This has always been unused feature given its limitation of adding
phantom load to the system. Since there are no immediate plans of
using this and the fact that it adds unnecessary complications to
the new load fixup mechanism, remove this feature for now. It can
be revisited later in light of the new mechanism.
Change-Id: Ie9501a898d0f423338293a8dde6bc56f493f1e75
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Kill unused scheduler knob sched_migration_fixup. With this change
scheduler always adjusts CPU's busy time during migration.
Change-Id: I5d59e89d5cc0f2c705c40036cd7b47f5d3f89e58
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Kill unused scheduler knob and parameter sched_enable_power_aware. HMP
scheduler always take into account power cost for placing task.
Change-Id: Ib26a21df9b903baac26c026862b0a41b4a8834f3
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Kill unused scheduler knob sched_account_wait_time. With this change
scheduler always accounts task's wait time into demand.
Change-Id: Ifa4bcb5685798f48fd020f3d0c9853220b3f5fdc
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Related threads in a group could execute on different CPUs and hence
present a split-demand picture to cpufreq governor. IOW the governor
fails to see the net cpu demand of all related threads in a given
window if the threads's execution were to be split across CPUs. That
could result in sub-optimal frequency chosen in comparison to the
ideal frequency at which the aggregate work (taken up by related
threads) needs to be run.
This patch aggregates cpu execution stats in a window for all related
threads in a group. This helps present cpu busy time to governor as if
all related threads were part of the same thread and thus help select
the right frequency required by related threads. This aggregation
is done per-cluster.
Change-Id: I71e6047620066323721c6d542034ddd4b2950e7f
Signed-off-by: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: Fixed notify_migration() to hold rcu read
lock as this version of Linux doesn't hold p->pi_lock when the
function gets called while keeping use of rcu_access_pointer() since
we never dereference return value.]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
The function trace_printk() performs optimization by determining if
there are no format parameters in argument string and calls appropriate
apis to write to ftrace buffer. Add STM logging to support this
optimization in order to allow CoreSight STM tracing for optimized
trace_printk path.
Change-Id: I1a77291e77410c6ed99474335a6d25742c409e47
Signed-off-by: Aparna Das <adas@codeaurora.org>
Signed-off-by: Pratik Patel <pratikp@codeaurora.org>
Signed-off-by: Shashank Mittal <mittals@codeaurora.org>
Dup ftrace event traffic and writes to trace_marker file from
userspace to STM. Also dup trace printk traffic to STM. This
allows Linux tracing and log data to be correlated with other
data transported over STM.
Change-Id: I4fcb42f2e97ab963fdc85853f4f3ea1f208bfc3c
Signed-off-by: Pratik Patel <pratikp@codeaurora.org>
[spjoshi@codeaurora.org: 3.18 code fixup]
Signed-off-by: Sarangdhar Joshi <spjoshi@codeaurora.org>
[mittals@codeaurora.org: 4.4 code fixup]
Signed-off-by: Shashank Mittal <mittals@codeaurora.org>
Most of CPUs increase cycle counter by one every cycle which makes
frequency = cycles / time_delta is correct. Therefore it's reasonable
to get rid of current cpu_cycle_max_scale_factor and ask cycle counter
read callback function to return scaled counter value when it's needed
in such a case that cycle counter doesn't increase every cycle.
Thus multiply NSEC_PER_SEC / HZ_PER_KHZ to CPU cycle counter delta
as we calculate frequency in khz and remove cpu_cycle_max_scale_factor.
This allows us to simplify frequency estimation and cycle counter API.
Change-Id: Ie7a628d4bc77c9b6c769f6099ce8d75740262a14
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
commit f7c17d26f43d5cc1b7a6b896cd2fa24a079739b9 upstream.
------------[ cut here ]------------
WARNING: CPU: 0 PID: 16 at kernel/workqueue.c:4559 rebind_workers+0x1c0/0x1d0
Modules linked in:
CPU: 0 PID: 16 Comm: cpuhp/0 Not tainted 4.6.0-rc4+ #31
Hardware name: IBM IBM System x3550 M4 Server -[7914IUW]-/00Y8603, BIOS -[D7E128FUS-1.40]- 07/23/2013
0000000000000000 ffff881037babb58 ffffffff8139d885 0000000000000010
0000000000000000 0000000000000000 0000000000000000 ffff881037babba8
ffffffff8108505d ffff881037ba0000 000011cf3e7d6e60 0000000000000046
Call Trace:
dump_stack+0x89/0xd4
__warn+0xfd/0x120
warn_slowpath_null+0x1d/0x20
rebind_workers+0x1c0/0x1d0
workqueue_cpu_up_callback+0xf5/0x1d0
notifier_call_chain+0x64/0x90
? trace_hardirqs_on_caller+0xf2/0x220
? notify_prepare+0x80/0x80
__raw_notifier_call_chain+0xe/0x10
__cpu_notify+0x35/0x50
notify_down_prepare+0x5e/0x80
? notify_prepare+0x80/0x80
cpuhp_invoke_callback+0x73/0x330
? __schedule+0x33e/0x8a0
cpuhp_down_callbacks+0x51/0xc0
cpuhp_thread_fun+0xc1/0xf0
smpboot_thread_fn+0x159/0x2a0
? smpboot_create_threads+0x80/0x80
kthread+0xef/0x110
? wait_for_completion+0xf0/0x120
? schedule_tail+0x35/0xf0
ret_from_fork+0x22/0x50
? __init_kthread_worker+0x70/0x70
---[ end trace eb12ae47d2382d8f ]---
notify_down_prepare: attempt to take down CPU 0 failed
This bug can be reproduced by below config w/ nohz_full= all cpus:
CONFIG_BOOTPARAM_HOTPLUG_CPU0=y
CONFIG_DEBUG_HOTPLUG_CPU0=y
CONFIG_NO_HZ_FULL=y
As Thomas pointed out:
| If a down prepare callback fails, then DOWN_FAILED is invoked for all
| callbacks which have successfully executed DOWN_PREPARE.
|
| But, workqueue has actually two notifiers. One which handles
| UP/DOWN_FAILED/ONLINE and one which handles DOWN_PREPARE.
|
| Now look at the priorities of those callbacks:
|
| CPU_PRI_WORKQUEUE_UP = 5
| CPU_PRI_WORKQUEUE_DOWN = -5
|
| So the call order on DOWN_PREPARE is:
|
| CB 1
| CB ...
| CB workqueue_up() -> Ignores DOWN_PREPARE
| CB ...
| CB X ---> Fails
|
| So we call up to CB X with DOWN_FAILED
|
| CB 1
| CB ...
| CB workqueue_up() -> Handles DOWN_FAILED
| CB ...
| CB X-1
|
| So the problem is that the workqueue stuff handles DOWN_FAILED in the up
| callback, while it should do it in the down callback. Which is not a good idea
| either because it wants to be called early on rollback...
|
| Brilliant stuff, isn't it? The hotplug rework will solve this problem because
| the callbacks become symetric, but for the existing mess, we need some
| workaround in the workqueue code.
The boot CPU handles housekeeping duty(unbound timers, workqueues,
timekeeping, ...) on behalf of full dynticks CPUs. It must remain
online when nohz full is enabled. There is a priority set to every
notifier_blocks:
workqueue_cpu_up > tick_nohz_cpu_down > workqueue_cpu_down
So tick_nohz_cpu_down callback failed when down prepare cpu 0, and
notifier_blocks behind tick_nohz_cpu_down will not be called any
more, which leads to workers are actually not unbound. Then hotplug
state machine will fallback to undo and online cpu 0 again. Workers
will be rebound unconditionally even if they are not unbound and
trigger the warning in this progress.
This patch fix it by catching !DISASSOCIATED to avoid rebind bound
workers.
Cc: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Suggested-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9f448cd3cbcec8995935e60b27802ae56aac8cc0 upstream.
When the PMU driver reports a truncated AUX record, it effectively means
that there is no more usable room in the event's AUX buffer (even though
there may still be some room, so that perf_aux_output_begin() doesn't take
action). At this point the consumer still has to be woken up and the event
has to be disabled, otherwise the event will just keep spinning between
perf_aux_output_begin() and perf_aux_output_end() until its context gets
unscheduled.
Again, for cpu-wide events this means never, so once in this condition,
they will be forever losing data.
Fix this by disabling the event and waking up the consumer in case of a
truncated AUX record.
Reported-by: Markus Metzger <markus.t.metzger@intel.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/1462886313-13660-3-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 6aff67c85c9e5a4bc99e5211c1bac547936626ca ]
The commit 35578d7984 ("bpf: Implement function bpf_perf_event_read() that get the selected hardware PMU conuter")
introduced clever way to check bpf_helper<->map_type compatibility.
Later on commit a43eec3042 ("bpf: introduce bpf_perf_event_output() helper") adjusted
the logic and inadvertently broke it.
Get rid of the clever bool compare and go back to two-way check
from map and from helper perspective.
Fixes: a43eec3042 ("bpf: introduce bpf_perf_event_output() helper")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 92117d8443bc5afacc8d5ba82e541946310f106e ]
On a system with >32Gbyte of phyiscal memory and infinite RLIMIT_MEMLOCK,
the malicious application may overflow 32-bit bpf program refcnt.
It's also possible to overflow map refcnt on 1Tb system.
Impose 32k hard limit which means that the same bpf program or
map cannot be shared by more than 32k processes.
Fixes: 1be7f75d16 ("bpf: enable non-root eBPF programs")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 8358b02bf67d3a5d8a825070e1aa73f25fb2e4c7 ]
When bpf(BPF_PROG_LOAD, ...) was invoked with a BPF program whose bytecode
references a non-map file descriptor as a map file descriptor, the error
handling code called fdput() twice instead of once (in __bpf_map_get() and
in replace_map_fd_with_map_ptr()). If the file descriptor table of the
current task is shared, this causes f_count to be decremented too much,
allowing the struct file to be freed while it is still in use
(use-after-free). This can be exploited to gain root privileges by an
unprivileged user.
This bug was introduced in
commit 0246e64d9a ("bpf: handle pseudo BPF_LD_IMM64 insn"), but is only
exploitable since
commit 1be7f75d16 ("bpf: enable non-root eBPF programs") because
previously, CAP_SYS_ADMIN was required to reach the vulnerable code.
(posted publicly according to request by maintainer)
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit d82bccc69041a51f7b7b9b4a36db0772f4cdba21 ]
verifier must check for reserved size bits in instruction opcode and
reject BPF_LD | BPF_ABS | BPF_DW and BPF_LD | BPF_IND | BPF_DW instructions,
otherwise interpreter will WARN_RATELIMIT on them during execution.
Fixes: ddd872bc30 ("bpf: verifier: add checks for BPF_ABS | BPF_IND instructions")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
a malicious app can open a perf event with constraint_duplicate
bit set, disable the event, and close the fd. On closing the fd,
the perf_release() modification causes the kernel to clean up
the event as if it still were enabled, leading to the event
being removed from a list twice.
CRs-Fixed: 977563
Change-Id: I5fbec3722407d2f3d0ff0d9f7097c5889e31fd62
Signed-off-by: Srinivasarao P <spathi@codeaurora.org>
Fix macro name so CONFIG_SCHED_HMP_CSTATE_AWARE=y to take effect.
Change-Id: I0218b36b2d74974f50a173a0ac3bc59156c57624
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
This reverts commit 28f67e5a50 ("sched: set HMP scheduler's
default initial task load to 100%") since 100% of init task load
makes too much of power inefficiency on some targets.
CRs-fixed: 1006303
Change-Id: I81b4ba8fdc2e2fe1b40f18904964098fa558989b
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Rather than using debugfs, switch to tracefs which trace
moved to in kernel 4.4.
Signed-off-by: David Keitel <dkeitel@codeaurora.org>
Change-Id: I52ef7d45cabb20cc61fbd2fb3ef5016b041bc56c
commit 854145e0a8e9a05f7366d240e2f99d9c1ca6d6dd upstream.
Currently register functions for events will be called
through the 'reg' field of event class directly without
any check when seting up triggers.
Triggers for events that don't support register through
debug fs (events under events/ftrace are for trace-cmd to
read event format, and most of them don't have a register
function except events/ftrace/functionx) can't be enabled
at all, and an oops will be hit when setting up trigger
for those events, so just not creating them is an easy way
to avoid the oops.
Link: http://lkml.kernel.org/r/1462275274-3911-1-git-send-email-chuhu@redhat.com
Fixes: 85f2b08268 ("tracing: Add basic event trigger framework")
Signed-off-by: Chunyu Hu <chuhu@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The permissions of /proc/iomem currently are -r--r--r--. Everyone can
see its content. As iomem contains information about the physical memory
content of the device, restrict the information only to root.
Change-Id: If0be35c3fac5274151bea87b738a48e6ec0ae891
CRs-Fixed: 786116
Signed-off-by: Biswajit Paul <biswajitpaul@codeaurora.org>
Signed-off-by: Avijit Kanti Das <avijitnsec@codeaurora.org>
Workqueue stalls can happen from a variety of usage bugs such as
missing WQ_MEM_RECLAIM flag or concurrency managed work item
indefinitely staying RUNNING. These stalls can be extremely difficult
to hunt down because the usual warning mechanisms can't detect
workqueue stalls and the internal state is pretty opaque.
To alleviate the situation, this patch implements workqueue lockup
detector. It periodically monitors all worker_pools periodically and,
if any pool failed to make forward progress longer than the threshold
duration, triggers warning and dumps workqueue state as follows.
BUG: workqueue lockup - pool cpus=0 node=0 flags=0x0 nice=0 stuck for 31s!
Showing busy workqueues and worker pools:
workqueue events: flags=0x0
pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=17/256
pending: monkey_wrench_fn, e1000_watchdog, cache_reap, vmstat_shepherd, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, cgroup_release_agent
workqueue events_power_efficient: flags=0x80
pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=2/256
pending: check_lifetime, neigh_periodic_work
workqueue cgroup_pidlist_destroy: flags=0x0
pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=1/1
pending: cgroup_pidlist_destroy_work_fn
...
The detection mechanism is controller through kernel parameter
workqueue.watchdog_thresh and can be updated at runtime through the
sysfs module parameter file.
v2: Decoupled from softlockup control knobs.
CRs-Fixed: 1007459
Change-Id: Id7dfbbd2701128a942b1bcac2299e07a66db8657
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Don Zickus <dzickus@redhat.com>
Cc: Ulrich Obergfell <uobergfe@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Chris Mason <clm@fb.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Git-commit: 82607adcf9cdf40fb7b5331269780c8f70ec6e35
Git-repo: git://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git
Signed-off-by: Trilok Soni <tsoni@codeaurora.org>
touch_softlockup_watchdog() is used to tell watchdog that scheduler
stall is expected. One group of usage is from paths where the task
may not be able to yield for a long time such as performing slow PIO
to finicky device and coming out of suspend. The other is to account
for scheduler and timer going idle.
For scheduler softlockup detection, there's no reason to distinguish
the two cases; however, workqueue lockup detector is planned and it
can use the same signals from the former group while the latter would
spuriously prevent detection. This patch introduces a new function
touch_softlockup_watchdog_sched() and convert the latter group to call
it instead. For now, it just calls touch_softlockup_watchdog() and
there's no functional difference.
CRs-Fixed: 1007459
Change-Id: I6fe77926acd4240458cab29d399f81d8739a16c0
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ulrich Obergfell <uobergfe@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Git-commit: 03e0d4610bf4d4a93bfa16b2474ed4fd5243aa71
Git-repo: git://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git
Signed-off-by: Trilok Soni <tsoni@codeaurora.org>
commit 920c720aa5aa3900a7f1689228fdfc2580a91e7e upstream.
Similar to commit b4b29f9485 ("locking/osq: Fix ordering of node
initialisation in osq_lock") the use of xchg_acquire() is
fundamentally broken with MCS like constructs.
Furthermore, it turns out we rely on the global transitivity of this
operation because the unlock path observes the pointer with a
READ_ONCE(), not an smp_load_acquire().
This is non-critical because the MCS code isn't actually used and
mostly serves as documentation, a stepping stone to the more complex
things we've build on top of the idea.
Reported-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Fixes: 3552a07a9c ("locking/mcs: Use acquire/release semantics")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8bb5ef79bc0f4016ecf79e8dce6096a3c63603e4 upstream.
There are three subsystem callbacks in css shutdown path -
css_offline(), css_released() and css_free(). Except for
css_released(), cgroup core didn't guarantee the order of invocation.
css_offline() or css_free() could be called on a parent css before its
children. This behavior is unexpected and led to bugs in cpu and
memory controller.
The previous patch updated ordering for css_offline() which fixes the
cpu controller issue. While there currently isn't a known bug caused
by misordering of css_free() invocations, let's fix it too for
consistency.
css_free() ordering can be trivially fixed by moving putting of the
parent css below css_free() invocation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5cf1cacb49aee39c3e02ae87068fc3c6430659b0 upstream.
Since e93ad19d0564 ("cpuset: make mm migration asynchronous"), cpuset
kicks off asynchronous NUMA node migration if necessary during task
migration and flushes it from cpuset_post_attach_flush() which is
called at the end of __cgroup_procs_write(). This is to avoid
performing migration with cgroup_threadgroup_rwsem write-locked which
can lead to deadlock through dependency on kworker creation.
memcg has a similar issue with charge moving, so let's convert it to
an official callback rather than the current one-off cpuset specific
function. This patch adds cgroup_subsys->post_attach callback and
makes cpuset register cpuset_post_attach_flush() as its ->post_attach.
The conversion is mostly one-to-one except that the new callback is
called under cgroup_mutex. This is to guarantee that no other
migration operations are started before ->post_attach callbacks are
finished. cgroup_mutex is one of the outermost mutex in the system
and has never been and shouldn't be a problem. We can add specialized
synchronization around __cgroup_procs_write() but I don't think
there's any noticeable benefit.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 346c09f80459a3ad97df1816d6d606169a51001a upstream.
The bug in a workqueue leads to a stalled IO request in MQ ctx->rq_list
with the following backtrace:
[ 601.347452] INFO: task kworker/u129:5:1636 blocked for more than 120 seconds.
[ 601.347574] Tainted: G O 4.4.5-1-storage+ #6
[ 601.347651] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 601.348142] kworker/u129:5 D ffff880803077988 0 1636 2 0x00000000
[ 601.348519] Workqueue: ibnbd_server_fileio_wq ibnbd_dev_file_submit_io_worker [ibnbd_server]
[ 601.348999] ffff880803077988 ffff88080466b900 ffff8808033f9c80 ffff880803078000
[ 601.349662] ffff880807c95000 7fffffffffffffff ffffffff815b0920 ffff880803077ad0
[ 601.350333] ffff8808030779a0 ffffffff815b01d5 0000000000000000 ffff880803077a38
[ 601.350965] Call Trace:
[ 601.351203] [<ffffffff815b0920>] ? bit_wait+0x60/0x60
[ 601.351444] [<ffffffff815b01d5>] schedule+0x35/0x80
[ 601.351709] [<ffffffff815b2dd2>] schedule_timeout+0x192/0x230
[ 601.351958] [<ffffffff812d43f7>] ? blk_flush_plug_list+0xc7/0x220
[ 601.352208] [<ffffffff810bd737>] ? ktime_get+0x37/0xa0
[ 601.352446] [<ffffffff815b0920>] ? bit_wait+0x60/0x60
[ 601.352688] [<ffffffff815af784>] io_schedule_timeout+0xa4/0x110
[ 601.352951] [<ffffffff815b3a4e>] ? _raw_spin_unlock_irqrestore+0xe/0x10
[ 601.353196] [<ffffffff815b093b>] bit_wait_io+0x1b/0x70
[ 601.353440] [<ffffffff815b056d>] __wait_on_bit+0x5d/0x90
[ 601.353689] [<ffffffff81127bd0>] wait_on_page_bit+0xc0/0xd0
[ 601.353958] [<ffffffff81096db0>] ? autoremove_wake_function+0x40/0x40
[ 601.354200] [<ffffffff81127cc4>] __filemap_fdatawait_range+0xe4/0x140
[ 601.354441] [<ffffffff81127d34>] filemap_fdatawait_range+0x14/0x30
[ 601.354688] [<ffffffff81129a9f>] filemap_write_and_wait_range+0x3f/0x70
[ 601.354932] [<ffffffff811ced3b>] blkdev_fsync+0x1b/0x50
[ 601.355193] [<ffffffff811c82d9>] vfs_fsync_range+0x49/0xa0
[ 601.355432] [<ffffffff811cf45a>] blkdev_write_iter+0xca/0x100
[ 601.355679] [<ffffffff81197b1a>] __vfs_write+0xaa/0xe0
[ 601.355925] [<ffffffff81198379>] vfs_write+0xa9/0x1a0
[ 601.356164] [<ffffffff811c59d8>] kernel_write+0x38/0x50
The underlying device is a null_blk, with default parameters:
queue_mode = MQ
submit_queues = 1
Verification that nullb0 has something inflight:
root@pserver8:~# cat /sys/block/nullb0/inflight
0 1
root@pserver8:~# find /sys/block/nullb0/mq/0/cpu* -name rq_list -print -exec cat {} \;
...
/sys/block/nullb0/mq/0/cpu2/rq_list
CTX pending:
ffff8838038e2400
...
During debug it became clear that stalled request is always inserted in
the rq_list from the following path:
save_stack_trace_tsk + 34
blk_mq_insert_requests + 231
blk_mq_flush_plug_list + 281
blk_flush_plug_list + 199
wait_on_page_bit + 192
__filemap_fdatawait_range + 228
filemap_fdatawait_range + 20
filemap_write_and_wait_range + 63
blkdev_fsync + 27
vfs_fsync_range + 73
blkdev_write_iter + 202
__vfs_write + 170
vfs_write + 169
kernel_write + 56
So blk_flush_plug_list() was called with from_schedule == true.
If from_schedule is true, that means that finally blk_mq_insert_requests()
offloads execution of __blk_mq_run_hw_queue() and uses kblockd workqueue,
i.e. it calls kblockd_schedule_delayed_work_on().
That means, that we race with another CPU, which is about to execute
__blk_mq_run_hw_queue() work.
Further debugging shows the following traces from different CPUs:
CPU#0 CPU#1
---------------------------------- -------------------------------
reqeust A inserted
STORE hctx->ctx_map[0] bit marked
kblockd_schedule...() returns 1
<schedule to kblockd workqueue>
request B inserted
STORE hctx->ctx_map[1] bit marked
kblockd_schedule...() returns 0
*** WORK PENDING bit is cleared ***
flush_busy_ctxs() is executed, but
bit 1, set by CPU#1, is not observed
As a result request B pended forever.
This behaviour can be explained by speculative LOAD of hctx->ctx_map on
CPU#0, which is reordered with clear of PENDING bit and executed _before_
actual STORE of bit 1 on CPU#1.
The proper fix is an explicit full barrier <mfence>, which guarantees
that clear of PENDING bit is to be executed before all possible
speculative LOADS or STORES inside actual work function.
Signed-off-by: Roman Pen <roman.penyaev@profitbricks.com>
Cc: Gioh Kim <gi-oh.kim@profitbricks.com>
Cc: Michael Wang <yun.wang@profitbricks.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: linux-block@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fe1bce9e2107ba3a8faffe572483b6974201a0e6 upstream.
Otherwise an incoming waker on the dest hash bucket can miss
the waiter adding itself to the plist during the lockless
check optimization (small window but still the correct way
of doing this); similarly to the decrement counterpart.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: bigeasy@linutronix.de
Cc: dvhart@infradead.org
Link: http://lkml.kernel.org/r/1461208164-29150-1-git-send-email-dave@stgolabs.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 89e9e66ba1b3bde9d8ea90566c2aee20697ad681 upstream.
If userspace calls UNLOCK_PI unconditionally without trying the TID -> 0
transition in user space first then the user space value might not have the
waiters bit set. This opens the following race:
CPU0 CPU1
uval = get_user(futex)
lock(hb)
lock(hb)
futex |= FUTEX_WAITERS
....
unlock(hb)
cmpxchg(futex, uval, newval)
So the cmpxchg fails and returns -EINVAL to user space, which is wrong because
the futex value is valid.
To handle this (yes, yet another) corner case gracefully, check for a flag
change and retry.
[ tglx: Massaged changelog and slightly reworked implementation ]
Fixes: ccf9e6a80d ("futex: Make unlock_pi more robust")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Darren Hart <dvhart@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1460723739-5195-1-git-send-email-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2f5177f0fd7e531b26d54633be62d1d4cb94621c upstream.
The CPU controller hasn't kept up with the various changes in the whole
cgroup initialization / destruction sequence, and commit:
2e91fa7f6d ("cgroup: keep zombies associated with their original cgroups")
caused it to explode.
The reason for this is that zombies do not inhibit css_offline() from
being called, but do stall css_released(). Now we tear down the cfs_rq
structures on css_offline() but zombies can run after that, leading to
use-after-free issues.
The solution is to move the tear-down to css_released(), which
guarantees nobody (including no zombies) is still using our cgroup.
Furthermore, a few simple cleanups are possible too. There doesn't
appear to be any point to us using css_online() (anymore?) so fold that
in css_alloc().
And since cgroup code guarantees an RCU grace period between
css_released() and css_free() we can forgo using call_rcu() and free the
stuff immediately.
Suggested-by: Tejun Heo <tj@kernel.org>
Reported-by: Kazuki Yamaguchi <k@rhe.jp>
Reported-by: Niklas Cassel <niklas.cassel@axis.com>
Tested-by: Niklas Cassel <niklas.cassel@axis.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 2e91fa7f6d ("cgroup: keep zombies associated with their original cgroups")
Link: http://lkml.kernel.org/r/20160316152245.GY6344@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Actual CPU's min and max frequencies can be limited by hardware
components while governor's not aware of. Provide an API for them to
notify for scheduler to be able to notice accurate currently
operating frequency boundaries which helps better task placement
decision.
CRs-fixed: 1006303
Change-Id: I608f5fa8b0baff8d9e998731dcddec59c9073d20
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
At present scheduler calculates task's demand with the task's execution
time weighted over CPU frequency. The CPU frequency is given by
governor's CPU frequency transition notification. Such notification
may not be available.
Provide an API for CPU clock driver to register callback functions so
in order for scheduler to access CPU's cycle counter to estimate CPU's
frequency without notification. At time point scheduler assumes the
cycle counter increases always even when cluster is idle which might
not be true. This will be fixed by subsequent change for more accurate
I/O wait time accounting.
CRs-fixed: 1006303
Change-Id: I93b187efd7bc225db80da0184683694f5ab99738
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
At present sched_boost changes scheduler to place tasks on the least
loaded CPU under the assumption both big and little clusters capacities
are same at the same level of frequency. This is suboptimal for the
big.Little system that doesn't have such a symmetrical capacity between
big and little CPUs.
Fix sched_boost to place tasks on the big CPUs for the non-symmetrical
capacity target.
CRs-fixed: 1006303
Change-Id: I752f020acf1a76580edb5cd0e5ad283b62edfeed
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
At present among the same power cost and c-state CPUs scheduler places
newly waking up task on the most loaded CPU which can incur too much of
task packing on the same CPU. Place onto the most loaded CPU only when
the best CPU is in idle cstate, otherwise spread out by placing onto the
least loaded CPU.
CRs-fixed: 1006303
Change-Id: I8ae7332971b3293d912b1582f75e33fd81407d86
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
There are CPUs that don't have an obvious low power mode exit latency
penalty. Add a new Kconfig CONFIG_SCHED_HMP_CSTATE_AWARE which controls
whether CPU C-state is used to guide task placement.
CRs-fixed: 1006303
Change-Id: Ie8dbab8e173c3a1842d922f4d1fbd8cc4221789c
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Update the wakeup placement logic when need_idle is not set. Break
ties in power with C-state. If C-state is the same break ties with
prev_cpu. Finally go for the most loaded CPU.
CRs-fixed: 1006303
Change-Id: Iafa98a909ed464af33f4fe3345bbfc8e77dee963
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
[joonwoop@codeaurora.org: fixed bug where assigns best_cpu_cstate with
uninitialized cpu_cstate.]
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Try and find the min cstate CPU within the little cluster when a
task fits there. If there is no idle CPU return the least busy
CPU. Also Add a prev CPU bias when C-states or load is the same.
CRs-fixed: 1006303
Change-Id: I577cc70a59f2b0c5309c87b54e106211f96e04a0
Signed-off-by: Syed Rameez Mustafa <rameezmustafa@codeaurora.org>
commit 28a967c3a2f99fa3b5f762f25cb2a319d933571b upstream.
Because event_sched_out() checks event->pending_disable _before_
actually disabling the event, it can happen that the event fires after
it checks but before it gets disabled.
This would leave event->pending_disable set and the queued irq_work
will try and process it.
However, if the event trigger was during schedule(), the event might
have been de-scheduled by the time the irq_work runs, and
perf_event_disable_local() will fail.
Fix this by checking event->pending_disable _after_ we call
event->pmu->del(). This depends on the latter being a compiler
barrier, such that the compiler does not lift the load and re-creates
the problem.
Tested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dvyukov@google.com
Cc: eranian@google.com
Cc: oleg@redhat.com
Cc: panand@redhat.com
Cc: sasha.levin@oracle.com
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160224174948.040469884@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 130056275ade730e7a79c110212c8815202773ee upstream.
In case of: err_file: fput(event_file), we'll end up calling
perf_release() which in turn will free the event.
Do not then free the event _again_.
Tested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dvyukov@google.com
Cc: eranian@google.com
Cc: oleg@redhat.com
Cc: panand@redhat.com
Cc: sasha.levin@oracle.com
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160224174947.697350349@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit cdc4e47da8f4c32eeb6b2061a8a834f4362a12b7 ]
Lots of places in the kernel use memcpy(buf, comm, TASK_COMM_LEN); but
the result is typically passed to print("%s", buf) and extra bytes
after zero don't cause any harm.
In bpf the result of bpf_get_current_comm() is used as the part of
map key and was causing spurious hash map mismatches.
Use strlcpy() to guarantee zero-terminated string.
bpf verifier checks that output buffer is zero-initialized,
so even for short task names the output buffer don't have junk bytes.
Note it's not a security concern, since kprobe+bpf is root only.
Fixes: ffeedafbf0 ("bpf: introduce current->pid, tgid, uid, gid, comm accessors")
Reported-by: Tobias Waldekranz <tobias@waldekranz.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
A killed task can stay in the task list long after its
memory has been returned to the system, therefore
ignore any tasks whose mm struct has been freed.
Change-Id: I76394b203b4ab2312437c839976f0ecb7b6dde4e
CRs-fixed: 450383
Signed-off-by: Liam Mark <lmark@codeaurora.org>