with different
ASIDs, move the ASID to TTBR1 and update switch_mm to context-switch
TTBR0 via an invalid mapping (the zero page).
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
(cherry picked from git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git
commit 7655abb953860485940d4de74fb45a8192149bb6)
Change-Id: Id8a18e16dfab5c8b7bc31174b14100142a6af3b0
[ghackmann@google.com: adjust context]
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
We're about to rework the way ASIDs are allocated, switch_mm is
implemented and low-level kernel entry/exit is handled, so keep the
ARM64_SW_TTBR0_PAN code out of the way whilst we do the heavy lifting.
It will be re-enabled in a subsequent patch.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
(cherry picked from git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git
commit 376133b7edc20f237a42e4c72415cc9e8c0a9704)
Change-Id: I38d3f7a66b1d52abcea3e23b1e80277b03c6dbe0
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
In preparation for unmapping the kernel whilst running in userspace,
make the kernel mappings non-global so we can avoid expensive TLB
invalidation on kernel exit to userspace.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
(cherry picked from git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git
commit e046eb0c9bf26d94be9e4592c00c7a78b0fa9bfd)
Change-Id: If53d6db042f8fefff3ecf8a7658291e1f1ac659f
[ghackmann@google.com: apply pgtable-prot.h changes to pgtable.h instead]
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
In subsequent patches, we will detect stack overflow in our exception
entry code, by verifying the SP after it has been decremented to make
space for the exception regs.
This verification code is small, and we can minimize its impact by
placing it directly in the vectors. To avoid redundant modification of
the SP, we also need to move the initial decrement of the SP into the
vectors.
As a preparatory step, this patch introduces kernel_ventry, which
performs this decrement, and updates the entry code accordingly.
Subsequent patches will fold SP verification into kernel_ventry.
There should be no functional change as a result of this patch.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[Mark: turn into prep patch, expand commit msg]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
(cherry picked from commit b11e5759bfac0c474d95ec4780b1566350e64cad)
Change-Id: I5883da81b374498f2f9e16ccb596b22c5568f2fe
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
As with dsb() and isb(), add a __tlbi() helper so that we can avoid
distracting asm boilerplate every time we want a TLBI. As some TLBI
operations take an argument while others do not, some pre-processor is
used to handle these two cases with different assembly blocks.
The existing tlbflush.h code is moved over to use the helper.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
[ rename helper to __tlbi, update comment and commit log ]
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
(cherry picked from commit db68f3e7594aca77632d56c449bd36c6c931d59a)
Change-Id: I9b94aff5efd20e3485dfa3a2780e1f8130e60d52
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAlpPj0wACgkQONu9yGCS
aT5QOhAAu3PoT3472I7zuWDUG0KQo5r0wdUO+YPW31VIHrxQ2H3sxR44rSHc5jW/
tTg2TIYNBkNoj4jJDJ9J7f6PSnN1vGFglFW4GzxE3cr2+W7u5M5ex8yCYMcBIY9U
56hbyqX5lf5KjGWJiQThwYsMBokrBJW2igAFN3cW39nNABhl0W39kiysGA9vbNrV
+QMA4+ZADA2EeIRcdJmj8uc/cez/7sGAfrSktvATkI+HFamnTs0mrx9cl0eQKvjm
y5PCxYUCbi4kqD4WM+UCYO3zpUD+r4iMDXwXBwLWkFvbumY4mVTItP+gq5M4Fb1g
MSauGUGH7BDsT9gspricCMcAmjcTn6hth7/7/ZhlNq3NZv89pOquhpE0JOSAmYbA
P4WaIRRWwpVrRt+THU7vZpAQWpFSwGmtE7tBfPMt2J7zqY3lMYmO3DoA+gejw3CV
igbvmV0UY2uYSFnjawUUJ+k+ggYfGyRkUl2DfcllPhZFqE1XEi3NyjI0wi8vtXTd
UlrU55TqsldCw1bjXH3lWrpoNybWvqUD2a249ZVs/h06Q5NKwNL8mTye+2BBQtCP
QzAqHYbkBKv/f8M6Kg+HtTzgqUbWxVCeQTWFXHMAPVo4bCwGvVGrXbGJIj15lBuQ
GWqc3dt69zxpn1tlcRHKH0P3KnkC67dARtY+8F8+D+HAHVY71Bg=
=Kpwd
-----END PGP SIGNATURE-----
Merge 4.4.110 into android-4.4
Changes in 4.4.110
x86/boot: Add early cmdline parsing for options with arguments
KAISER: Kernel Address Isolation
kaiser: merged update
kaiser: do not set _PAGE_NX on pgd_none
kaiser: stack map PAGE_SIZE at THREAD_SIZE-PAGE_SIZE
kaiser: fix build and FIXME in alloc_ldt_struct()
kaiser: KAISER depends on SMP
kaiser: fix regs to do_nmi() ifndef CONFIG_KAISER
kaiser: fix perf crashes
kaiser: ENOMEM if kaiser_pagetable_walk() NULL
kaiser: tidied up asm/kaiser.h somewhat
kaiser: tidied up kaiser_add/remove_mapping slightly
kaiser: kaiser_remove_mapping() move along the pgd
kaiser: cleanups while trying for gold link
kaiser: name that 0x1000 KAISER_SHADOW_PGD_OFFSET
kaiser: delete KAISER_REAL_SWITCH option
kaiser: vmstat show NR_KAISERTABLE as nr_overhead
kaiser: enhanced by kernel and user PCIDs
kaiser: load_new_mm_cr3() let SWITCH_USER_CR3 flush user
kaiser: PCID 0 for kernel and 128 for user
kaiser: x86_cr3_pcid_noflush and x86_cr3_pcid_user
kaiser: paranoid_entry pass cr3 need to paranoid_exit
kaiser: _pgd_alloc() without __GFP_REPEAT to avoid stalls
kaiser: fix unlikely error in alloc_ldt_struct()
kaiser: add "nokaiser" boot option, using ALTERNATIVE
x86/kaiser: Rename and simplify X86_FEATURE_KAISER handling
x86/kaiser: Check boottime cmdline params
kaiser: use ALTERNATIVE instead of x86_cr3_pcid_noflush
kaiser: drop is_atomic arg to kaiser_pagetable_walk()
kaiser: asm/tlbflush.h handle noPGE at lower level
kaiser: kaiser_flush_tlb_on_return_to_user() check PCID
x86/paravirt: Dont patch flush_tlb_single
x86/kaiser: Reenable PARAVIRT
kaiser: disabled on Xen PV
x86/kaiser: Move feature detection up
KPTI: Rename to PAGE_TABLE_ISOLATION
KPTI: Report when enabled
x86, vdso, pvclock: Simplify and speed up the vdso pvclock reader
x86/vdso: Get pvclock data from the vvar VMA instead of the fixmap
x86/kasan: Clear kasan_zero_page after TLB flush
kaiser: Set _PAGE_NX only if supported
Linux 4.4.110
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
commit 69e0210fd01ff157d332102219aaf5c26ca8069b upstream.
Currently we clear kasan_zero_page before __flush_tlb_all(). This
works with current implementation of native_flush_tlb[_global]()
because it doesn't cause do any writes to kasan shadow memory.
But any subtle change made in native_flush_tlb*() could break this.
Also current code seems doesn't work for paravirt guests (lguest).
Only after the TLB flush we can be sure that kasan_zero_page is not
used as early shadow anymore (instrumented code will not write to it).
So it should cleared it only after the TLB flush.
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/1452516679-32040-2-git-send-email-aryabinin@virtuozzo.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Jamie Iles <jamie.iles@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6b078f5de7fc0851af4102493c7b5bb07e49c4cb upstream.
The pvclock vdso code was too abstracted to understand easily
and excessively paranoid. Simplify it for a huge speedup.
This opens the door for additional simplifications, as the vdso
no longer accesses the pvti for any vcpu other than vcpu 0.
Before, vclock_gettime using kvm-clock took about 45ns on my
machine. With this change, it takes 29ns, which is almost as
fast as the pure TSC implementation.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/6b51dcc41f1b101f963945c5ec7093d72bdac429.1449702533.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Jamie Iles <jamie.iles@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Kaiser cannot be used on paravirtualized MMUs (namely reading and writing CR3).
This does not work with KAISER as the CR3 switch from and to user space PGD
would require to map the whole XEN_PV machinery into both.
More importantly, enabling KAISER on Xen PV doesn't make too much sense, as PV
guests use distinct %cr3 values for kernel and user already.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Now that the required bits have been addressed, reenable
PARAVIRT.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Let kaiser_flush_tlb_on_return_to_user() do the X86_FEATURE_PCID
check, instead of each caller doing it inline first: nobody needs
to optimize for the noPCID case, it's clearer this way, and better
suits later changes. Replace those no-op X86_CR3_PCID_KERN_FLUSH lines
by a BUILD_BUG_ON() in load_new_mm_cr3(), in case something changes.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
I found asm/tlbflush.h too twisty, and think it safer not to avoid
__native_flush_tlb_global_irq_disabled() in the kaiser_enabled case,
but instead let it handle kaiser_enabled along with cr3: it can just
use __native_flush_tlb() for that, no harm in re-disabling preemption.
(This is not the same change as Kirill and Dave have suggested for
upstream, flipping PGE in cr4: that's neat, but needs a cpu_has_pge
check; cr3 is enough for kaiser, and thought to be cheaper than cr4.)
Also delete the X86_FEATURE_INVPCID invpcid_flush_all_nonglobals()
preference from __native_flush_tlb(): unlike the invpcid_flush_all()
preference in __native_flush_tlb_global(), it's not seen in upstream
4.14, and was recently reported to be surprisingly slow.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
I have not observed a might_sleep() warning from setup_fixmap_gdt()'s
use of kaiser_add_mapping() in our tree (why not?), but like upstream
we have not provided a way for that to pass is_atomic true down to
kaiser_pagetable_walk(), and at startup it's far from a likely source
of trouble: so just delete the walk's is_atomic arg and might_sleep().
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Now that we're playing the ALTERNATIVE game, use that more efficient
method: instead of user-mapping an extra page, and reading an extra
cacheline each time for x86_cr3_pcid_noflush.
Neel has found that __stringify(bts $X86_CR3_PCID_NOFLUSH_BIT, %rax)
is a working substitute for the "bts $63, %rax" in these ALTERNATIVEs;
but the one line with $63 in looks clearer, so let's stick with that.
Worried about what happens with an ALTERNATIVE between the jump and
jump label in another ALTERNATIVE? I was, but have checked the
combinations in SWITCH_KERNEL_CR3_NO_STACK at entry_SYSCALL_64,
and it does a good job.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
AMD (and possibly other vendors) are not affected by the leak
KAISER is protecting against.
Keep the "nopti" for traditional reasons and add pti=<on|off|auto>
like upstream.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Concentrate it in arch/x86/mm/kaiser.c and use the upstream string "nopti".
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Added "nokaiser" boot option: an early param like "noinvpcid".
Most places now check int kaiser_enabled (#defined 0 when not
CONFIG_KAISER) instead of #ifdef CONFIG_KAISER; but entry_64.S
and entry_64_compat.S are using the ALTERNATIVE technique, which
patches in the preferred instructions at runtime. That technique
is tied to x86 cpu features, so X86_FEATURE_KAISER is fabricated.
Prior to "nokaiser", Kaiser #defined _PAGE_GLOBAL 0: revert that,
but be careful with both _PAGE_GLOBAL and CR4.PGE: setting them when
nokaiser like when !CONFIG_KAISER, but not setting either when kaiser -
neither matters on its own, but it's hard to be sure that _PAGE_GLOBAL
won't get set in some obscure corner, or something add PGE into CR4.
By omitting _PAGE_GLOBAL from __supported_pte_mask when kaiser_enabled,
all page table setup which uses pte_pfn() masks it out of the ptes.
It's slightly shameful that the same declaration versus definition of
kaiser_enabled appears in not one, not two, but in three header files
(asm/kaiser.h, asm/pgtable.h, asm/tlbflush.h). I felt safer that way,
than with #including any of those in any of the others; and did not
feel it worth an asm/kaiser_enabled.h - kernel/cpu/common.c includes
them all, so we shall hear about it if they get out of synch.
Cleanups while in the area: removed the silly #ifdef CONFIG_KAISER
from kaiser.c; removed the unused native_get_normal_pgd(); removed
the spurious reg clutter from SWITCH_*_CR3 macro stubs; corrected some
comments. But more interestingly, set CR4.PSE in secondary_startup_64:
the manual is clear that it does not matter whether it's 0 or 1 when
4-level-pts are enabled, but I was distracted to find cr4 different on
BSP and auxiliaries - BSP alone was adding PSE, in probe_page_size_mask().
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
An error from kaiser_add_mapping() here is not at all likely, but
Eric Biggers rightly points out that __free_ldt_struct() relies on
new_ldt->size being initialized: move that up.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Synthetic filesystem mempressure testing has shown softlockups, with
hour-long page allocation stalls, and pgd_alloc() trying for order:1
with __GFP_REPEAT in one of the backtraces each time.
That's _pgd_alloc() going for a Kaiser double-pgd, using the __GFP_REPEAT
common to all page table allocations, but actually having no effect on
order:0 (see should_alloc_oom() and should_continue_reclaim() in this
tree, but beware that ports to another tree might behave differently).
Order:1 stack allocation has been working satisfactorily without
__GFP_REPEAT forever, and page table allocation only asks __GFP_REPEAT
for awkward occasions in a long-running process: it's not appropriate
at fork or exec time, and seems to be doing much more harm than good:
getting those contiguous pages under very heavy mempressure can be
hard (though even without it, Kaiser does generate more mempressure).
Mask out that __GFP_REPEAT inside _pgd_alloc(). Why not take it out
of the PGALLOG_GFP altogether, as v4.7 commit a3a9a59d2067 ("x86: get
rid of superfluous __GFP_REPEAT") did? Because I think that might
make a difference to our page table memcg charging, which I'd prefer
not to interfere with at this time.
hughd adds: __alloc_pages_slowpath() in the 4.4.89-stable tree handles
__GFP_REPEAT a little differently than in prod kernel or 3.18.72-stable,
so it may not always be exactly a no-op on order:0 pages, as said above;
but I think still appropriate to omit it from Kaiser or non-Kaiser pgd.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Neel Natu points out that paranoid_entry() was wrong to assume that
an entry that did not need swapgs would not need SWITCH_KERNEL_CR3:
paranoid_entry (used for debug breakpoint, int3, double fault or MCE;
though I think it's only the MCE case that is cause for concern here)
can break in at an awkward time, between cr3 switch and swapgs, but
its handling always needs kernel gs and kernel cr3.
Easy to fix in itself, but paranoid_entry() also needs to convey to
paranoid_exit() (and my reading of macro idtentry says paranoid_entry
and paranoid_exit are always paired) how to restore the prior state.
The swapgs state is already conveyed by %ebx (0 or 1), so extend that
also to convey when SWITCH_USER_CR3 will be needed (2 or 3).
(Yes, I'd much prefer that 0 meant no swapgs, whereas it's the other
way round: and a convention shared with error_entry() and error_exit(),
which I don't want to touch. Perhaps I should have inverted the bit
for switch cr3 too, but did not.)
paranoid_exit() would be straightforward, except for TRACE_IRQS: it
did TRACE_IRQS_IRETQ when doing swapgs, but TRACE_IRQS_IRETQ_DEBUG
when not: which is it supposed to use when SWITCH_USER_CR3 is split
apart from that? As best as I can determine, commit 5963e317b1
("ftrace/x86: Do not change stacks in DEBUG when calling lockdep")
missed the swapgs case, and should have used TRACE_IRQS_IRETQ_DEBUG
there too (the discrepancy has nothing to do with the liberal use
of _NO_STACK and _UNSAFE_STACK hereabouts: TRACE_IRQS_OFF_DEBUG has
just been used in all cases); discrepancy lovingly preserved across
several paranoid_exit() cleanups, but I'm now removing it.
Neel further indicates that to use SWITCH_USER_CR3_NO_STACK there in
paranoid_exit() is now not only unnecessary but unsafe: might corrupt
syscall entry's unsafe_stack_register_backup of %rax. Just use
SWITCH_USER_CR3: and delete SWITCH_USER_CR3_NO_STACK altogether,
before we make the mistake of using it again.
hughd adds: this commit fixes an issue in the Kaiser-without-PCIDs
part of the series, and ought to be moved earlier, if you decided
to make a release of Kaiser-without-PCIDs.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Mostly this commit is just unshouting X86_CR3_PCID_KERN_VAR and
X86_CR3_PCID_USER_VAR: we usually name variables in lower-case.
But why does x86_cr3_pcid_noflush need to be __aligned(PAGE_SIZE)?
Ah, it's a leftover from when kaiser_add_user_map() once complained
about mapping the same page twice. Make it __read_mostly instead.
(I'm a little uneasy about all the unrelated data which shares its
page getting user-mapped too, but that was so before, and not a big
deal: though we call it user-mapped, it's not mapped with _PAGE_USER.)
And there is a little change around the two calls to do_nmi().
Previously they set the NOFLUSH bit (if PCID supported) when
forcing to kernel context before do_nmi(); now they also have the
NOFLUSH bit set (if PCID supported) when restoring context after:
nothing done in do_nmi() should require a TLB to be flushed here.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Why was 4 chosen for kernel PCID and 6 for user PCID?
No good reason in a backport where PCIDs are only used for Kaiser.
If we continue with those, then we shall need to add Andy Lutomirski's
4.13 commit 6c690ee1039b ("x86/mm: Split read_cr3() into read_cr3_pa()
and __read_cr3()"), which deals with the problem of read_cr3() callers
finding stray bits in the cr3 that they expected to be page-aligned;
and for hibernation, his 4.14 commit f34902c5c6c0 ("x86/hibernate/64:
Mask off CR3's PCID bits in the saved CR3").
But if 0 is used for kernel PCID, then there's no need to add in those
commits - whenever the kernel looks, it sees 0 in the lower bits; and
0 for kernel seems an obvious choice.
And I naughtily propose 128 for user PCID. Because there's a place
in _SWITCH_TO_USER_CR3 where it takes note of the need for TLB FLUSH,
but needs to reset that to NOFLUSH for the next occasion. Currently
it does so with a "movb $(0x80)" into the high byte of the per-cpu
quadword, but that will cause a machine without PCID support to crash.
Now, if %al just happened to have 0x80 in it at that point, on a
machine with PCID support, but 0 on a machine without PCID support...
(That will go badly wrong once the pgd can be at a physical address
above 2^56, but even with 5-level paging, physical goes up to 2^52.)
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We have many machines (Westmere, Sandybridge, Ivybridge) supporting
PCID but not INVPCID: on these load_new_mm_cr3() simply crashed.
Flushing user context inside load_new_mm_cr3() without the use of
invpcid is difficult: momentarily switch from kernel to user context
and back to do so? I'm not sure whether that can be safely done at
all, and would risk polluting user context with kernel internals,
and kernel context with stale user externals.
Instead, follow the hint in the comment that was there: change
X86_CR3_PCID_USER_VAR to be a per-cpu variable, then load_new_mm_cr3()
can leave a note in it, for SWITCH_USER_CR3 on return to userspace to
flush user context TLB, instead of default X86_CR3_PCID_USER_NOFLUSH.
Which works well enough that there's no need to do it this way only
when invpcid is unsupported: it's a good alternative to invpcid here.
But there's a couple of inlines in asm/tlbflush.h that need to do the
same trick, so it's best to localize all this per-cpu business in
mm/kaiser.c: moving that part of the initialization from setup_pcid()
to kaiser_setup_pcid(); with kaiser_flush_tlb_on_return_to_user() the
function for noting an X86_CR3_PCID_USER_FLUSH. And let's keep a
KAISER_SHADOW_PGD_OFFSET in there, to avoid the extra OR on exit.
I did try to make the feature tests in asm/tlbflush.h more consistent
with each other: there seem to be far too many ways of performing such
tests, and I don't have a good grasp of their differences. At first
I converted them all to be static_cpu_has(): but that proved to be a
mistake, as the comment in __native_flush_tlb_single() hints; so then
I reversed and made them all this_cpu_has(). Probably all gratuitous
change, but that's the way it's working at present.
I am slightly bothered by the way non-per-cpu X86_CR3_PCID_KERN_VAR
gets re-initialized by each cpu (before and after these changes):
no problem when (as usual) all cpus on a machine have the same
features, but in principle incorrect. However, my experiment
to per-cpu-ify that one did not end well...
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Merged performance improvements to Kaiser, using distinct kernel
and user Process Context Identifiers to minimize the TLB flushing.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The kaiser update made an interesting choice, never to free any shadow
page tables. Contention on global spinlock was worrying, particularly
with it held across page table scans when freeing. Something had to be
done: I was going to add refcounting; but simply never to free them is
an appealing choice, minimizing contention without complicating the code
(the more a page table is found already, the less the spinlock is used).
But leaking pages in this way is also a worry: can we get away with it?
At the very least, we need a count to show how bad it actually gets:
in principle, one might end up wasting about 1/256 of memory that way
(1/512 for when direct-mapped pages have to be user-mapped, plus 1/512
for when they are user-mapped from the vmalloc area on another occasion
(but we don't have vmalloc'ed stacks, so only large ldts are vmalloc'ed).
Add per-cpu stat NR_KAISERTABLE: including 256 at startup for the
shared pgd entries, and 1 for each intermediate page table added
thereafter for user-mapping - but leave out the 1 per mm, for its
shadow pgd, because that distracts from the monotonic increase.
Shown in /proc/vmstat as nr_overhead (0 if kaiser not enabled).
In practice, it doesn't look so bad so far: more like 1/12000 after
nine hours of gtests below; and movable pageblock segregation should
tend to cluster the kaiser tables into a subset of the address space
(if not, they will be bad for compaction too). But production may
tell a different story: keep an eye on this number, and bring back
lighter freeing if it gets out of control (maybe a shrinker).
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We fail to see what CONFIG_KAISER_REAL_SWITCH is for: it seems to be
left over from early development, and now just obscures tricky parts
of the code. Delete it before adding PCIDs, or nokaiser boot option.
(Or if there is some good reason to keep the option, then it needs
a help text - and a "depends on KAISER", so that all those without
KAISER are not asked the question.)
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There's a 0x1000 in various places, which looks better with a name.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
While trying to get our gold link to work, four cleanups:
matched the gdt_page declaration to its definition;
in fiddling unsuccessfully with PERCPU_INPUT(), lined up backslashes;
lined up the backslashes according to convention in percpu-defs.h;
deleted the unused irq_stack_pointer addition to irq_stack_union.
Sad to report that aligning backslashes does not appear to help gold
align to 8192: but while these did not help, they are worth keeping.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When removing the bogus comment from kaiser_remove_mapping(),
I really ought to have checked the extent of its bogosity: as
Neel points out, there is nothing to stop unmap_pud_range_nofree()
from continuing beyond the end of a pud (and starting in the wrong
position on the next).
Fix kaiser_remove_mapping() to constrain the extent and advance pgd
pointer correctly: use pgd_addr_end() macro as used throughout base
mm (but don't assume page-rounded start and size in this case).
But this bug was very unlikely to trigger in this backport: since
any buddy allocation is contained within a single pud extent, and
we are not using vmapped stacks (and are only mapping one page of
stack anyway): the only way to hit this bug here would be when
freeing a large modified ldt.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Yes, unmap_pud_range_nofree()'s declaration ought to be in a
header file really, but I'm not sure we want to use it anyway:
so for now just declare it inside kaiser_remove_mapping().
And there doesn't seem to be such a thing as unmap_p4d_range(),
even in a 5-level paging tree.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
kaiser_add_user_map() took no notice when kaiser_pagetable_walk() failed.
And avoid its might_sleep() when atomic (though atomic at present unused).
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Avoid perf crashes: place debug_store in the user-mapped per-cpu area
instead of allocating, and use page allocator plus kaiser_add_mapping()
to keep the BTS and PEBS buffers user-mapped (that is, present in the
user mapping, though visible only to kernel and hardware). The PEBS
fixup buffer does not need this treatment.
The need for a user-mapped struct debug_store showed up before doing
any conscious perf testing: in a couple of kernel paging oopses on
Westmere, implicating the debug_store offset of the per-cpu area.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
pjt has observed that nmi's second (nmi_from_kernel) call to do_nmi()
adjusted the %rdi regs arg, rightly when CONFIG_KAISER, but wrongly
when not CONFIG_KAISER.
Although the minimal change is to add an #ifdef CONFIG_KAISER around
the addq line, that looks cluttered, and I prefer how the first call
to do_nmi() handled it: prepare args in %rdi and %rsi before getting
into the CONFIG_KAISER block, since it does not touch them at all.
And while we're here, place the "#ifdef CONFIG_KAISER" that follows
each, to enclose the "Unconditionally restore CR3" comment: matching
how the "Unconditionally use kernel CR3" comment above is enclosed.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
It is absurd that KAISER should depend on SMP, but apparently nobody
has tried a UP build before: which breaks on implicit declaration of
function 'per_cpu_offset' in arch/x86/mm/kaiser.c.
Now, you would expect that to be trivially fixed up; but looking at
the System.map when that block is #ifdef'ed out of kaiser_init(),
I see that in a UP build __per_cpu_user_mapped_end is precisely at
__per_cpu_user_mapped_start, and the items carefully gathered into
that section for user-mapping on SMP, dispersed elsewhere on UP.
So, some other kind of section assignment will be needed on UP,
but implementing that is not a priority: just make KAISER depend
on SMP for now.
Also inserted a blank line before the option, tidied up the
brief Kconfig help message, and added an "If unsure, Y".
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>