android_kernel_oneplus_msm8998/drivers/iommu/arm-smmu.c

4515 lines
116 KiB
C
Raw Permalink Normal View History

/*
* IOMMU API for ARM architected SMMU implementations.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) 2013 ARM Limited
*
* Author: Will Deacon <will.deacon@arm.com>
*
* This driver currently supports:
* - SMMUv1 and v2 implementations
* - Stream-matching and stream-indexing
* - v7/v8 long-descriptor format
* - Non-secure access to the SMMU
* - Context fault reporting
*/
#define pr_fmt(fmt) "arm-smmu: " fmt
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/notifier.h>
#include <linux/amba/bus.h>
#include <soc/qcom/msm_tz_smmu.h>
#include <soc/qcom/scm.h>
#include <soc/qcom/secure_buffer.h>
#include <asm/cacheflush.h>
#include <linux/msm-bus.h>
#include <dt-bindings/msm/msm-bus-ids.h>
#include <linux/msm_pcie.h>
#include "io-pgtable.h"
/* Maximum number of stream IDs assigned to a single device */
#define MAX_MASTER_STREAMIDS 45
/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS 128
/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS 128
/* SMMU global address space */
#define ARM_SMMU_GR0(smmu) ((smmu)->base)
#define ARM_SMMU_GR1(smmu) ((smmu)->base + (1 << (smmu)->pgshift))
/*
* SMMU global address space with conditional offset to access secure
* aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
* nsGFSYNR0: 0x450)
*/
#define ARM_SMMU_GR0_NS(smmu) \
((smmu)->base + \
((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
? 0x400 : 0))
#ifdef CONFIG_64BIT
#define smmu_writeq writeq_relaxed
#else
#define smmu_writeq(reg64, addr) \
do { \
u64 __val = (reg64); \
void __iomem *__addr = (addr); \
writel_relaxed(__val >> 32, __addr + 4); \
writel_relaxed(__val, __addr); \
} while (0)
#endif
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0 0x0
#define sCR0_CLIENTPD (1 << 0)
#define sCR0_GFRE (1 << 1)
#define sCR0_GFIE (1 << 2)
#define sCR0_GCFGFRE (1 << 4)
#define sCR0_GCFGFIE (1 << 5)
#define sCR0_USFCFG (1 << 10)
#define sCR0_VMIDPNE (1 << 11)
#define sCR0_PTM (1 << 12)
#define sCR0_FB (1 << 13)
#define sCR0_BSU_SHIFT 14
#define sCR0_BSU_MASK 0x3
/* Identification registers */
#define ARM_SMMU_GR0_ID0 0x20
#define ARM_SMMU_GR0_ID1 0x24
#define ARM_SMMU_GR0_ID2 0x28
#define ARM_SMMU_GR0_ID3 0x2c
#define ARM_SMMU_GR0_ID4 0x30
#define ARM_SMMU_GR0_ID5 0x34
#define ARM_SMMU_GR0_ID6 0x38
#define ARM_SMMU_GR0_ID7 0x3c
#define ARM_SMMU_GR0_sGFSR 0x48
#define ARM_SMMU_GR0_sGFSYNR0 0x50
#define ARM_SMMU_GR0_sGFSYNR1 0x54
#define ARM_SMMU_GR0_sGFSYNR2 0x58
#define ID0_S1TS (1 << 30)
#define ID0_S2TS (1 << 29)
#define ID0_NTS (1 << 28)
#define ID0_SMS (1 << 27)
#define ID0_ATOSNS (1 << 26)
#define ID0_CTTW (1 << 14)
#define ID0_NUMIRPT_SHIFT 16
#define ID0_NUMIRPT_MASK 0xff
#define ID0_NUMSIDB_SHIFT 9
#define ID0_NUMSIDB_MASK 0xf
#define ID0_NUMSMRG_SHIFT 0
#define ID0_NUMSMRG_MASK 0xff
#define ID1_PAGESIZE (1 << 31)
#define ID1_NUMPAGENDXB_SHIFT 28
#define ID1_NUMPAGENDXB_MASK 7
#define ID1_NUMS2CB_SHIFT 16
#define ID1_NUMS2CB_MASK 0xff
#define ID1_NUMCB_SHIFT 0
#define ID1_NUMCB_MASK 0xff
#define ID2_OAS_SHIFT 4
#define ID2_OAS_MASK 0xf
#define ID2_IAS_SHIFT 0
#define ID2_IAS_MASK 0xf
#define ID2_UBS_SHIFT 8
#define ID2_UBS_MASK 0xf
#define ID2_PTFS_4K (1 << 12)
#define ID2_PTFS_16K (1 << 13)
#define ID2_PTFS_64K (1 << 14)
/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID 0x64
#define ARM_SMMU_GR0_TLBIALLNSNH 0x68
#define ARM_SMMU_GR0_TLBIALLH 0x6c
#define ARM_SMMU_GR0_sTLBGSYNC 0x70
#define ARM_SMMU_GR0_sTLBGSTATUS 0x74
#define sTLBGSTATUS_GSACTIVE (1 << 0)
#define TLB_LOOP_TIMEOUT 500000 /* 500ms */
/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
#define SMR_VALID (1 << 31)
#define SMR_MASK_SHIFT 16
#define SMR_MASK_MASK 0x7fff
#define SMR_ID_SHIFT 0
#define SMR_ID_MASK 0x7fff
#define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT 0
#define S2CR_CBNDX_MASK 0xff
#define S2CR_TYPE_SHIFT 16
#define S2CR_TYPE_MASK 0x3
#define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT 0
#define CBAR_VMID_MASK 0xff
#define CBAR_S1_BPSHCFG_SHIFT 8
#define CBAR_S1_BPSHCFG_MASK 3
#define CBAR_S1_BPSHCFG_NSH 3
#define CBAR_S1_MEMATTR_SHIFT 12
#define CBAR_S1_MEMATTR_MASK 0xf
#define CBAR_S1_MEMATTR_WB 0xf
#define CBAR_TYPE_SHIFT 16
#define CBAR_TYPE_MASK 0x3
#define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT 24
#define CBAR_IRPTNDX_MASK 0xff
#define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT (0 << 0)
#define CBA2R_RW64_64BIT (1 << 0)
/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
#define ARM_SMMU_CB(smmu, n) ((n) * (1 << (smmu)->pgshift))
#define ARM_SMMU_CB_SCTLR 0x0
#define ARM_SMMU_CB_ACTLR 0x4
#define ARM_SMMU_CB_RESUME 0x8
#define ARM_SMMU_CB_TTBCR2 0x10
#define ARM_SMMU_CB_TTBR0 0x20
#define ARM_SMMU_CB_TTBR1 0x28
#define ARM_SMMU_CB_TTBCR 0x30
#define ARM_SMMU_CB_CONTEXTIDR 0x34
#define ARM_SMMU_CB_S1_MAIR0 0x38
#define ARM_SMMU_CB_S1_MAIR1 0x3c
#define ARM_SMMU_CB_PAR_LO 0x50
#define ARM_SMMU_CB_PAR_HI 0x54
#define ARM_SMMU_CB_FSR 0x58
#define ARM_SMMU_CB_FSRRESTORE 0x5c
#define ARM_SMMU_CB_FAR_LO 0x60
#define ARM_SMMU_CB_FAR_HI 0x64
#define ARM_SMMU_CB_FSYNR0 0x68
#define ARM_SMMU_CB_S1_TLBIVA 0x600
#define ARM_SMMU_CB_S1_TLBIASID 0x610
#define ARM_SMMU_CB_S1_TLBIALL 0x618
#define ARM_SMMU_CB_S1_TLBIVAL 0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2 0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L 0x638
#define ARM_SMMU_CB_TLBSYNC 0x7f0
#define ARM_SMMU_CB_TLBSTATUS 0x7f4
#define TLBSTATUS_SACTIVE (1 << 0)
#define ARM_SMMU_CB_ATS1PR 0x800
#define ARM_SMMU_CB_ATSR 0x8f0
#define ARM_SMMU_GR1_CBFRSYNRA(n) (0x400 + ((n) << 2))
#define SCTLR_S1_ASIDPNE (1 << 12)
#define SCTLR_CFCFG (1 << 7)
#define SCTLR_HUPCF (1 << 8)
#define SCTLR_CFIE (1 << 6)
#define SCTLR_CFRE (1 << 5)
#define SCTLR_E (1 << 4)
#define SCTLR_AFE (1 << 2)
#define SCTLR_TRE (1 << 1)
#define SCTLR_M (1 << 0)
#define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
#define CB_PAR_F (1 << 0)
#define ATSR_ACTIVE (1 << 0)
#define RESUME_RETRY (0 << 0)
#define RESUME_TERMINATE (1 << 0)
#define TTBRn_ASID_SHIFT 48
#define FSR_MULTI (1 << 31)
#define FSR_SS (1 << 30)
#define FSR_UUT (1 << 8)
#define FSR_ASF (1 << 7)
#define FSR_TLBLKF (1 << 6)
#define FSR_TLBMCF (1 << 5)
#define FSR_EF (1 << 4)
#define FSR_PF (1 << 3)
#define FSR_AFF (1 << 2)
#define FSR_TF (1 << 1)
/* Definitions for implementation-defined registers */
#define ACTLR_QCOM_OSH_SHIFT 28
#define ACTLR_QCOM_OSH 1
#define ACTLR_QCOM_ISH_SHIFT 29
#define ACTLR_QCOM_ISH 1
#define ACTLR_QCOM_NSH_SHIFT 30
#define ACTLR_QCOM_NSH 1
#define ARM_SMMU_IMPL_DEF0(smmu) \
((smmu)->base + (2 * (1 << (smmu)->pgshift)))
#define ARM_SMMU_IMPL_DEF1(smmu) \
((smmu)->base + (6 * (1 << (smmu)->pgshift)))
#define IMPL_DEF1_MICRO_MMU_CTRL 0
#define MICRO_MMU_CTRL_LOCAL_HALT_REQ (1 << 2)
#define MICRO_MMU_CTRL_IDLE (1 << 3)
#define FSR_IGN (FSR_AFF | FSR_ASF | \
FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
#define FSYNR0_WNR (1 << 4)
#define MAX_GLOBAL_REG_SAVE_ENTRIES (2 * ARM_SMMU_MAX_SMRS + 1)
enum arm_smmu_save_ctx {
SAVE_ARM_SMMU_CB_SCTLR,
SAVE_ARM_SMMU_CB_ACTLR,
SAVE_ARM_SMMU_CB_TTBCR2,
SAVE_ARM_SMMU_CB_TTBR0,
SAVE_ARM_SMMU_CB_TTBR1,
SAVE_ARM_SMMU_CB_TTBCR,
SAVE_ARM_SMMU_CB_CONTEXTIDR,
SAVE_ARM_SMMU_CB_S1_MAIR0,
SAVE_ARM_SMMU_CB_S1_MAIR1,
SAVE_ARM_SMMU_GR1_CBA2R,
SAVE_ARM_SMMU_GR1_CBAR,
SAVE_ARM_SMMU_MAX_CNT,
};
static int force_stage;
module_param_named(force_stage, force_stage, int, S_IRUGO);
MODULE_PARM_DESC(force_stage,
"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
enum arm_smmu_arch_version {
ARM_SMMU_V1 = 1,
ARM_SMMU_V2,
};
struct arm_smmu_smr {
u8 idx;
u16 mask;
u16 id;
};
struct arm_smmu_master_cfg {
int num_streamids;
u16 streamids[MAX_MASTER_STREAMIDS];
struct arm_smmu_smr *smrs;
};
struct arm_smmu_master {
struct device_node *of_node;
struct rb_node node;
struct arm_smmu_master_cfg cfg;
};
enum smmu_model_id {
SMMU_MODEL_DEFAULT,
SMMU_MODEL_QCOM_V2,
};
struct arm_smmu_impl_def_reg {
u32 offset;
u32 value;
};
struct arm_smmu_device {
struct device *dev;
enum smmu_model_id model;
void __iomem *base;
unsigned long size;
phys_addr_t phys_addr;
unsigned long pgshift;
#define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
#define ARM_SMMU_FEAT_TRANS_OPS (1 << 5)
u32 features;
#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
#define ARM_SMMU_OPT_INVALIDATE_ON_MAP (1 << 1)
#define ARM_SMMU_OPT_HALT_AND_TLB_ON_ATOS (1 << 2)
#define ARM_SMMU_OPT_REGISTER_SAVE (1 << 3)
#define ARM_SMMU_OPT_SKIP_INIT (1 << 4)
#define ARM_SMMU_OPT_ERRATA_CTX_FAULT_HANG (1 << 5)
#define ARM_SMMU_OPT_FATAL_ASF (1 << 6)
#define ARM_SMMU_OPT_ERRATA_TZ_ATOS (1 << 7)
#define ARM_SMMU_OPT_NO_SMR_CHECK (1 << 9)
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
#define ARM_SMMU_OPT_DYNAMIC (1 << 10)
#define ARM_SMMU_OPT_HALT (1 << 11)
#define ARM_SMMU_OPT_STATIC_CB (1 << 12)
u32 options;
enum arm_smmu_arch_version version;
u32 num_context_banks;
u32 num_s2_context_banks;
DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
atomic_t irptndx;
u32 num_mapping_groups;
DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
iommu/arm-smmu: Correctly calculate and use the TTBR1 pagetable Due to an egregious misunderstanding of the specification it was thought that to do the TTBR1 matching correctly the sign extension bit needed to match the input address space. This is incorrect - the TTBR1 range is determined by the size of the TTBR1 space (in our case, the same as the input address space). For example if the input address size is 36, the effective range of the pagetables are: TTBR0: 0x00000000_00000000 - 0x0000000f_ffffffff TTBR1: 0xfffffff0_00000000 - 0xffffffff_ffffffff For its part the sign extension bit needs should be set based on the upstream bus size. If the device has a UBS of 49 then the sign extension bit is assumed by design to be 48 otherwise the driver needs to pick the highest available bit and reduce the input address space by 1. Because the client driver shouldn't need to know the upstream bus size, convention is to use a fully sign extended unsigned long address for TTBR1 mappings. If the sign extension bit is set lower than the upstream bus size some implementations assume that bits above the sign extension bit need to be zero and breaks the convention. Setting the sign extension bit correctly for the upstream bus size ensures that sign extension always works. The hardware will match an address to the TTBR1 if all the bits between the sign extension bit and the input address size are set to 1. We emulate this behavior in software when looking up a pagetable for a software operation. Change-Id: Ic0dedbad80c72f11bc8a7e6792f0e3c2f58bc674 Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org>
2017-05-10 15:22:09 -06:00
u32 ubs;
unsigned long va_size;
unsigned long ipa_size;
unsigned long pa_size;
u32 num_global_irqs;
u32 num_context_irqs;
unsigned int *irqs;
struct list_head list;
struct list_head static_cbndx_list;
struct rb_root masters;
int num_clocks;
struct clk **clocks;
struct regulator *gdsc;
struct notifier_block regulator_nb;
/* Protects against domains attaching to the same SMMU concurrently */
struct mutex attach_lock;
unsigned int attach_count;
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
struct idr asid_idr;
struct arm_smmu_impl_def_reg *impl_def_attach_registers;
unsigned int num_impl_def_attach_registers;
spinlock_t atos_lock;
unsigned int clock_refs_count;
spinlock_t clock_refs_lock;
struct mutex power_lock;
unsigned int power_count;
u32 bus_client;
struct msm_bus_scale_pdata *bus_pdata;
enum tz_smmu_device_id sec_id;
int regulator_defer;
u64 regs[ARM_SMMU_MAX_CBS*(SAVE_ARM_SMMU_MAX_CNT)];
u64 reg_global[MAX_GLOBAL_REG_SAVE_ENTRIES];
};
struct arm_smmu_cfg {
u8 cbndx;
u8 irptndx;
u32 cbar;
u32 procid;
u16 asid;
u8 vmid;
};
#define INVALID_IRPTNDX 0xff
#define INVALID_CBNDX 0xff
#define INVALID_ASID 0xffff
#define INVALID_VMID 0xff
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
/*
* In V7L and V8L with TTBCR2.AS == 0, ASID is 8 bits.
* V8L 16 with TTBCR2.AS == 1 (16 bit ASID) isn't supported yet.
*/
#define MAX_ASID 0xff
#define ARM_SMMU_CB_ASID(cfg) ((cfg)->asid)
#define ARM_SMMU_CB_VMID(cfg) ((cfg)->vmid)
enum arm_smmu_domain_stage {
ARM_SMMU_DOMAIN_S1 = 0,
ARM_SMMU_DOMAIN_S2,
ARM_SMMU_DOMAIN_NESTED,
};
struct arm_smmu_pte_info {
void *virt_addr;
size_t size;
struct list_head entry;
};
struct arm_smmu_domain {
struct arm_smmu_device *smmu;
struct io_pgtable_ops *pgtbl_ops;
struct io_pgtable_cfg pgtbl_cfg;
spinlock_t pgtbl_spin_lock;
struct mutex pgtbl_mutex_lock;
struct arm_smmu_cfg cfg;
enum arm_smmu_domain_stage stage;
struct mutex init_mutex; /* Protects smmu pointer */
u32 attributes;
bool slave_side_secure;
u32 secure_vmid;
struct list_head pte_info_list;
struct list_head unassign_list;
struct mutex assign_lock;
struct list_head secure_pool_list;
bool non_fatal_faults;
struct iommu_domain domain;
};
static struct iommu_ops arm_smmu_ops;
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);
struct arm_smmu_option_prop {
u32 opt;
const char *prop;
};
static struct arm_smmu_option_prop arm_smmu_options[] = {
{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
{ ARM_SMMU_OPT_INVALIDATE_ON_MAP, "qcom,smmu-invalidate-on-map" },
{ ARM_SMMU_OPT_HALT_AND_TLB_ON_ATOS, "qcom,halt-and-tlb-on-atos" },
{ ARM_SMMU_OPT_REGISTER_SAVE, "qcom,register-save" },
{ ARM_SMMU_OPT_SKIP_INIT, "qcom,skip-init" },
{ ARM_SMMU_OPT_ERRATA_CTX_FAULT_HANG, "qcom,errata-ctx-fault-hang" },
{ ARM_SMMU_OPT_FATAL_ASF, "qcom,fatal-asf" },
{ ARM_SMMU_OPT_ERRATA_TZ_ATOS, "qcom,errata-tz-atos" },
{ ARM_SMMU_OPT_NO_SMR_CHECK, "qcom,no-smr-check" },
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
{ ARM_SMMU_OPT_DYNAMIC, "qcom,dynamic" },
{ ARM_SMMU_OPT_HALT, "qcom,enable-smmu-halt"},
{ ARM_SMMU_OPT_STATIC_CB, "qcom,enable-static-cb"},
{ 0, NULL},
};
#define TYPE_TRANS (S2CR_TYPE_TRANS >> S2CR_TYPE_SHIFT)
#define TYPE_BYPASS (S2CR_TYPE_BYPASS >> S2CR_TYPE_SHIFT)
#define TYPE_FAULT (S2CR_TYPE_FAULT >> S2CR_TYPE_SHIFT)
struct static_cbndx_entry {
struct list_head list;
u8 cbndx;
u8 smr_idx;
u16 sid;
u8 type;
};
struct arm_iommus_node {
struct device_node *master;
struct list_head list;
struct list_head iommuspec_list;
};
struct arm_iommus_spec {
struct of_phandle_args iommu_spec;
struct list_head list;
};
static LIST_HEAD(iommus_nodes);
static int arm_smmu_enable_clocks_atomic(struct arm_smmu_device *smmu);
static void arm_smmu_disable_clocks_atomic(struct arm_smmu_device *smmu);
static void arm_smmu_prepare_pgtable(void *addr, void *cookie);
static void arm_smmu_unprepare_pgtable(void *cookie, void *addr, size_t size);
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
dma_addr_t iova);
static phys_addr_t arm_smmu_iova_to_phys_hard_no_halt(
struct iommu_domain *domain, dma_addr_t iova);
static int arm_smmu_wait_for_halt(struct arm_smmu_device *smmu);
static int arm_smmu_halt_nowait(struct arm_smmu_device *smmu);
static void arm_smmu_resume(struct arm_smmu_device *smmu);
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
dma_addr_t iova);
static int arm_smmu_assign_table(struct arm_smmu_domain *smmu_domain);
static void arm_smmu_unassign_table(struct arm_smmu_domain *smmu_domain);
static int arm_smmu_halt(struct arm_smmu_device *smmu);
static void arm_smmu_device_reset(struct arm_smmu_device *smmu);
static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
size_t size);
static bool arm_smmu_is_master_side_secure(struct arm_smmu_domain *smmu_domain);
static bool arm_smmu_is_static_cb(struct arm_smmu_device *smmu);
static bool arm_smmu_is_slave_side_secure(struct arm_smmu_domain *smmu_domain);
static bool arm_smmu_has_secure_vmid(struct arm_smmu_domain *smmu_domain);
static bool arm_smmu_is_iova_coherent(struct iommu_domain *domain,
dma_addr_t iova);
static uint64_t arm_smmu_iova_to_pte(struct iommu_domain *domain,
dma_addr_t iova);
static int arm_smmu_enable_s1_translations(struct arm_smmu_domain *smmu_domain);
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
return container_of(dom, struct arm_smmu_domain, domain);
}
static void parse_driver_options(struct arm_smmu_device *smmu)
{
int i = 0;
do {
if (of_property_read_bool(smmu->dev->of_node,
arm_smmu_options[i].prop)) {
smmu->options |= arm_smmu_options[i].opt;
dev_dbg(smmu->dev, "option %s\n",
arm_smmu_options[i].prop);
}
} while (arm_smmu_options[++i].opt);
}
static struct device_node *dev_get_dev_node(struct device *dev)
{
if (dev_is_pci(dev)) {
struct pci_bus *bus = to_pci_dev(dev)->bus;
while (!pci_is_root_bus(bus))
bus = bus->parent;
return bus->bridge->parent->of_node;
}
return dev->of_node;
}
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
struct device_node *dev_node)
{
struct rb_node *node = smmu->masters.rb_node;
while (node) {
struct arm_smmu_master *master;
master = container_of(node, struct arm_smmu_master, node);
if (dev_node < master->of_node)
node = node->rb_left;
else if (dev_node > master->of_node)
node = node->rb_right;
else
return master;
}
return NULL;
}
static struct arm_smmu_master *find_smmu_master_by_sid(
struct arm_smmu_device *smmu, u32 sid)
{
struct rb_node *next;
struct arm_smmu_master *master;
struct arm_smmu_master_cfg *cfg;
int i;
next = rb_first(&smmu->masters);
for (; next; next = rb_next(next)) {
master = container_of(next, struct arm_smmu_master, node);
cfg = &master->cfg;
for (i = 0; i < cfg->num_streamids; i++) {
if (cfg->streamids[i] == sid)
return master;
}
}
return NULL;
}
static struct arm_smmu_master_cfg *
find_smmu_master_cfg(struct device *dev)
{
struct arm_smmu_master_cfg *cfg = NULL;
struct iommu_group *group = iommu_group_get(dev);
if (group) {
cfg = iommu_group_get_iommudata(group);
iommu_group_put(group);
}
return cfg;
}
static int insert_smmu_master(struct arm_smmu_device *smmu,
struct arm_smmu_master *master)
{
struct rb_node **new, *parent;
new = &smmu->masters.rb_node;
parent = NULL;
while (*new) {
struct arm_smmu_master *this
= container_of(*new, struct arm_smmu_master, node);
parent = *new;
if (master->of_node < this->of_node)
new = &((*new)->rb_left);
else if (master->of_node > this->of_node)
new = &((*new)->rb_right);
else
return -EEXIST;
}
rb_link_node(&master->node, parent, new);
rb_insert_color(&master->node, &smmu->masters);
return 0;
}
struct iommus_entry {
struct list_head list;
struct device_node *node;
u16 streamids[MAX_MASTER_STREAMIDS];
int num_sids;
};
static int register_smmu_master(struct arm_smmu_device *smmu,
struct iommus_entry *entry)
{
int i;
struct arm_smmu_master *master;
struct device *dev = smmu->dev;
master = find_smmu_master(smmu, entry->node);
if (master) {
dev_err(dev,
"rejecting multiple registrations for master device %s\n",
entry->node->name);
return -EBUSY;
}
if (entry->num_sids > MAX_MASTER_STREAMIDS) {
dev_err(dev,
"reached maximum number (%d) of stream IDs for master device %s\n",
MAX_MASTER_STREAMIDS, entry->node->name);
return -ENOSPC;
}
master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
if (!master)
return -ENOMEM;
master->of_node = entry->node;
master->cfg.num_streamids = entry->num_sids;
for (i = 0; i < master->cfg.num_streamids; ++i)
master->cfg.streamids[i] = entry->streamids[i];
return insert_smmu_master(smmu, master);
}
static int arm_smmu_parse_iommus_properties(struct arm_smmu_device *smmu)
{
struct arm_iommus_node *node, *nex;
list_for_each_entry_safe(node, nex, &iommus_nodes, list) {
struct iommus_entry *entry, *next;
struct arm_iommus_spec *iommuspec_node, *n;
LIST_HEAD(iommus);
int node_found = 0;
list_for_each_entry_safe(iommuspec_node, n,
&node->iommuspec_list, list) {
if (iommuspec_node->iommu_spec.np != smmu->dev->of_node)
continue;
/*
* Since each master node will have iommu spec(s) of the
* same device, we can delete this master node after
* the devices are registered.
*/
node_found = 1;
list_for_each_entry(entry, &iommus, list)
if (entry->node == node->master)
break;
if (&entry->list == &iommus) {
entry = devm_kzalloc(smmu->dev, sizeof(*entry),
GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->node = node->master;
list_add(&entry->list, &iommus);
}
switch (iommuspec_node->iommu_spec.args_count) {
case 0:
/*
* For pci-e devices the SIDs are provided
* at device attach time.
*/
break;
case 1:
entry->num_sids++;
entry->streamids[entry->num_sids - 1]
= iommuspec_node->iommu_spec.args[0];
break;
default:
BUG();
}
list_del(&iommuspec_node->list);
kfree(iommuspec_node);
}
list_for_each_entry_safe(entry, next, &iommus, list) {
int rc = register_smmu_master(smmu, entry);
if (rc)
dev_err(smmu->dev, "Couldn't register %s\n",
entry->node->name);
list_del(&entry->list);
devm_kfree(smmu->dev, entry);
}
if (node_found) {
list_del(&node->list);
kfree(node);
}
}
return 0;
}
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
{
struct arm_smmu_device *smmu;
struct arm_smmu_master *master = NULL;
struct device_node *dev_node = dev_get_dev_node(dev);
spin_lock(&arm_smmu_devices_lock);
list_for_each_entry(smmu, &arm_smmu_devices, list) {
master = find_smmu_master(smmu, dev_node);
if (master)
break;
}
spin_unlock(&arm_smmu_devices_lock);
return master ? smmu : NULL;
}
static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
int idx;
do {
idx = find_next_zero_bit(map, end, start);
if (idx == end)
return -ENOSPC;
} while (test_and_set_bit(idx, map));
return idx;
}
static int __arm_smmu_set_bitmap(unsigned long *map, int idx)
{
return test_and_set_bit(idx, map);
}
static struct static_cbndx_entry *arm_smmu_get_static_entry_from_sid(
struct arm_smmu_device *smmu, int sid)
{
struct static_cbndx_entry *entry;
list_for_each_entry(entry, &smmu->static_cbndx_list, list) {
if (entry->sid == sid)
return entry;
}
return NULL;
}
static struct static_cbndx_entry *arm_smmu_get_static_entry_from_context(
struct arm_smmu_device *smmu, int idx)
{
struct static_cbndx_entry *entry;
list_for_each_entry(entry, &smmu->static_cbndx_list, list) {
if (entry->type == TYPE_TRANS && entry->cbndx == idx)
return entry;
}
return NULL;
}
static struct static_cbndx_entry *arm_smmu_get_static_entry_from_smr(
struct arm_smmu_device *smmu, int idx)
{
struct static_cbndx_entry *entry;
list_for_each_entry(entry, &smmu->static_cbndx_list, list) {
if (entry->smr_idx == idx)
return entry;
}
return NULL;
}
static int arm_smmu_alloc_smr_idx(struct arm_smmu_device *smmu, int start,
int end, int sid)
{
struct static_cbndx_entry *entry = arm_smmu_get_static_entry_from_sid(
smmu, sid);
if (entry)
return entry->smr_idx;
else
return __arm_smmu_alloc_bitmap(smmu->smr_map, start, end);
}
static int arm_smmu_alloc_context_idx(struct arm_smmu_device *smmu, int start,
int end, u16 *streamids, int num_streamids)
{
struct static_cbndx_entry *entry = NULL;
int i;
for (i = 0; i < num_streamids; ++i) {
entry = arm_smmu_get_static_entry_from_sid(smmu, streamids[i]);
if (entry && entry->type == TYPE_TRANS)
break;
}
if (entry && entry->type == TYPE_TRANS)
return entry->cbndx;
else
return __arm_smmu_alloc_bitmap(smmu->context_map, start, end);
}
static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
clear_bit(idx, map);
}
static void arm_smmu_free_smr_idx(struct arm_smmu_device *smmu, int idx)
{
struct static_cbndx_entry *entry = arm_smmu_get_static_entry_from_smr(
smmu, idx);
if (!entry)
__arm_smmu_free_bitmap(smmu->smr_map, idx);
}
static void arm_smmu_free_context_idx(struct arm_smmu_device *smmu, int idx)
{
struct static_cbndx_entry *entry =
arm_smmu_get_static_entry_from_context(smmu, idx);
if (!entry)
__arm_smmu_free_bitmap(smmu->context_map, idx);
}
static void arm_smmu_unprepare_clocks(struct arm_smmu_device *smmu)
{
int i;
for (i = smmu->num_clocks; i; --i)
clk_unprepare(smmu->clocks[i - 1]);
}
static int arm_smmu_prepare_clocks(struct arm_smmu_device *smmu)
{
int i, ret = 0;
for (i = 0; i < smmu->num_clocks; ++i) {
ret = clk_prepare(smmu->clocks[i]);
if (ret) {
dev_err(smmu->dev, "Couldn't prepare clock #%d\n", i);
while (i--)
clk_unprepare(smmu->clocks[i]);
break;
}
}
return ret;
}
static int arm_smmu_request_bus(struct arm_smmu_device *smmu)
{
if (!smmu->bus_client)
return 0;
return msm_bus_scale_client_update_request(smmu->bus_client, 1);
}
static int arm_smmu_unrequest_bus(struct arm_smmu_device *smmu)
{
if (!smmu->bus_client)
return 0;
return msm_bus_scale_client_update_request(smmu->bus_client, 0);
}
static int arm_smmu_disable_regulators(struct arm_smmu_device *smmu)
{
int ret = 0;
mutex_lock(&smmu->power_lock);
if (smmu->power_count == 0) {
WARN(1, "%s: Mismatched power count\n", dev_name(smmu->dev));
mutex_unlock(&smmu->power_lock);
return -EINVAL;
} else if (smmu->power_count > 1) {
smmu->power_count -= 1;
mutex_unlock(&smmu->power_lock);
return 0;
}
arm_smmu_unprepare_clocks(smmu);
arm_smmu_unrequest_bus(smmu);
if (smmu->gdsc) {
ret = regulator_disable_deferred(smmu->gdsc,
smmu->regulator_defer);
WARN(ret, "%s: Regulator disable failed\n",
dev_name(smmu->dev));
}
smmu->power_count = 0;
mutex_unlock(&smmu->power_lock);
return ret;
}
static int arm_smmu_enable_regulators(struct arm_smmu_device *smmu)
{
int ret;
mutex_lock(&smmu->power_lock);
if (smmu->power_count) {
smmu->power_count++;
mutex_unlock(&smmu->power_lock);
return 0;
}
if (smmu->gdsc) {
ret = regulator_enable(smmu->gdsc);
if (WARN_ON_ONCE(ret))
goto out;
}
ret = arm_smmu_request_bus(smmu);
if (WARN_ON_ONCE(ret))
goto out_reg;
ret = arm_smmu_prepare_clocks(smmu);
if (WARN_ON_ONCE(ret))
goto out_bus;
smmu->power_count = 1;
mutex_unlock(&smmu->power_lock);
return ret;
out_bus:
arm_smmu_unrequest_bus(smmu);
out_reg:
if (smmu->gdsc)
regulator_disable(smmu->gdsc);
out:
mutex_unlock(&smmu->power_lock);
return ret;
}
static int arm_smmu_enable_clocks(struct arm_smmu_device *smmu)
{
int ret = 0;
ret = arm_smmu_enable_regulators(smmu);
if (unlikely(ret))
return ret;
ret = arm_smmu_enable_clocks_atomic(smmu);
if (unlikely(ret))
arm_smmu_disable_regulators(smmu);
return ret;
}
static void arm_smmu_disable_clocks(struct arm_smmu_device *smmu)
{
arm_smmu_disable_clocks_atomic(smmu);
arm_smmu_disable_regulators(smmu);
}
/* Clocks must be prepared before this (arm_smmu_prepare_clocks) */
static int arm_smmu_enable_clocks_atomic(struct arm_smmu_device *smmu)
{
int i, ret = 0;
unsigned long flags;
spin_lock_irqsave(&smmu->clock_refs_lock, flags);
if (smmu->clock_refs_count++ > 0) {
spin_unlock_irqrestore(&smmu->clock_refs_lock, flags);
return 0;
}
for (i = 0; i < smmu->num_clocks; ++i) {
ret = clk_enable(smmu->clocks[i]);
if (WARN_ON_ONCE(ret)) {
dev_err(smmu->dev, "Couldn't enable clock #%d\n", i);
while (i--)
clk_disable(smmu->clocks[i]);
smmu->clock_refs_count--;
break;
}
}
spin_unlock_irqrestore(&smmu->clock_refs_lock, flags);
return ret;
}
/* Clocks should be unprepared after this (arm_smmu_unprepare_clocks) */
static void arm_smmu_disable_clocks_atomic(struct arm_smmu_device *smmu)
{
int i;
unsigned long flags;
spin_lock_irqsave(&smmu->clock_refs_lock, flags);
if (smmu->clock_refs_count-- > 1) {
spin_unlock_irqrestore(&smmu->clock_refs_lock, flags);
return;
}
for (i = smmu->num_clocks; i; --i)
clk_disable(smmu->clocks[i - 1]);
spin_unlock_irqrestore(&smmu->clock_refs_lock, flags);
}
/* Wait for any pending TLB invalidations to complete */
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
{
int count = 0;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
& sTLBGSTATUS_GSACTIVE) {
cpu_relax();
if (++count == TLB_LOOP_TIMEOUT) {
dev_err_ratelimited(smmu->dev,
"TLB sync timed out -- SMMU may be deadlocked\n");
return;
}
udelay(1);
}
}
static void arm_smmu_tlb_sync_cb(struct arm_smmu_device *smmu,
int cbndx)
{
void __iomem *base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cbndx);
u32 val;
writel_relaxed(0, base + ARM_SMMU_CB_TLBSYNC);
if (readl_poll_timeout_atomic(base + ARM_SMMU_CB_TLBSTATUS, val,
!(val & TLBSTATUS_SACTIVE),
0, TLB_LOOP_TIMEOUT))
dev_err(smmu->dev, "TLBSYNC timeout!\n");
}
static void arm_smmu_tlb_sync(void *cookie)
{
struct arm_smmu_domain *smmu_domain = cookie;
if (smmu_domain->smmu == NULL)
return;
arm_smmu_tlb_sync_cb(smmu_domain->smmu, smmu_domain->cfg.cbndx);
}
/* Must be called with clocks/regulators enabled */
static void arm_smmu_tlb_inv_context(void *cookie)
{
struct arm_smmu_domain *smmu_domain = cookie;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu = smmu_domain->smmu;
bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
void __iomem *base;
if (!smmu)
return;
if (stage1) {
base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
writel_relaxed(ARM_SMMU_CB_ASID(cfg),
base + ARM_SMMU_CB_S1_TLBIASID);
arm_smmu_tlb_sync_cb(smmu, cfg->cbndx);
} else {
base = ARM_SMMU_GR0(smmu);
writel_relaxed(ARM_SMMU_CB_VMID(cfg),
base + ARM_SMMU_GR0_TLBIVMID);
__arm_smmu_tlb_sync(smmu);
}
}
/* Must be called with clocks/regulators enabled */
static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
bool leaf, void *cookie)
{
struct arm_smmu_domain *smmu_domain = cookie;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu = smmu_domain->smmu;
bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
void __iomem *reg;
int atomic_ctx = smmu_domain->attributes & (1 << DOMAIN_ATTR_ATOMIC);
BUG_ON(atomic_ctx && !smmu);
if (!smmu)
return;
if (stage1) {
reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
iova &= ~12UL;
iova |= ARM_SMMU_CB_ASID(cfg);
writel_relaxed(iova, reg);
#ifdef CONFIG_64BIT
} else {
iova >>= 12;
iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
writeq_relaxed(iova, reg);
#endif
}
#ifdef CONFIG_64BIT
} else if (smmu->version == ARM_SMMU_V2) {
reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
ARM_SMMU_CB_S2_TLBIIPAS2;
writeq_relaxed(iova >> 12, reg);
#endif
} else {
reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
}
}
static void arm_smmu_tlbi_domain(struct iommu_domain *domain)
{
arm_smmu_tlb_inv_context(to_smmu_domain(domain));
}
static int arm_smmu_enable_config_clocks(struct iommu_domain *domain)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
return arm_smmu_enable_clocks(smmu_domain->smmu);
}
static void arm_smmu_disable_config_clocks(struct iommu_domain *domain)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
arm_smmu_disable_clocks(smmu_domain->smmu);
}
struct arm_smmu_secure_pool_chunk {
void *addr;
size_t size;
struct list_head list;
};
static void *arm_smmu_secure_pool_remove(struct arm_smmu_domain *smmu_domain,
size_t size)
{
struct arm_smmu_secure_pool_chunk *it;
list_for_each_entry(it, &smmu_domain->secure_pool_list, list) {
if (it->size == size) {
void *addr = it->addr;
list_del(&it->list);
kfree(it);
return addr;
}
}
return NULL;
}
static int arm_smmu_secure_pool_add(struct arm_smmu_domain *smmu_domain,
void *addr, size_t size)
{
struct arm_smmu_secure_pool_chunk *chunk;
chunk = kmalloc(sizeof(*chunk), GFP_ATOMIC);
if (!chunk)
return -ENOMEM;
chunk->addr = addr;
chunk->size = size;
memset(addr, 0, size);
list_add(&chunk->list, &smmu_domain->secure_pool_list);
return 0;
}
static void arm_smmu_secure_pool_destroy(struct arm_smmu_domain *smmu_domain)
{
struct arm_smmu_secure_pool_chunk *it, *i;
list_for_each_entry_safe(it, i, &smmu_domain->secure_pool_list, list) {
arm_smmu_unprepare_pgtable(smmu_domain, it->addr, it->size);
/* pages will be freed later (after being unassigned) */
list_del(&it->list);
kfree(it);
}
}
static void *arm_smmu_alloc_pages_exact(void *cookie,
size_t size, gfp_t gfp_mask)
{
void *ret;
struct arm_smmu_domain *smmu_domain = cookie;
if (!arm_smmu_is_master_side_secure(smmu_domain))
return alloc_pages_exact(size, gfp_mask);
ret = arm_smmu_secure_pool_remove(smmu_domain, size);
if (ret)
return ret;
ret = alloc_pages_exact(size, gfp_mask);
if (ret)
arm_smmu_prepare_pgtable(ret, cookie);
return ret;
}
static void arm_smmu_free_pages_exact(void *cookie, void *virt, size_t size)
{
struct arm_smmu_domain *smmu_domain = cookie;
if (!arm_smmu_is_master_side_secure(smmu_domain)) {
free_pages_exact(virt, size);
return;
}
if (arm_smmu_secure_pool_add(smmu_domain, virt, size))
arm_smmu_unprepare_pgtable(smmu_domain, virt, size);
}
static struct iommu_gather_ops arm_smmu_gather_ops = {
.tlb_flush_all = arm_smmu_tlb_inv_context,
.tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
.tlb_sync = arm_smmu_tlb_sync,
.alloc_pages_exact = arm_smmu_alloc_pages_exact,
.free_pages_exact = arm_smmu_free_pages_exact,
};
static phys_addr_t arm_smmu_verify_fault(struct iommu_domain *domain,
dma_addr_t iova, u32 fsr)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu;
void __iomem *cb_base;
u64 sctlr, sctlr_orig;
phys_addr_t phys;
smmu = smmu_domain->smmu;
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
arm_smmu_halt_nowait(smmu);
writel_relaxed(RESUME_TERMINATE, cb_base + ARM_SMMU_CB_RESUME);
arm_smmu_wait_for_halt(smmu);
/* clear FSR to allow ATOS to log any faults */
writel_relaxed(fsr, cb_base + ARM_SMMU_CB_FSR);
/* disable stall mode momentarily */
sctlr_orig = readl_relaxed(cb_base + ARM_SMMU_CB_SCTLR);
sctlr = sctlr_orig & ~SCTLR_CFCFG;
writel_relaxed(sctlr, cb_base + ARM_SMMU_CB_SCTLR);
phys = arm_smmu_iova_to_phys_hard_no_halt(domain, iova);
if (!phys) {
dev_err(smmu->dev,
"ATOS failed. Will issue a TLBIALL and try again...\n");
arm_smmu_tlb_inv_context(smmu_domain);
phys = arm_smmu_iova_to_phys_hard_no_halt(domain, iova);
if (phys)
dev_err(smmu->dev,
"ATOS succeeded this time. Maybe we missed a TLB invalidation while messing with page tables earlier??\n");
else
dev_err(smmu->dev,
"ATOS still failed. If the page tables look good (check the software table walk) then hardware might be misbehaving.\n");
}
/* restore SCTLR */
writel_relaxed(sctlr_orig, cb_base + ARM_SMMU_CB_SCTLR);
arm_smmu_resume(smmu);
return phys;
}
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
int flags, ret, tmp;
u32 fsr, fsynr, resume;
unsigned long iova, far;
struct iommu_domain *domain = dev;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu;
void __iomem *cb_base;
bool ctx_hang_errata;
bool fatal_asf;
void __iomem *gr1_base;
phys_addr_t phys_soft;
u32 sid;
bool non_fatal_fault = smmu_domain->non_fatal_faults;
struct arm_smmu_master *master;
static DEFINE_RATELIMIT_STATE(_rs,
DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
mutex_lock(&smmu_domain->init_mutex);
smmu = smmu_domain->smmu;
if (!smmu) {
ret = IRQ_HANDLED;
pr_err("took a fault on a detached domain (%p)\n", domain);
goto out_unlock;
}
ctx_hang_errata = smmu->options & ARM_SMMU_OPT_ERRATA_CTX_FAULT_HANG;
fatal_asf = smmu->options & ARM_SMMU_OPT_FATAL_ASF;
if (arm_smmu_enable_clocks(smmu)) {
ret = IRQ_NONE;
goto out_unlock;
}
gr1_base = ARM_SMMU_GR1(smmu);
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
if (!(fsr & FSR_FAULT)) {
arm_smmu_disable_clocks(smmu);
ret = IRQ_NONE;
goto out_unlock;
}
if (fatal_asf && (fsr & FSR_ASF)) {
dev_err(smmu->dev,
"Took an address size fault. Refusing to recover.\n");
BUG();
}
fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
if (fsr & FSR_TF)
flags |= IOMMU_FAULT_TRANSLATION;
if (fsr & FSR_PF)
flags |= IOMMU_FAULT_PERMISSION;
if (fsr & FSR_EF)
flags |= IOMMU_FAULT_EXTERNAL;
if (fsr & FSR_SS)
flags |= IOMMU_FAULT_TRANSACTION_STALLED;
far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
#ifdef CONFIG_64BIT
far |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI)) << 32;
#endif
iova = far;
phys_soft = arm_smmu_iova_to_phys(domain, iova);
sid = readl_relaxed(gr1_base + ARM_SMMU_GR1_CBFRSYNRA(cfg->cbndx));
sid &= 0xffff;
master = find_smmu_master_by_sid(smmu, sid);
tmp = report_iommu_fault(domain, smmu->dev, iova, flags);
if (!tmp || (tmp == -EBUSY)) {
dev_dbg(smmu->dev,
"Context fault handled by client: iova=0x%08lx, fsr=0x%x, fsynr=0x%x, cb=%d\n",
iova, fsr, fsynr, cfg->cbndx);
dev_dbg(smmu->dev,
"soft iova-to-phys=%pa\n", &phys_soft);
ret = IRQ_HANDLED;
resume = RESUME_TERMINATE;
} else {
phys_addr_t phys_atos = arm_smmu_verify_fault(domain, iova,
fsr);
if (__ratelimit(&_rs)) {
dev_err(smmu->dev, "Context Fault for %s\n",
master ? master->of_node->name : "Unknown SID");
dev_err(smmu->dev,
"Unhandled context fault: iova=0x%08lx, fsr=0x%x, fsynr=0x%x, cb=%d\n",
iova, fsr, fsynr, cfg->cbndx);
dev_err(smmu->dev, "FAR = %016lx\n",
(unsigned long)far);
dev_err(smmu->dev,
"FSR = %08x [%s%s%s%s%s%s%s%s%s]\n",
fsr,
(fsr & 0x02) ? "TF " : "",
(fsr & 0x04) ? "AFF " : "",
(fsr & 0x08) ? "PF " : "",
(fsr & 0x10) ? "EF " : "",
(fsr & 0x20) ? "TLBMCF " : "",
(fsr & 0x40) ? "TLBLKF " : "",
(fsr & 0x80) ? "MHF " : "",
(fsr & 0x40000000) ? "SS " : "",
(fsr & 0x80000000) ? "MULTI " : "");
dev_err(smmu->dev,
"soft iova-to-phys=%pa\n", &phys_soft);
if (!phys_soft)
dev_err(smmu->dev,
"SOFTWARE TABLE WALK FAILED! Looks like %s accessed an unmapped address!\n",
dev_name(smmu->dev));
dev_err(smmu->dev,
"hard iova-to-phys (ATOS)=%pa\n", &phys_atos);
dev_err(smmu->dev, "SID=0x%x\n", sid);
}
ret = IRQ_NONE;
resume = RESUME_TERMINATE;
if (!non_fatal_fault) {
dev_err(smmu->dev,
"Unhandled context faults are fatal on this domain. Going down now...\n");
BUG();
}
}
/*
* If the client returns -EBUSY, do not clear FSR and do not RESUME
* if stalled. This is required to keep the IOMMU client stalled on
* the outstanding fault. This gives the client a chance to take any
* debug action and then terminate the stalled transaction.
* So, the sequence in case of stall on fault should be:
* 1) Do not clear FSR or write to RESUME here
* 2) Client takes any debug action
* 3) Client terminates the stalled transaction and resumes the IOMMU
* 4) Client clears FSR. The FSR should only be cleared after 3) and
* not before so that the fault remains outstanding. This ensures
* SCTLR.HUPCF has the desired effect if subsequent transactions also
* need to be terminated.
*/
if (tmp != -EBUSY) {
/* Clear the faulting FSR */
writel_relaxed(fsr, cb_base + ARM_SMMU_CB_FSR);
/*
* Barrier required to ensure that the FSR is cleared
* before resuming SMMU operation
*/
wmb();
/* Retry or terminate any stalled transactions */
if (fsr & FSR_SS) {
if (ctx_hang_errata)
arm_smmu_tlb_sync_cb(smmu, cfg->cbndx);
writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
}
}
arm_smmu_disable_clocks(smmu);
out_unlock:
mutex_unlock(&smmu_domain->init_mutex);
return ret;
}
static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
struct arm_smmu_device *smmu = dev;
void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
if (arm_smmu_enable_clocks(smmu))
return IRQ_NONE;
gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
if (!gfsr) {
arm_smmu_disable_clocks(smmu);
return IRQ_NONE;
}
dev_err_ratelimited(smmu->dev,
"Unexpected global fault, this could be serious\n");
dev_err_ratelimited(smmu->dev,
"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
gfsr, gfsynr0, gfsynr1, gfsynr2);
writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
arm_smmu_disable_clocks(smmu);
return IRQ_HANDLED;
}
static void arm_smmu_trigger_fault(struct iommu_domain *domain,
unsigned long flags)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu;
void __iomem *cb_base;
if (!smmu_domain->smmu) {
pr_err("Can't trigger faults on non-attached domains\n");
return;
}
smmu = smmu_domain->smmu;
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
if (arm_smmu_enable_clocks(smmu))
return;
dev_err(smmu->dev, "Writing 0x%lx to FSRRESTORE on cb %d\n",
flags, cfg->cbndx);
writel_relaxed(flags, cb_base + ARM_SMMU_CB_FSRRESTORE);
/* give the interrupt time to fire... */
msleep(1000);
arm_smmu_disable_clocks(smmu);
}
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
struct io_pgtable_cfg *pgtbl_cfg)
{
u32 reg;
u64 reg64;
bool stage1;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu = smmu_domain->smmu;
void __iomem *cb_base, *gr1_base;
gr1_base = ARM_SMMU_GR1(smmu);
stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
if (smmu->version > ARM_SMMU_V1) {
/*
* CBA2R.
* *Must* be initialised before CBAR thanks to VMID16
* architectural oversight affected some implementations.
*/
#ifdef CONFIG_64BIT
reg = CBA2R_RW64_64BIT;
if (!arm_smmu_has_secure_vmid(smmu_domain) &&
arm_smmu_is_static_cb(smmu))
msm_tz_set_cb_format(smmu->sec_id, cfg->cbndx);
#else
reg = CBA2R_RW64_32BIT;
#endif
writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
}
/* CBAR */
reg = cfg->cbar;
if (smmu->version == ARM_SMMU_V1)
reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
/*
* Use the weakest shareability/memory types, so they are
* overridden by the ttbcr/pte.
*/
if (stage1) {
reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
}
reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
/* TTBRs */
if (stage1) {
reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR1);
} else {
reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
}
/* TTBCR */
if (stage1) {
reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
if (smmu->version > ARM_SMMU_V1) {
reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
}
} else {
reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
}
/* MAIRs (stage-1 only) */
if (stage1) {
reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
}
if (smmu->model == SMMU_MODEL_QCOM_V2) {
reg = ACTLR_QCOM_ISH << ACTLR_QCOM_ISH_SHIFT |
ACTLR_QCOM_OSH << ACTLR_QCOM_OSH_SHIFT |
ACTLR_QCOM_NSH << ACTLR_QCOM_NSH_SHIFT;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
}
/* SCTLR */
reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_EAE_SBOP;
if (smmu_domain->attributes & (1 << DOMAIN_ATTR_CB_STALL_DISABLE)) {
reg &= ~SCTLR_CFCFG;
reg |= SCTLR_HUPCF;
}
if ((!(smmu_domain->attributes & (1 << DOMAIN_ATTR_S1_BYPASS)) &&
!(smmu_domain->attributes & (1 << DOMAIN_ATTR_EARLY_MAP))) ||
!stage1)
reg |= SCTLR_M;
if (stage1)
reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
reg |= SCTLR_E;
#endif
writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
}
static bool arm_smmu_is_static_cb(struct arm_smmu_device *smmu)
{
return smmu->options & ARM_SMMU_OPT_STATIC_CB;
}
static bool arm_smmu_has_secure_vmid(struct arm_smmu_domain *smmu_domain)
{
return smmu_domain->secure_vmid != VMID_INVAL;
}
static bool arm_smmu_is_slave_side_secure(struct arm_smmu_domain *smmu_domain)
{
return arm_smmu_has_secure_vmid(smmu_domain)
&& smmu_domain->slave_side_secure;
}
static bool arm_smmu_is_master_side_secure(struct arm_smmu_domain *smmu_domain)
{
return arm_smmu_has_secure_vmid(smmu_domain)
&& !smmu_domain->slave_side_secure;
}
static void arm_smmu_secure_domain_lock(struct arm_smmu_domain *smmu_domain)
{
if (arm_smmu_is_master_side_secure(smmu_domain))
mutex_lock(&smmu_domain->assign_lock);
}
static void arm_smmu_secure_domain_unlock(struct arm_smmu_domain *smmu_domain)
{
if (arm_smmu_is_master_side_secure(smmu_domain))
mutex_unlock(&smmu_domain->assign_lock);
}
static unsigned long arm_smmu_pgtbl_lock(struct arm_smmu_domain *smmu_domain)
{
unsigned long flags = 0;
if (arm_smmu_is_slave_side_secure(smmu_domain))
mutex_lock(&smmu_domain->pgtbl_mutex_lock);
else
spin_lock_irqsave(&smmu_domain->pgtbl_spin_lock, flags);
return flags;
}
static void arm_smmu_pgtbl_unlock(struct arm_smmu_domain *smmu_domain,
unsigned long flags)
{
if (arm_smmu_is_slave_side_secure(smmu_domain))
mutex_unlock(&smmu_domain->pgtbl_mutex_lock);
else
spin_unlock_irqrestore(&smmu_domain->pgtbl_spin_lock, flags);
}
static int arm_smmu_restore_sec_cfg(struct arm_smmu_device *smmu)
{
int ret;
u64 scm_ret = 0;
if (!arm_smmu_is_static_cb(smmu))
return 0;
ret = scm_restore_sec_cfg(smmu->sec_id, 0x0, &scm_ret);
if (ret || scm_ret) {
pr_err("scm call IOMMU_SECURE_CFG failed\n");
return -EINVAL;
}
return 0;
}
static bool is_iommu_pt_coherent(struct arm_smmu_domain *smmu_domain)
{
if (smmu_domain->attributes &
(1 << DOMAIN_ATTR_PAGE_TABLE_FORCE_COHERENT))
return true;
else if (smmu_domain->smmu && smmu_domain->smmu->dev)
return smmu_domain->smmu->dev->archdata.dma_coherent;
else
return false;
}
static int arm_smmu_init_domain_context(struct iommu_domain *domain,
struct arm_smmu_device *smmu,
struct arm_smmu_master_cfg *master_cfg)
{
iommu/arm-smmu: avoid calling request_irq in atomic context request_irq shouldn't be called from atomic context since it might sleep, but we're calling it with a spinlock held, resulting in: [ 9.172202] BUG: sleeping function called from invalid context at kernel/mm/slub.c:926 [ 9.182989] in_atomic(): 1, irqs_disabled(): 128, pid: 1, name: swapper/0 [ 9.189762] CPU: 1 PID: 1 Comm: swapper/0 Tainted: G W 3.10.40-gbc1b510b-38437-g55831d3bd9-dirty #97 [ 9.199757] [<c020c448>] (unwind_backtrace+0x0/0x11c) from [<c02097d0>] (show_stack+0x10/0x14) [ 9.208346] [<c02097d0>] (show_stack+0x10/0x14) from [<c0301d74>] (kmem_cache_alloc_trace+0x3c/0x210) [ 9.217543] [<c0301d74>] (kmem_cache_alloc_trace+0x3c/0x210) from [<c0276a48>] (request_threaded_irq+0x88/0x11c) [ 9.227702] [<c0276a48>] (request_threaded_irq+0x88/0x11c) from [<c0931ca4>] (arm_smmu_attach_dev+0x188/0x858) [ 9.237686] [<c0931ca4>] (arm_smmu_attach_dev+0x188/0x858) from [<c0212cd8>] (arm_iommu_attach_device+0x18/0xd0) [ 9.247837] [<c0212cd8>] (arm_iommu_attach_device+0x18/0xd0) from [<c093314c>] (arm_smmu_test_probe+0x68/0xd4) [ 9.257823] [<c093314c>] (arm_smmu_test_probe+0x68/0xd4) from [<c05aadd0>] (driver_probe_device+0x12c/0x330) [ 9.267629] [<c05aadd0>] (driver_probe_device+0x12c/0x330) from [<c05ab080>] (__driver_attach+0x68/0x8c) [ 9.277090] [<c05ab080>] (__driver_attach+0x68/0x8c) from [<c05a92d4>] (bus_for_each_dev+0x70/0x84) [ 9.286118] [<c05a92d4>] (bus_for_each_dev+0x70/0x84) from [<c05aa3b0>] (bus_add_driver+0x100/0x244) [ 9.295233] [<c05aa3b0>] (bus_add_driver+0x100/0x244) from [<c05ab5d0>] (driver_register+0x9c/0x124) [ 9.304347] [<c05ab5d0>] (driver_register+0x9c/0x124) from [<c0933088>] (arm_smmu_test_init+0x14/0x38) [ 9.313635] [<c0933088>] (arm_smmu_test_init+0x14/0x38) from [<c0200618>] (do_one_initcall+0xb8/0x160) [ 9.322926] [<c0200618>] (do_one_initcall+0xb8/0x160) from [<c1200b7c>] (kernel_init_freeable+0x108/0x1cc) [ 9.332564] [<c1200b7c>] (kernel_init_freeable+0x108/0x1cc) from [<c0b924b0>] (kernel_init+0xc/0xe4) [ 9.341675] [<c0b924b0>] (kernel_init+0xc/0xe4) from [<c0205e38>] (ret_from_fork+0x14/0x3c) Fix this by moving the request_irq out of the critical section. This should be okay since smmu_domain->smmu is still being protected by the critical section. Also, we still don't program the Stream Match Register until after registering our interrupt handler so we shouldn't be missing any interrupts. Cc: <stable@vger.kernel.org> Signed-off-by: Mitchel Humpherys <mitchelh@codeaurora.org> [will: code cleanup and fixed request_irq token parameter] Signed-off-by: Will Deacon <will.deacon@arm.com>
2014-07-30 18:58:13 +01:00
int irq, start, ret = 0;
unsigned long ias, oas;
iommu/arm-smmu: Correctly calculate and use the TTBR1 pagetable Due to an egregious misunderstanding of the specification it was thought that to do the TTBR1 matching correctly the sign extension bit needed to match the input address space. This is incorrect - the TTBR1 range is determined by the size of the TTBR1 space (in our case, the same as the input address space). For example if the input address size is 36, the effective range of the pagetables are: TTBR0: 0x00000000_00000000 - 0x0000000f_ffffffff TTBR1: 0xfffffff0_00000000 - 0xffffffff_ffffffff For its part the sign extension bit needs should be set based on the upstream bus size. If the device has a UBS of 49 then the sign extension bit is assumed by design to be 48 otherwise the driver needs to pick the highest available bit and reduce the input address space by 1. Because the client driver shouldn't need to know the upstream bus size, convention is to use a fully sign extended unsigned long address for TTBR1 mappings. If the sign extension bit is set lower than the upstream bus size some implementations assume that bits above the sign extension bit need to be zero and breaks the convention. Setting the sign extension bit correctly for the upstream bus size ensures that sign extension always works. The hardware will match an address to the TTBR1 if all the bits between the sign extension bit and the input address size are set to 1. We emulate this behavior in software when looking up a pagetable for a software operation. Change-Id: Ic0dedbad80c72f11bc8a7e6792f0e3c2f58bc674 Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org>
2017-05-10 15:22:09 -06:00
int sep = 0;
struct io_pgtable_ops *pgtbl_ops;
enum io_pgtable_fmt fmt;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
bool is_fast = smmu_domain->attributes & (1 << DOMAIN_ATTR_FAST);
unsigned long quirks =
smmu_domain->attributes & (1 << DOMAIN_ATTR_ENABLE_TTBR1) ?
IO_PGTABLE_QUIRK_ARM_TTBR1 : 0;
iommu/arm-smmu: avoid calling request_irq in atomic context request_irq shouldn't be called from atomic context since it might sleep, but we're calling it with a spinlock held, resulting in: [ 9.172202] BUG: sleeping function called from invalid context at kernel/mm/slub.c:926 [ 9.182989] in_atomic(): 1, irqs_disabled(): 128, pid: 1, name: swapper/0 [ 9.189762] CPU: 1 PID: 1 Comm: swapper/0 Tainted: G W 3.10.40-gbc1b510b-38437-g55831d3bd9-dirty #97 [ 9.199757] [<c020c448>] (unwind_backtrace+0x0/0x11c) from [<c02097d0>] (show_stack+0x10/0x14) [ 9.208346] [<c02097d0>] (show_stack+0x10/0x14) from [<c0301d74>] (kmem_cache_alloc_trace+0x3c/0x210) [ 9.217543] [<c0301d74>] (kmem_cache_alloc_trace+0x3c/0x210) from [<c0276a48>] (request_threaded_irq+0x88/0x11c) [ 9.227702] [<c0276a48>] (request_threaded_irq+0x88/0x11c) from [<c0931ca4>] (arm_smmu_attach_dev+0x188/0x858) [ 9.237686] [<c0931ca4>] (arm_smmu_attach_dev+0x188/0x858) from [<c0212cd8>] (arm_iommu_attach_device+0x18/0xd0) [ 9.247837] [<c0212cd8>] (arm_iommu_attach_device+0x18/0xd0) from [<c093314c>] (arm_smmu_test_probe+0x68/0xd4) [ 9.257823] [<c093314c>] (arm_smmu_test_probe+0x68/0xd4) from [<c05aadd0>] (driver_probe_device+0x12c/0x330) [ 9.267629] [<c05aadd0>] (driver_probe_device+0x12c/0x330) from [<c05ab080>] (__driver_attach+0x68/0x8c) [ 9.277090] [<c05ab080>] (__driver_attach+0x68/0x8c) from [<c05a92d4>] (bus_for_each_dev+0x70/0x84) [ 9.286118] [<c05a92d4>] (bus_for_each_dev+0x70/0x84) from [<c05aa3b0>] (bus_add_driver+0x100/0x244) [ 9.295233] [<c05aa3b0>] (bus_add_driver+0x100/0x244) from [<c05ab5d0>] (driver_register+0x9c/0x124) [ 9.304347] [<c05ab5d0>] (driver_register+0x9c/0x124) from [<c0933088>] (arm_smmu_test_init+0x14/0x38) [ 9.313635] [<c0933088>] (arm_smmu_test_init+0x14/0x38) from [<c0200618>] (do_one_initcall+0xb8/0x160) [ 9.322926] [<c0200618>] (do_one_initcall+0xb8/0x160) from [<c1200b7c>] (kernel_init_freeable+0x108/0x1cc) [ 9.332564] [<c1200b7c>] (kernel_init_freeable+0x108/0x1cc) from [<c0b924b0>] (kernel_init+0xc/0xe4) [ 9.341675] [<c0b924b0>] (kernel_init+0xc/0xe4) from [<c0205e38>] (ret_from_fork+0x14/0x3c) Fix this by moving the request_irq out of the critical section. This should be okay since smmu_domain->smmu is still being protected by the critical section. Also, we still don't program the Stream Match Register until after registering our interrupt handler so we shouldn't be missing any interrupts. Cc: <stable@vger.kernel.org> Signed-off-by: Mitchel Humpherys <mitchelh@codeaurora.org> [will: code cleanup and fixed request_irq token parameter] Signed-off-by: Will Deacon <will.deacon@arm.com>
2014-07-30 18:58:13 +01:00
if (smmu_domain->smmu)
goto out;
iommu/arm-smmu: avoid calling request_irq in atomic context request_irq shouldn't be called from atomic context since it might sleep, but we're calling it with a spinlock held, resulting in: [ 9.172202] BUG: sleeping function called from invalid context at kernel/mm/slub.c:926 [ 9.182989] in_atomic(): 1, irqs_disabled(): 128, pid: 1, name: swapper/0 [ 9.189762] CPU: 1 PID: 1 Comm: swapper/0 Tainted: G W 3.10.40-gbc1b510b-38437-g55831d3bd9-dirty #97 [ 9.199757] [<c020c448>] (unwind_backtrace+0x0/0x11c) from [<c02097d0>] (show_stack+0x10/0x14) [ 9.208346] [<c02097d0>] (show_stack+0x10/0x14) from [<c0301d74>] (kmem_cache_alloc_trace+0x3c/0x210) [ 9.217543] [<c0301d74>] (kmem_cache_alloc_trace+0x3c/0x210) from [<c0276a48>] (request_threaded_irq+0x88/0x11c) [ 9.227702] [<c0276a48>] (request_threaded_irq+0x88/0x11c) from [<c0931ca4>] (arm_smmu_attach_dev+0x188/0x858) [ 9.237686] [<c0931ca4>] (arm_smmu_attach_dev+0x188/0x858) from [<c0212cd8>] (arm_iommu_attach_device+0x18/0xd0) [ 9.247837] [<c0212cd8>] (arm_iommu_attach_device+0x18/0xd0) from [<c093314c>] (arm_smmu_test_probe+0x68/0xd4) [ 9.257823] [<c093314c>] (arm_smmu_test_probe+0x68/0xd4) from [<c05aadd0>] (driver_probe_device+0x12c/0x330) [ 9.267629] [<c05aadd0>] (driver_probe_device+0x12c/0x330) from [<c05ab080>] (__driver_attach+0x68/0x8c) [ 9.277090] [<c05ab080>] (__driver_attach+0x68/0x8c) from [<c05a92d4>] (bus_for_each_dev+0x70/0x84) [ 9.286118] [<c05a92d4>] (bus_for_each_dev+0x70/0x84) from [<c05aa3b0>] (bus_add_driver+0x100/0x244) [ 9.295233] [<c05aa3b0>] (bus_add_driver+0x100/0x244) from [<c05ab5d0>] (driver_register+0x9c/0x124) [ 9.304347] [<c05ab5d0>] (driver_register+0x9c/0x124) from [<c0933088>] (arm_smmu_test_init+0x14/0x38) [ 9.313635] [<c0933088>] (arm_smmu_test_init+0x14/0x38) from [<c0200618>] (do_one_initcall+0xb8/0x160) [ 9.322926] [<c0200618>] (do_one_initcall+0xb8/0x160) from [<c1200b7c>] (kernel_init_freeable+0x108/0x1cc) [ 9.332564] [<c1200b7c>] (kernel_init_freeable+0x108/0x1cc) from [<c0b924b0>] (kernel_init+0xc/0xe4) [ 9.341675] [<c0b924b0>] (kernel_init+0xc/0xe4) from [<c0205e38>] (ret_from_fork+0x14/0x3c) Fix this by moving the request_irq out of the critical section. This should be okay since smmu_domain->smmu is still being protected by the critical section. Also, we still don't program the Stream Match Register until after registering our interrupt handler so we shouldn't be missing any interrupts. Cc: <stable@vger.kernel.org> Signed-off-by: Mitchel Humpherys <mitchelh@codeaurora.org> [will: code cleanup and fixed request_irq token parameter] Signed-off-by: Will Deacon <will.deacon@arm.com>
2014-07-30 18:58:13 +01:00
/*
* Mapping the requested stage onto what we support is surprisingly
* complicated, mainly because the spec allows S1+S2 SMMUs without
* support for nested translation. That means we end up with the
* following table:
*
* Requested Supported Actual
* S1 N S1
* S1 S1+S2 S1
* S1 S2 S2
* S1 S1 S1
* N N N
* N S1+S2 S2
* N S2 S2
* N S1 S1
*
* Note that you can't actually request stage-2 mappings.
*/
if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
switch (smmu_domain->stage) {
case ARM_SMMU_DOMAIN_S1:
cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
start = smmu->num_s2_context_banks;
ias = smmu->va_size;
oas = smmu->ipa_size;
iommu/arm-smmu: Correctly calculate and use the TTBR1 pagetable Due to an egregious misunderstanding of the specification it was thought that to do the TTBR1 matching correctly the sign extension bit needed to match the input address space. This is incorrect - the TTBR1 range is determined by the size of the TTBR1 space (in our case, the same as the input address space). For example if the input address size is 36, the effective range of the pagetables are: TTBR0: 0x00000000_00000000 - 0x0000000f_ffffffff TTBR1: 0xfffffff0_00000000 - 0xffffffff_ffffffff For its part the sign extension bit needs should be set based on the upstream bus size. If the device has a UBS of 49 then the sign extension bit is assumed by design to be 48 otherwise the driver needs to pick the highest available bit and reduce the input address space by 1. Because the client driver shouldn't need to know the upstream bus size, convention is to use a fully sign extended unsigned long address for TTBR1 mappings. If the sign extension bit is set lower than the upstream bus size some implementations assume that bits above the sign extension bit need to be zero and breaks the convention. Setting the sign extension bit correctly for the upstream bus size ensures that sign extension always works. The hardware will match an address to the TTBR1 if all the bits between the sign extension bit and the input address size are set to 1. We emulate this behavior in software when looking up a pagetable for a software operation. Change-Id: Ic0dedbad80c72f11bc8a7e6792f0e3c2f58bc674 Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org>
2017-05-10 15:22:09 -06:00
if (IS_ENABLED(CONFIG_64BIT)) {
fmt = ARM_64_LPAE_S1;
iommu/arm-smmu: Correctly calculate and use the TTBR1 pagetable Due to an egregious misunderstanding of the specification it was thought that to do the TTBR1 matching correctly the sign extension bit needed to match the input address space. This is incorrect - the TTBR1 range is determined by the size of the TTBR1 space (in our case, the same as the input address space). For example if the input address size is 36, the effective range of the pagetables are: TTBR0: 0x00000000_00000000 - 0x0000000f_ffffffff TTBR1: 0xfffffff0_00000000 - 0xffffffff_ffffffff For its part the sign extension bit needs should be set based on the upstream bus size. If the device has a UBS of 49 then the sign extension bit is assumed by design to be 48 otherwise the driver needs to pick the highest available bit and reduce the input address space by 1. Because the client driver shouldn't need to know the upstream bus size, convention is to use a fully sign extended unsigned long address for TTBR1 mappings. If the sign extension bit is set lower than the upstream bus size some implementations assume that bits above the sign extension bit need to be zero and breaks the convention. Setting the sign extension bit correctly for the upstream bus size ensures that sign extension always works. The hardware will match an address to the TTBR1 if all the bits between the sign extension bit and the input address size are set to 1. We emulate this behavior in software when looking up a pagetable for a software operation. Change-Id: Ic0dedbad80c72f11bc8a7e6792f0e3c2f58bc674 Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org>
2017-05-10 15:22:09 -06:00
if (quirks & IO_PGTABLE_QUIRK_ARM_TTBR1) {
/*
* When the UBS id is 5 we know that the bus
* size is 49 bits and that bit 48 is the fixed
* sign extension bit. For any other bus size
* we need to specify the sign extension bit
* and adjust the input size accordingly
*/
if (smmu->ubs == 5) {
sep = 48;
} else {
sep = ias - 1;
ias--;
}
}
} else
fmt = ARM_32_LPAE_S1;
break;
case ARM_SMMU_DOMAIN_NESTED:
/*
* We will likely want to change this if/when KVM gets
* involved.
*/
case ARM_SMMU_DOMAIN_S2:
cfg->cbar = CBAR_TYPE_S2_TRANS;
start = 0;
ias = smmu->ipa_size;
oas = smmu->pa_size;
if (IS_ENABLED(CONFIG_64BIT))
fmt = ARM_64_LPAE_S2;
else
fmt = ARM_32_LPAE_S2;
break;
default:
ret = -EINVAL;
goto out;
}
if (cfg->cbndx == INVALID_CBNDX) {
ret = arm_smmu_alloc_context_idx(smmu, start,
smmu->num_context_banks, master_cfg->streamids,
master_cfg->num_streamids);
if (IS_ERR_VALUE(ret))
goto out;
cfg->cbndx = ret;
}
if (smmu->version == ARM_SMMU_V1) {
cfg->irptndx = atomic_inc_return(&smmu->irptndx);
cfg->irptndx %= smmu->num_context_irqs;
} else {
cfg->irptndx = cfg->cbndx;
}
smmu_domain->smmu = smmu;
if (is_iommu_pt_coherent(smmu_domain))
quirks |= IO_PGTABLE_QUIRK_PAGE_TABLE_COHERENT;
if (arm_smmu_is_slave_side_secure(smmu_domain)) {
smmu_domain->pgtbl_cfg = (struct io_pgtable_cfg) {
.quirks = quirks,
.pgsize_bitmap = arm_smmu_ops.pgsize_bitmap,
.arm_msm_secure_cfg = {
.sec_id = smmu->sec_id,
.cbndx = cfg->cbndx,
},
.iommu_dev = smmu->dev,
};
fmt = ARM_MSM_SECURE;
} else {
smmu_domain->pgtbl_cfg = (struct io_pgtable_cfg) {
.quirks = quirks,
.pgsize_bitmap = arm_smmu_ops.pgsize_bitmap,
.ias = ias,
.oas = oas,
iommu/arm-smmu: Correctly calculate and use the TTBR1 pagetable Due to an egregious misunderstanding of the specification it was thought that to do the TTBR1 matching correctly the sign extension bit needed to match the input address space. This is incorrect - the TTBR1 range is determined by the size of the TTBR1 space (in our case, the same as the input address space). For example if the input address size is 36, the effective range of the pagetables are: TTBR0: 0x00000000_00000000 - 0x0000000f_ffffffff TTBR1: 0xfffffff0_00000000 - 0xffffffff_ffffffff For its part the sign extension bit needs should be set based on the upstream bus size. If the device has a UBS of 49 then the sign extension bit is assumed by design to be 48 otherwise the driver needs to pick the highest available bit and reduce the input address space by 1. Because the client driver shouldn't need to know the upstream bus size, convention is to use a fully sign extended unsigned long address for TTBR1 mappings. If the sign extension bit is set lower than the upstream bus size some implementations assume that bits above the sign extension bit need to be zero and breaks the convention. Setting the sign extension bit correctly for the upstream bus size ensures that sign extension always works. The hardware will match an address to the TTBR1 if all the bits between the sign extension bit and the input address size are set to 1. We emulate this behavior in software when looking up a pagetable for a software operation. Change-Id: Ic0dedbad80c72f11bc8a7e6792f0e3c2f58bc674 Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org>
2017-05-10 15:22:09 -06:00
.sep = sep,
.tlb = &arm_smmu_gather_ops,
.iommu_dev = smmu->dev,
.iova_base = domain->geometry.aperture_start,
.iova_end = domain->geometry.aperture_end,
};
}
if (is_fast)
fmt = ARM_V8L_FAST;
cfg->asid = cfg->cbndx + 1;
cfg->vmid = cfg->cbndx + 2;
pgtbl_ops = alloc_io_pgtable_ops(fmt, &smmu_domain->pgtbl_cfg,
smmu_domain);
if (!pgtbl_ops) {
ret = -ENOMEM;
goto out_clear_smmu;
}
/*
* assign any page table memory that might have been allocated
* during alloc_io_pgtable_ops
*/
if (arm_smmu_is_master_side_secure(smmu_domain)) {
arm_smmu_secure_domain_lock(smmu_domain);
arm_smmu_assign_table(smmu_domain);
arm_smmu_secure_domain_unlock(smmu_domain);
}
/* Initialise the context bank with our page table cfg */
arm_smmu_init_context_bank(smmu_domain, &smmu_domain->pgtbl_cfg);
/*
* Request context fault interrupt. Do this last to avoid the
* handler seeing a half-initialised domain state.
*/
irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
ret = request_threaded_irq(irq, NULL, arm_smmu_context_fault,
IRQF_ONESHOT | IRQF_SHARED,
"arm-smmu-context-fault", domain);
if (IS_ERR_VALUE(ret)) {
dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
cfg->irptndx, irq);
cfg->irptndx = INVALID_IRPTNDX;
}
/* Publish page table ops for map/unmap */
smmu_domain->pgtbl_ops = pgtbl_ops;
return 0;
out_clear_smmu:
smmu_domain->smmu = NULL;
out:
return ret;
}
static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_device *smmu = smmu_domain->smmu;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
void __iomem *cb_base;
int irq;
if (arm_smmu_enable_clocks(smmu_domain->smmu))
goto free_irqs;
/*
* Disable the context bank and free the page tables before freeing
* it.
*/
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
arm_smmu_disable_clocks(smmu_domain->smmu);
if (smmu_domain->pgtbl_ops) {
free_io_pgtable_ops(smmu_domain->pgtbl_ops);
/* unassign any freed page table memory */
if (arm_smmu_is_master_side_secure(smmu_domain)) {
arm_smmu_secure_domain_lock(smmu_domain);
arm_smmu_secure_pool_destroy(smmu_domain);
arm_smmu_unassign_table(smmu_domain);
arm_smmu_secure_domain_unlock(smmu_domain);
}
smmu_domain->pgtbl_ops = NULL;
}
free_irqs:
if (cfg->irptndx != INVALID_IRPTNDX) {
irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
free_irq(irq, domain);
}
arm_smmu_free_context_idx(smmu, cfg->cbndx);
iommu/arm-smmu: support mapping to unattached domains According to the IOMMU API, a domain doesn't necessarily need to be attached to an IOMMU device before setting up mappings on that domain. However, in the ARM SMMU driver we currently make the assumption that the domain has already been attached to an SMMU. We use this assumption for the following information: (1) To know whether this is a stage1 or stage2 mapping (2) To know whether we need to do an invalidate (ARM_SMMU_OPT_INVALIDATE_ON_MAP) (3) Address sanity checks based on the stage-1 and stage-2 sizes (which are determined by the SMMU configuration) (4) To call the correct cache maintenance routines based on the SMMU device pointer Handle (1) by assuming that the mapping is stage1 by default. If there's an SMMU attached we can check if this is a stage1 or stage2 mapping. This works for us at the moment because no one is setting up stage2 mappings in the kernel. Handle (2) by not invalidating on map if the domain isn't attached to an SMMU since we shouldn't have anything to invalidate in that case anyways. Handle (3) by skipping the sanity checks for unattached domains. Handle (4) by using the low-level caching APIs. Currently we don't even free up the context bank when the device is detached, presumably so that we don't have to set it up again on re-attach. This limits the number of domains that can be attached to an SMMU, even if they detach from it before the next one attaches. Remove this 1-to-1 domain-to-SMMU assumption by freeing up the "domain context" (context bank allocation, etc) on detach. CRs-Fixed: 752812 Change-Id: I990a11ed52381ce4ecea0f82b4c6e2d54e08f2d6 Signed-off-by: Mitchel Humpherys <mitchelh@codeaurora.org>
2014-11-11 17:08:57 -08:00
smmu_domain->smmu = NULL;
cfg->cbndx = INVALID_CBNDX;
cfg->irptndx = INVALID_IRPTNDX;
cfg->asid = INVALID_ASID;
cfg->vmid = INVALID_VMID;
}
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
{
struct arm_smmu_domain *smmu_domain;
if (type != IOMMU_DOMAIN_UNMANAGED)
return NULL;
/*
* Allocate the domain and initialise some of its data structures.
* We can't really do anything meaningful until we've added a
* master.
*/
smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
if (!smmu_domain)
return NULL;
smmu_domain->secure_vmid = VMID_INVAL;
INIT_LIST_HEAD(&smmu_domain->pte_info_list);
INIT_LIST_HEAD(&smmu_domain->unassign_list);
INIT_LIST_HEAD(&smmu_domain->secure_pool_list);
smmu_domain->cfg.cbndx = INVALID_CBNDX;
smmu_domain->cfg.irptndx = INVALID_IRPTNDX;
smmu_domain->cfg.asid = INVALID_ASID;
smmu_domain->cfg.vmid = INVALID_VMID;
mutex_init(&smmu_domain->init_mutex);
spin_lock_init(&smmu_domain->pgtbl_spin_lock);
mutex_init(&smmu_domain->assign_lock);
mutex_init(&smmu_domain->pgtbl_mutex_lock);
return &smmu_domain->domain;
}
static void arm_smmu_domain_free(struct iommu_domain *domain)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
/*
* Free the domain resources. We assume that all devices have
* already been detached.
*/
if (smmu_domain->pgtbl_ops) {
free_io_pgtable_ops(smmu_domain->pgtbl_ops);
/* unassign any freed page table memory */
if (arm_smmu_is_master_side_secure(smmu_domain)) {
arm_smmu_secure_domain_lock(smmu_domain);
arm_smmu_secure_pool_destroy(smmu_domain);
arm_smmu_unassign_table(smmu_domain);
arm_smmu_secure_domain_unlock(smmu_domain);
}
smmu_domain->pgtbl_ops = NULL;
}
kfree(smmu_domain);
}
static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
struct arm_smmu_master_cfg *cfg)
{
int i;
struct arm_smmu_smr *smrs;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
return 0;
if (cfg->smrs)
return -EEXIST;
smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
if (!smrs) {
dev_err(smmu->dev, "failed to allocate %d SMRs\n",
cfg->num_streamids);
return -ENOMEM;
}
/* Allocate the SMRs on the SMMU */
for (i = 0; i < cfg->num_streamids; ++i) {
int idx = arm_smmu_alloc_smr_idx(smmu, 0,
smmu->num_mapping_groups, cfg->streamids[i]);
if (IS_ERR_VALUE(idx)) {
dev_err(smmu->dev, "failed to allocate free SMR\n");
goto err_free_smrs;
}
smrs[i] = (struct arm_smmu_smr) {
.idx = idx,
.mask = 0, /* We don't currently share SMRs */
.id = cfg->streamids[i],
};
}
/* It worked! Now, poke the actual hardware */
for (i = 0; i < cfg->num_streamids; ++i) {
u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
smrs[i].mask << SMR_MASK_SHIFT;
writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
}
cfg->smrs = smrs;
return 0;
err_free_smrs:
while (--i >= 0)
arm_smmu_free_smr_idx(smmu, smrs[i].idx);
kfree(smrs);
return -ENOSPC;
}
static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
struct arm_smmu_master_cfg *cfg)
{
int i;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
struct arm_smmu_smr *smrs = cfg->smrs;
if (!smrs)
return;
/* Invalidate the SMRs before freeing back to the allocator */
for (i = 0; i < cfg->num_streamids; ++i) {
u8 idx = smrs[i].idx;
writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
arm_smmu_free_smr_idx(smmu, idx);
}
cfg->smrs = NULL;
kfree(smrs);
}
static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
struct arm_smmu_master_cfg *cfg)
{
int i, ret;
struct arm_smmu_device *smmu = smmu_domain->smmu;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
/* Devices in an IOMMU group may already be configured */
ret = arm_smmu_master_configure_smrs(smmu, cfg);
if (ret)
return ret == -EEXIST ? 0 : ret;
for (i = 0; i < cfg->num_streamids; ++i) {
u32 idx, s2cr;
idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
s2cr = S2CR_TYPE_TRANS |
(smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
}
return 0;
}
static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
struct arm_smmu_master_cfg *cfg)
{
int i;
struct arm_smmu_device *smmu = smmu_domain->smmu;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
/* An IOMMU group is torn down by the first device to be removed */
if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
return;
/*
* We *must* clear the S2CR first, because freeing the SMR means
* that it can be re-allocated immediately.
*/
if (arm_smmu_enable_clocks(smmu))
return;
for (i = 0; i < cfg->num_streamids; ++i) {
u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
writel_relaxed(S2CR_TYPE_BYPASS,
gr0_base + ARM_SMMU_GR0_S2CR(idx));
}
arm_smmu_master_free_smrs(smmu, cfg);
arm_smmu_disable_clocks(smmu);
}
static void arm_smmu_impl_def_programming(struct arm_smmu_device *smmu)
{
int i;
struct arm_smmu_impl_def_reg *regs = smmu->impl_def_attach_registers;
arm_smmu_halt(smmu);
for (i = 0; i < smmu->num_impl_def_attach_registers; ++i)
writel_relaxed(regs[i].value,
ARM_SMMU_GR0(smmu) + regs[i].offset);
arm_smmu_resume(smmu);
}
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
static int arm_smmu_attach_dynamic(struct iommu_domain *domain,
struct arm_smmu_device *smmu)
{
int ret;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
enum io_pgtable_fmt fmt;
struct io_pgtable_ops *pgtbl_ops = NULL;
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
if (!(smmu->options & ARM_SMMU_OPT_DYNAMIC)) {
dev_err(smmu->dev, "dynamic domains not supported\n");
return -EPERM;
}
if (smmu_domain->smmu != NULL) {
dev_err(smmu->dev, "domain is already attached\n");
return -EBUSY;
}
if (smmu_domain->cfg.cbndx >= smmu->num_context_banks) {
dev_err(smmu->dev, "invalid context bank\n");
return -ENODEV;
}
if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
smmu_domain->cfg.cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
} else if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) {
smmu_domain->cfg.cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
} else {
/* dynamic only makes sense for S1. */
return -EINVAL;
}
smmu_domain->pgtbl_cfg = (struct io_pgtable_cfg) {
.pgsize_bitmap = arm_smmu_ops.pgsize_bitmap,
.ias = smmu->va_size,
.oas = smmu->ipa_size,
.tlb = &arm_smmu_gather_ops,
.iommu_dev = smmu->dev,
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
};
fmt = IS_ENABLED(CONFIG_64BIT) ? ARM_64_LPAE_S1 : ARM_32_LPAE_S1;
pgtbl_ops = alloc_io_pgtable_ops(fmt, &smmu_domain->pgtbl_cfg,
smmu_domain);
if (!pgtbl_ops)
return -ENOMEM;
/*
* assign any page table memory that might have been allocated
* during alloc_io_pgtable_ops
*/
if (arm_smmu_is_master_side_secure(smmu_domain)) {
arm_smmu_secure_domain_lock(smmu_domain);
arm_smmu_assign_table(smmu_domain);
arm_smmu_secure_domain_unlock(smmu_domain);
}
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
cfg->vmid = cfg->cbndx + 2;
smmu_domain->smmu = smmu;
mutex_lock(&smmu->attach_lock);
/* try to avoid reusing an old ASID right away */
ret = idr_alloc_cyclic(&smmu->asid_idr, domain,
smmu->num_context_banks + 2,
MAX_ASID + 1, GFP_KERNEL);
if (ret < 0) {
dev_err_ratelimited(smmu->dev,
"dynamic ASID allocation failed: %d\n", ret);
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
goto out;
}
smmu_domain->cfg.asid = ret;
smmu_domain->smmu = smmu;
smmu_domain->pgtbl_ops = pgtbl_ops;
ret = 0;
out:
if (ret) {
free_io_pgtable_ops(pgtbl_ops);
/* unassign any freed page table memory */
if (arm_smmu_is_master_side_secure(smmu_domain)) {
arm_smmu_secure_domain_lock(smmu_domain);
arm_smmu_secure_pool_destroy(smmu_domain);
arm_smmu_unassign_table(smmu_domain);
arm_smmu_secure_domain_unlock(smmu_domain);
}
smmu_domain->pgtbl_ops = NULL;
}
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
mutex_unlock(&smmu->attach_lock);
return ret;
}
static int arm_smmu_populate_cb(struct arm_smmu_device *smmu,
struct arm_smmu_domain *smmu_domain, struct device *dev)
{
struct arm_smmu_master_cfg *cfg;
struct arm_smmu_cfg *smmu_cfg = &smmu_domain->cfg;
struct static_cbndx_entry *entry;
cfg = find_smmu_master_cfg(dev);
if (!cfg)
return -ENODEV;
entry = arm_smmu_get_static_entry_from_sid(smmu, cfg->streamids[0]);
if (entry && entry->type == TYPE_TRANS) {
smmu_cfg->cbndx = entry->cbndx;
return 0;
}
return -EINVAL;
}
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
iommu/arm-smmu: avoid calling request_irq in atomic context request_irq shouldn't be called from atomic context since it might sleep, but we're calling it with a spinlock held, resulting in: [ 9.172202] BUG: sleeping function called from invalid context at kernel/mm/slub.c:926 [ 9.182989] in_atomic(): 1, irqs_disabled(): 128, pid: 1, name: swapper/0 [ 9.189762] CPU: 1 PID: 1 Comm: swapper/0 Tainted: G W 3.10.40-gbc1b510b-38437-g55831d3bd9-dirty #97 [ 9.199757] [<c020c448>] (unwind_backtrace+0x0/0x11c) from [<c02097d0>] (show_stack+0x10/0x14) [ 9.208346] [<c02097d0>] (show_stack+0x10/0x14) from [<c0301d74>] (kmem_cache_alloc_trace+0x3c/0x210) [ 9.217543] [<c0301d74>] (kmem_cache_alloc_trace+0x3c/0x210) from [<c0276a48>] (request_threaded_irq+0x88/0x11c) [ 9.227702] [<c0276a48>] (request_threaded_irq+0x88/0x11c) from [<c0931ca4>] (arm_smmu_attach_dev+0x188/0x858) [ 9.237686] [<c0931ca4>] (arm_smmu_attach_dev+0x188/0x858) from [<c0212cd8>] (arm_iommu_attach_device+0x18/0xd0) [ 9.247837] [<c0212cd8>] (arm_iommu_attach_device+0x18/0xd0) from [<c093314c>] (arm_smmu_test_probe+0x68/0xd4) [ 9.257823] [<c093314c>] (arm_smmu_test_probe+0x68/0xd4) from [<c05aadd0>] (driver_probe_device+0x12c/0x330) [ 9.267629] [<c05aadd0>] (driver_probe_device+0x12c/0x330) from [<c05ab080>] (__driver_attach+0x68/0x8c) [ 9.277090] [<c05ab080>] (__driver_attach+0x68/0x8c) from [<c05a92d4>] (bus_for_each_dev+0x70/0x84) [ 9.286118] [<c05a92d4>] (bus_for_each_dev+0x70/0x84) from [<c05aa3b0>] (bus_add_driver+0x100/0x244) [ 9.295233] [<c05aa3b0>] (bus_add_driver+0x100/0x244) from [<c05ab5d0>] (driver_register+0x9c/0x124) [ 9.304347] [<c05ab5d0>] (driver_register+0x9c/0x124) from [<c0933088>] (arm_smmu_test_init+0x14/0x38) [ 9.313635] [<c0933088>] (arm_smmu_test_init+0x14/0x38) from [<c0200618>] (do_one_initcall+0xb8/0x160) [ 9.322926] [<c0200618>] (do_one_initcall+0xb8/0x160) from [<c1200b7c>] (kernel_init_freeable+0x108/0x1cc) [ 9.332564] [<c1200b7c>] (kernel_init_freeable+0x108/0x1cc) from [<c0b924b0>] (kernel_init+0xc/0xe4) [ 9.341675] [<c0b924b0>] (kernel_init+0xc/0xe4) from [<c0205e38>] (ret_from_fork+0x14/0x3c) Fix this by moving the request_irq out of the critical section. This should be okay since smmu_domain->smmu is still being protected by the critical section. Also, we still don't program the Stream Match Register until after registering our interrupt handler so we shouldn't be missing any interrupts. Cc: <stable@vger.kernel.org> Signed-off-by: Mitchel Humpherys <mitchelh@codeaurora.org> [will: code cleanup and fixed request_irq token parameter] Signed-off-by: Will Deacon <will.deacon@arm.com>
2014-07-30 18:58:13 +01:00
int ret;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_device *smmu;
struct arm_smmu_master_cfg *cfg;
int atomic_ctx = smmu_domain->attributes & (1 << DOMAIN_ATTR_ATOMIC);
mutex_lock(&smmu_domain->init_mutex);
smmu = find_smmu_for_device(dev);
if (!smmu) {
dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
mutex_unlock(&smmu_domain->init_mutex);
return -ENXIO;
}
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
if (smmu_domain->attributes & (1 << DOMAIN_ATTR_DYNAMIC)) {
ret = arm_smmu_attach_dynamic(domain, smmu);
mutex_unlock(&smmu_domain->init_mutex);
return ret;
}
mutex_lock(&smmu->attach_lock);
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
if (dev->archdata.iommu) {
dev_err(dev, "already attached to IOMMU domain\n");
ret = -EEXIST;
goto err_unlock;
}
if (!smmu->attach_count) {
/*
* We need an extra power vote if we can't retain register
* settings across a power collapse, or if this is an
* atomic domain (since atomic domains can't sleep during
* unmap, so regulators already need to be on to enable tlb
* invalidation). The result (due to regulator
* refcounting) is that we never disable regulators while a
* client is attached in these cases.
*/
if (!(smmu->options & ARM_SMMU_OPT_REGISTER_SAVE)) {
ret = arm_smmu_enable_regulators(smmu);
if (ret)
goto err_unlock;
}
ret = arm_smmu_enable_clocks(smmu);
if (ret)
goto err_disable_regulators;
arm_smmu_device_reset(smmu);
arm_smmu_impl_def_programming(smmu);
} else {
ret = arm_smmu_enable_clocks(smmu);
if (ret)
goto err_unlock;
}
smmu->attach_count++;
if (atomic_ctx) {
ret = arm_smmu_enable_regulators(smmu);
if (ret)
goto err_disable_clocks;
}
if (arm_smmu_is_static_cb(smmu)) {
ret = arm_smmu_populate_cb(smmu, smmu_domain, dev);
if (ret) {
dev_err(dev, "Failed to get valid context bank\n");
goto err_atomic_ctx;
}
smmu_domain->slave_side_secure = true;
}
cfg = find_smmu_master_cfg(dev);
if (!cfg) {
ret = -ENODEV;
goto err_atomic_ctx;
}
/* Ensure that the domain is finalised */
ret = arm_smmu_init_domain_context(domain, smmu, cfg);
if (IS_ERR_VALUE(ret))
goto err_atomic_ctx;
/*
* Sanity check the domain. We don't support domains across
* different SMMUs.
*/
if (smmu_domain->smmu != smmu) {
dev_err(dev,
"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
iommu/arm-smmu: avoid calling request_irq in atomic context request_irq shouldn't be called from atomic context since it might sleep, but we're calling it with a spinlock held, resulting in: [ 9.172202] BUG: sleeping function called from invalid context at kernel/mm/slub.c:926 [ 9.182989] in_atomic(): 1, irqs_disabled(): 128, pid: 1, name: swapper/0 [ 9.189762] CPU: 1 PID: 1 Comm: swapper/0 Tainted: G W 3.10.40-gbc1b510b-38437-g55831d3bd9-dirty #97 [ 9.199757] [<c020c448>] (unwind_backtrace+0x0/0x11c) from [<c02097d0>] (show_stack+0x10/0x14) [ 9.208346] [<c02097d0>] (show_stack+0x10/0x14) from [<c0301d74>] (kmem_cache_alloc_trace+0x3c/0x210) [ 9.217543] [<c0301d74>] (kmem_cache_alloc_trace+0x3c/0x210) from [<c0276a48>] (request_threaded_irq+0x88/0x11c) [ 9.227702] [<c0276a48>] (request_threaded_irq+0x88/0x11c) from [<c0931ca4>] (arm_smmu_attach_dev+0x188/0x858) [ 9.237686] [<c0931ca4>] (arm_smmu_attach_dev+0x188/0x858) from [<c0212cd8>] (arm_iommu_attach_device+0x18/0xd0) [ 9.247837] [<c0212cd8>] (arm_iommu_attach_device+0x18/0xd0) from [<c093314c>] (arm_smmu_test_probe+0x68/0xd4) [ 9.257823] [<c093314c>] (arm_smmu_test_probe+0x68/0xd4) from [<c05aadd0>] (driver_probe_device+0x12c/0x330) [ 9.267629] [<c05aadd0>] (driver_probe_device+0x12c/0x330) from [<c05ab080>] (__driver_attach+0x68/0x8c) [ 9.277090] [<c05ab080>] (__driver_attach+0x68/0x8c) from [<c05a92d4>] (bus_for_each_dev+0x70/0x84) [ 9.286118] [<c05a92d4>] (bus_for_each_dev+0x70/0x84) from [<c05aa3b0>] (bus_add_driver+0x100/0x244) [ 9.295233] [<c05aa3b0>] (bus_add_driver+0x100/0x244) from [<c05ab5d0>] (driver_register+0x9c/0x124) [ 9.304347] [<c05ab5d0>] (driver_register+0x9c/0x124) from [<c0933088>] (arm_smmu_test_init+0x14/0x38) [ 9.313635] [<c0933088>] (arm_smmu_test_init+0x14/0x38) from [<c0200618>] (do_one_initcall+0xb8/0x160) [ 9.322926] [<c0200618>] (do_one_initcall+0xb8/0x160) from [<c1200b7c>] (kernel_init_freeable+0x108/0x1cc) [ 9.332564] [<c1200b7c>] (kernel_init_freeable+0x108/0x1cc) from [<c0b924b0>] (kernel_init+0xc/0xe4) [ 9.341675] [<c0b924b0>] (kernel_init+0xc/0xe4) from [<c0205e38>] (ret_from_fork+0x14/0x3c) Fix this by moving the request_irq out of the critical section. This should be okay since smmu_domain->smmu is still being protected by the critical section. Also, we still don't program the Stream Match Register until after registering our interrupt handler so we shouldn't be missing any interrupts. Cc: <stable@vger.kernel.org> Signed-off-by: Mitchel Humpherys <mitchelh@codeaurora.org> [will: code cleanup and fixed request_irq token parameter] Signed-off-by: Will Deacon <will.deacon@arm.com>
2014-07-30 18:58:13 +01:00
dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
ret = -EINVAL;
goto err_destroy_domain_context;
}
/* Looks ok, so add the device to the domain */
ret = arm_smmu_domain_add_master(smmu_domain, cfg);
if (ret)
goto err_destroy_domain_context;
dev->archdata.iommu = domain;
arm_smmu_disable_clocks(smmu);
mutex_unlock(&smmu->attach_lock);
mutex_unlock(&smmu_domain->init_mutex);
return ret;
err_destroy_domain_context:
arm_smmu_destroy_domain_context(domain);
err_atomic_ctx:
if (atomic_ctx)
arm_smmu_disable_regulators(smmu);
err_disable_clocks:
arm_smmu_disable_clocks(smmu);
--smmu->attach_count;
err_disable_regulators:
if (!smmu->attach_count &&
(!(smmu->options & ARM_SMMU_OPT_REGISTER_SAVE)))
arm_smmu_disable_regulators(smmu);
err_unlock:
mutex_unlock(&smmu->attach_lock);
mutex_unlock(&smmu_domain->init_mutex);
return ret;
}
static void arm_smmu_power_off(struct arm_smmu_device *smmu)
{
/* Turn the thing off */
if (arm_smmu_enable_clocks(smmu))
return;
writel_relaxed(sCR0_CLIENTPD,
ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
arm_smmu_disable_clocks(smmu);
if (!(smmu->options & ARM_SMMU_OPT_REGISTER_SAVE))
arm_smmu_disable_regulators(smmu);
}
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
static void arm_smmu_detach_dynamic(struct iommu_domain *domain,
struct arm_smmu_device *smmu)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
mutex_lock(&smmu->attach_lock);
if (smmu->attach_count > 0) {
if (arm_smmu_enable_clocks(smmu_domain->smmu))
goto idr_remove;
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
arm_smmu_tlb_inv_context(smmu_domain);
arm_smmu_disable_clocks(smmu_domain->smmu);
}
idr_remove:
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
idr_remove(&smmu->asid_idr, smmu_domain->cfg.asid);
smmu_domain->cfg.asid = INVALID_ASID;
smmu_domain->smmu = NULL;
mutex_unlock(&smmu->attach_lock);
}
static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_master_cfg *cfg;
struct arm_smmu_device *smmu;
int atomic_ctx = smmu_domain->attributes & (1 << DOMAIN_ATTR_ATOMIC);
mutex_lock(&smmu_domain->init_mutex);
smmu = smmu_domain->smmu;
if (!smmu) {
dev_err(dev, "Domain already detached!\n");
mutex_unlock(&smmu_domain->init_mutex);
return;
}
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
if (smmu_domain->attributes & (1 << DOMAIN_ATTR_DYNAMIC)) {
arm_smmu_detach_dynamic(domain, smmu);
mutex_unlock(&smmu_domain->init_mutex);
if (atomic_ctx)
arm_smmu_disable_regulators(smmu);
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
return;
}
mutex_lock(&smmu->attach_lock);
cfg = find_smmu_master_cfg(dev);
if (!cfg)
goto unlock;
dev->archdata.iommu = NULL;
arm_smmu_domain_remove_master(smmu_domain, cfg);
iommu/arm-smmu: support mapping to unattached domains According to the IOMMU API, a domain doesn't necessarily need to be attached to an IOMMU device before setting up mappings on that domain. However, in the ARM SMMU driver we currently make the assumption that the domain has already been attached to an SMMU. We use this assumption for the following information: (1) To know whether this is a stage1 or stage2 mapping (2) To know whether we need to do an invalidate (ARM_SMMU_OPT_INVALIDATE_ON_MAP) (3) Address sanity checks based on the stage-1 and stage-2 sizes (which are determined by the SMMU configuration) (4) To call the correct cache maintenance routines based on the SMMU device pointer Handle (1) by assuming that the mapping is stage1 by default. If there's an SMMU attached we can check if this is a stage1 or stage2 mapping. This works for us at the moment because no one is setting up stage2 mappings in the kernel. Handle (2) by not invalidating on map if the domain isn't attached to an SMMU since we shouldn't have anything to invalidate in that case anyways. Handle (3) by skipping the sanity checks for unattached domains. Handle (4) by using the low-level caching APIs. Currently we don't even free up the context bank when the device is detached, presumably so that we don't have to set it up again on re-attach. This limits the number of domains that can be attached to an SMMU, even if they detach from it before the next one attaches. Remove this 1-to-1 domain-to-SMMU assumption by freeing up the "domain context" (context bank allocation, etc) on detach. CRs-Fixed: 752812 Change-Id: I990a11ed52381ce4ecea0f82b4c6e2d54e08f2d6 Signed-off-by: Mitchel Humpherys <mitchelh@codeaurora.org>
2014-11-11 17:08:57 -08:00
arm_smmu_destroy_domain_context(domain);
if (!--smmu->attach_count)
arm_smmu_power_off(smmu);
if (atomic_ctx)
arm_smmu_disable_regulators(smmu);
unlock:
mutex_unlock(&smmu->attach_lock);
mutex_unlock(&smmu_domain->init_mutex);
}
static int arm_smmu_assign_table(struct arm_smmu_domain *smmu_domain)
{
int ret = 0;
int dest_vmids[2] = {VMID_HLOS, smmu_domain->secure_vmid};
int dest_perms[2] = {PERM_READ | PERM_WRITE, PERM_READ};
int source_vmid = VMID_HLOS;
struct arm_smmu_pte_info *pte_info, *temp;
if (!arm_smmu_is_master_side_secure(smmu_domain))
return ret;
list_for_each_entry(pte_info, &smmu_domain->pte_info_list, entry) {
ret = hyp_assign_phys(virt_to_phys(pte_info->virt_addr),
PAGE_SIZE, &source_vmid, 1,
dest_vmids, dest_perms, 2);
if (WARN_ON(ret))
break;
}
list_for_each_entry_safe(pte_info, temp, &smmu_domain->pte_info_list,
entry) {
list_del(&pte_info->entry);
kfree(pte_info);
}
return ret;
}
static void arm_smmu_unassign_table(struct arm_smmu_domain *smmu_domain)
{
int ret;
int dest_vmids = VMID_HLOS;
int dest_perms = PERM_READ | PERM_WRITE | PERM_EXEC;
int source_vmlist[2] = {smmu_domain->secure_vmid, VMID_HLOS};
struct arm_smmu_pte_info *pte_info, *temp;
if (!arm_smmu_is_master_side_secure(smmu_domain))
return;
list_for_each_entry(pte_info, &smmu_domain->unassign_list, entry) {
ret = hyp_assign_phys(virt_to_phys(pte_info->virt_addr),
PAGE_SIZE, source_vmlist, 2,
&dest_vmids, &dest_perms, 1);
if (WARN_ON(ret))
break;
free_pages_exact(pte_info->virt_addr, pte_info->size);
}
list_for_each_entry_safe(pte_info, temp, &smmu_domain->unassign_list,
entry) {
list_del(&pte_info->entry);
kfree(pte_info);
}
return;
}
static void arm_smmu_unprepare_pgtable(void *cookie, void *addr, size_t size)
{
struct arm_smmu_domain *smmu_domain = cookie;
struct arm_smmu_pte_info *pte_info;
BUG_ON(!arm_smmu_is_master_side_secure(smmu_domain));
pte_info = kzalloc(sizeof(struct arm_smmu_pte_info), GFP_ATOMIC);
if (!pte_info)
return;
pte_info->virt_addr = addr;
pte_info->size = size;
list_add_tail(&pte_info->entry, &smmu_domain->unassign_list);
}
static void arm_smmu_prepare_pgtable(void *addr, void *cookie)
{
struct arm_smmu_domain *smmu_domain = cookie;
struct arm_smmu_pte_info *pte_info;
BUG_ON(!arm_smmu_is_master_side_secure(smmu_domain));
pte_info = kzalloc(sizeof(struct arm_smmu_pte_info), GFP_ATOMIC);
if (!pte_info)
return;
pte_info->virt_addr = addr;
list_add_tail(&pte_info->entry, &smmu_domain->pte_info_list);
}
static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
phys_addr_t paddr, size_t size, int prot)
{
int ret;
unsigned long flags;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
if (!ops)
return -ENODEV;
arm_smmu_secure_domain_lock(smmu_domain);
flags = arm_smmu_pgtbl_lock(smmu_domain);
ret = ops->map(ops, iova, paddr, size, prot);
arm_smmu_pgtbl_unlock(smmu_domain, flags);
if (!ret)
ret = arm_smmu_assign_table(smmu_domain);
arm_smmu_secure_domain_unlock(smmu_domain);
return ret;
}
static uint64_t arm_smmu_iova_to_pte(struct iommu_domain *domain,
dma_addr_t iova)
{
uint64_t ret;
unsigned long flags;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
if (!ops)
return 0;
flags = arm_smmu_pgtbl_lock(smmu_domain);
ret = ops->iova_to_pte(ops, iova);
arm_smmu_pgtbl_unlock(smmu_domain, flags);
return ret;
}
static size_t arm_smmu_map_sg(struct iommu_domain *domain, unsigned long iova,
struct scatterlist *sg, unsigned int nents, int prot)
{
int ret;
size_t size;
unsigned long flags;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
struct arm_smmu_device *smmu = smmu_domain->smmu;
int atomic_ctx = smmu_domain->attributes & (1 << DOMAIN_ATTR_ATOMIC);
if (!ops)
return -ENODEV;
if (arm_smmu_is_slave_side_secure(smmu_domain) && atomic_ctx) {
dev_err(smmu->dev, "Slave side atomic context not supported\n");
return 0;
}
if (arm_smmu_is_slave_side_secure(smmu_domain)) {
mutex_lock(&smmu_domain->init_mutex);
if (arm_smmu_enable_clocks(smmu)) {
mutex_unlock(&smmu_domain->init_mutex);
return 0;
}
}
arm_smmu_secure_domain_lock(smmu_domain);
flags = arm_smmu_pgtbl_lock(smmu_domain);
ret = ops->map_sg(ops, iova, sg, nents, prot, &size);
arm_smmu_pgtbl_unlock(smmu_domain, flags);
if (ret) {
if (arm_smmu_assign_table(smmu_domain)) {
ret = 0;
goto out;
}
} else {
arm_smmu_secure_domain_unlock(smmu_domain);
arm_smmu_unmap(domain, iova, size);
}
out:
arm_smmu_secure_domain_unlock(smmu_domain);
if (arm_smmu_is_slave_side_secure(smmu_domain)) {
arm_smmu_disable_clocks(smmu_domain->smmu);
mutex_unlock(&smmu_domain->init_mutex);
}
return ret;
}
static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
size_t size)
{
size_t ret;
unsigned long flags;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
int atomic_ctx = smmu_domain->attributes & (1 << DOMAIN_ATTR_ATOMIC);
if (!ops)
return 0;
if (arm_smmu_is_slave_side_secure(smmu_domain) && atomic_ctx) {
dev_err(smmu_domain->smmu->dev,
"Slave side atomic context not supported\n");
return 0;
}
/*
* The contract here is that if you set DOMAIN_ATTR_ATOMIC your
* domain *must* must be attached an SMMU during unmap. This
* function calls other functions that try to use smmu_domain->smmu
* if it's not NULL (like the tlb invalidation routines). So if
* the client sets DOMAIN_ATTR_ATOMIC and detaches in the middle of
* the unmap the smmu instance could go away and we could
* dereference NULL. This little BUG_ON should catch most gross
* offenders but if atomic clients violate this contract then this
* code is racy.
*/
BUG_ON(atomic_ctx && !smmu_domain->smmu);
if (atomic_ctx) {
if (arm_smmu_enable_clocks_atomic(smmu_domain->smmu))
return 0;
} else {
mutex_lock(&smmu_domain->init_mutex);
arm_smmu_secure_domain_lock(smmu_domain);
if (smmu_domain->smmu &&
arm_smmu_enable_clocks(smmu_domain->smmu)) {
arm_smmu_secure_domain_unlock(smmu_domain);
mutex_unlock(&smmu_domain->init_mutex);
return 0;
}
}
flags = arm_smmu_pgtbl_lock(smmu_domain);
ret = ops->unmap(ops, iova, size);
arm_smmu_pgtbl_unlock(smmu_domain, flags);
/*
* While splitting up block mappings, we might allocate page table
* memory during unmap, so the vmids needs to be assigned to the
* memory here as well.
*/
if (arm_smmu_assign_table(smmu_domain)) {
arm_smmu_unassign_table(smmu_domain);
arm_smmu_secure_domain_unlock(smmu_domain);
mutex_unlock(&smmu_domain->init_mutex);
return 0;
}
/* Also unassign any pages that were free'd during unmap */
arm_smmu_unassign_table(smmu_domain);
if (atomic_ctx) {
arm_smmu_disable_clocks_atomic(smmu_domain->smmu);
} else {
if (smmu_domain->smmu)
arm_smmu_disable_clocks(smmu_domain->smmu);
arm_smmu_secure_domain_unlock(smmu_domain);
mutex_unlock(&smmu_domain->init_mutex);
}
return ret;
}
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
dma_addr_t iova)
{
phys_addr_t ret;
unsigned long flags;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
if (!ops)
return 0;
flags = arm_smmu_pgtbl_lock(smmu_domain);
ret = ops->iova_to_phys(ops, iova);
arm_smmu_pgtbl_unlock(smmu_domain, flags);
return ret;
}
static bool arm_smmu_is_iova_coherent(struct iommu_domain *domain,
dma_addr_t iova)
{
bool ret;
unsigned long flags;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
if (!ops)
return false;
flags = arm_smmu_pgtbl_lock(smmu_domain);
ret = ops->is_iova_coherent(ops, iova);
arm_smmu_pgtbl_unlock(smmu_domain, flags);
return ret;
}
static int arm_smmu_wait_for_halt(struct arm_smmu_device *smmu)
{
void __iomem *impl_def1_base = ARM_SMMU_IMPL_DEF1(smmu);
u32 tmp;
if (readl_poll_timeout_atomic(impl_def1_base + IMPL_DEF1_MICRO_MMU_CTRL,
tmp, (tmp & MICRO_MMU_CTRL_IDLE),
0, 30000)) {
dev_err(smmu->dev, "Couldn't halt SMMU!\n");
return -EBUSY;
}
return 0;
}
static int __arm_smmu_halt(struct arm_smmu_device *smmu, bool wait)
{
u32 reg;
void __iomem *impl_def1_base = ARM_SMMU_IMPL_DEF1(smmu);
reg = readl_relaxed(impl_def1_base + IMPL_DEF1_MICRO_MMU_CTRL);
reg |= MICRO_MMU_CTRL_LOCAL_HALT_REQ;
if (arm_smmu_is_static_cb(smmu)) {
phys_addr_t impl_def1_base_phys = impl_def1_base - smmu->base +
smmu->phys_addr;
if (scm_io_write(impl_def1_base_phys +
IMPL_DEF1_MICRO_MMU_CTRL, reg)) {
dev_err(smmu->dev,
"scm_io_write fail. SMMU might not be halted");
return -EINVAL;
}
} else {
writel_relaxed(reg, impl_def1_base + IMPL_DEF1_MICRO_MMU_CTRL);
}
return wait ? arm_smmu_wait_for_halt(smmu) : 0;
}
static int arm_smmu_halt(struct arm_smmu_device *smmu)
{
return __arm_smmu_halt(smmu, true);
}
static int arm_smmu_halt_nowait(struct arm_smmu_device *smmu)
{
return __arm_smmu_halt(smmu, false);
}
static void arm_smmu_resume(struct arm_smmu_device *smmu)
{
void __iomem *impl_def1_base = ARM_SMMU_IMPL_DEF1(smmu);
u32 reg;
if (arm_smmu_restore_sec_cfg(smmu))
return;
reg = readl_relaxed(impl_def1_base + IMPL_DEF1_MICRO_MMU_CTRL);
reg &= ~MICRO_MMU_CTRL_LOCAL_HALT_REQ;
if (arm_smmu_is_static_cb(smmu)) {
phys_addr_t impl_def1_base_phys = impl_def1_base - smmu->base +
smmu->phys_addr;
if (scm_io_write(impl_def1_base_phys +
IMPL_DEF1_MICRO_MMU_CTRL, reg))
dev_err(smmu->dev,
"scm_io_write fail. SMMU might not be resumed");
} else {
writel_relaxed(reg, impl_def1_base + IMPL_DEF1_MICRO_MMU_CTRL);
}
}
static phys_addr_t __arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
dma_addr_t iova, bool do_halt)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_device *smmu = smmu_domain->smmu;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct device *dev = smmu->dev;
void __iomem *cb_base;
u32 tmp;
u64 phys;
unsigned long va;
unsigned long flags;
if (arm_smmu_enable_clocks(smmu))
return 0;
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
spin_lock_irqsave(&smmu->atos_lock, flags);
if (do_halt && arm_smmu_halt(smmu))
goto err_unlock;
/* ATS1 registers can only be written atomically */
va = iova & ~0xfffUL;
if (smmu->version == ARM_SMMU_V2)
smmu_writeq(va, cb_base + ARM_SMMU_CB_ATS1PR);
else
writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
!(tmp & ATSR_ACTIVE), 5, 50)) {
dev_err(dev, "iova to phys timed out\n");
goto err_resume;
}
phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
phys |= ((u64) readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;
if (do_halt)
arm_smmu_resume(smmu);
spin_unlock_irqrestore(&smmu->atos_lock, flags);
if (phys & CB_PAR_F) {
dev_err(dev, "translation fault on %s!\n", dev_name(dev));
dev_err(dev, "PAR = 0x%llx\n", phys);
phys = 0;
} else {
phys = (phys & (PHYS_MASK & ~0xfffULL)) | (iova & 0xfff);
}
arm_smmu_disable_clocks(smmu);
return phys;
err_resume:
if (do_halt)
arm_smmu_resume(smmu);
err_unlock:
spin_unlock_irqrestore(&smmu->atos_lock, flags);
arm_smmu_disable_clocks(smmu);
phys = arm_smmu_iova_to_phys(domain, iova);
dev_err(dev,
"iova to phys failed 0x%pa. software table walk result=%pa.\n",
&iova, &phys);
return 0;
}
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
dma_addr_t iova)
{
return __arm_smmu_iova_to_phys_hard(domain, iova, true);
}
static phys_addr_t arm_smmu_iova_to_phys_hard_no_halt(
struct iommu_domain *domain, dma_addr_t iova)
{
return __arm_smmu_iova_to_phys_hard(domain, iova, false);
}
static unsigned long arm_smmu_reg_read(struct iommu_domain *domain,
unsigned long offset)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_device *smmu;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
void __iomem *cb_base;
unsigned long val;
if (offset >= SZ_4K) {
pr_err("Invalid offset: 0x%lx\n", offset);
return 0;
}
mutex_lock(&smmu_domain->init_mutex);
smmu = smmu_domain->smmu;
if (!smmu) {
WARN(1, "Can't read registers of a detached domain\n");
val = 0;
goto unlock;
}
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
if (arm_smmu_enable_clocks(smmu)) {
val = 0;
goto unlock;
}
val = readl_relaxed(cb_base + offset);
arm_smmu_disable_clocks(smmu);
unlock:
mutex_unlock(&smmu_domain->init_mutex);
return val;
}
static void arm_smmu_reg_write(struct iommu_domain *domain,
unsigned long offset, unsigned long val)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_device *smmu;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
void __iomem *cb_base;
if (offset >= SZ_4K) {
pr_err("Invalid offset: 0x%lx\n", offset);
return;
}
mutex_lock(&smmu_domain->init_mutex);
smmu = smmu_domain->smmu;
if (!smmu) {
WARN(1, "Can't read registers of a detached domain\n");
goto unlock;
}
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
if (arm_smmu_enable_clocks(smmu))
goto unlock;
writel_relaxed(val, cb_base + offset);
arm_smmu_disable_clocks(smmu);
unlock:
mutex_unlock(&smmu_domain->init_mutex);
}
static bool arm_smmu_capable(enum iommu_cap cap)
{
switch (cap) {
case IOMMU_CAP_CACHE_COHERENCY:
/*
* Return true here as the SMMU can always send out coherent
* requests.
*/
return true;
case IOMMU_CAP_INTR_REMAP:
return true; /* MSIs are just memory writes */
case IOMMU_CAP_NOEXEC:
return true;
default:
return false;
}
}
static void __arm_smmu_release_pci_iommudata(void *data)
{
kfree(data);
}
static int arm_smmu_init_pci_device(struct pci_dev *pdev,
struct iommu_group *group)
{
struct arm_smmu_master_cfg *cfg;
u32 sid;
int tmp, ret;
struct device *dev = &pdev->dev;
cfg = iommu_group_get_iommudata(group);
if (!cfg) {
cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
if (!cfg)
return -ENOMEM;
iommu_group_set_iommudata(group, cfg,
__arm_smmu_release_pci_iommudata);
}
if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
return -ENOSPC;
ret = msm_pcie_configure_sid(dev, &sid, &tmp);
if (ret) {
dev_err(dev,
"Couldn't configure SID through PCI-e driver: %d\n",
ret);
return ret;
}
cfg->streamids[cfg->num_streamids++] = sid;
return 0;
}
static int arm_smmu_init_platform_device(struct device *dev,
struct iommu_group *group)
{
struct arm_smmu_device *smmu = find_smmu_for_device(dev);
struct arm_smmu_master *master;
if (!smmu)
return -ENODEV;
master = find_smmu_master(smmu, dev->of_node);
if (!master)
return -ENODEV;
iommu_group_set_iommudata(group, &master->cfg, NULL);
return 0;
}
static int arm_smmu_add_device(struct device *dev)
{
struct iommu_group *group;
group = iommu_group_get_for_dev(dev);
if (IS_ERR(group))
return PTR_ERR(group);
return 0;
}
static void arm_smmu_remove_device(struct device *dev)
{
iommu_group_remove_device(dev);
}
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
struct iommu_group *group;
int ret;
iommu/arm-smmu: Don't group PCI devices In general, the IOMMU framework likes to group PCI devices together. This prevents someone from assigning them to separate VMs using VFIO, for example. The reason they shouldn't go to separate VMs is because there could be DMA aliasing between endpoint devices, and because the root complex device can access anything that endpoint devices can access. Unfortunately, this makes things difficult in the DMA layer since the IOMMU framework freaks out if you try to attach a single device that is also part of a group. First instinct might be to start using iommu_attach_group instead of iommu_attach_device in the DMA layer but that has problems of its own (it attaches *everyone* in the group as soon as one client attaches). Besides all that, it's also a bit annoying to have the root complex device in group since, in our platform, it doesn't actually have any stream IDs assigned to it and it doesn't do any DMA of its own, so it doesn't really make any logical sense to attach it. As a compromise, we can stop grouping PCI devices together by allocating a new domain for each one. By doing so we no longer need to call iommu_attach_group in the DMA layer, avoid the issues described above. It should be noted that with this patch in place we can't securely do any direct DMA assignment of PCI endpoint devices to separate VMs. CRs-Fixed: 1036401 Change-Id: I9528b61a695dc7840e1c6f80af18044340f5c6c4 Signed-off-by: Mitchel Humpherys <mitchelh@codeaurora.org>
2016-07-26 11:03:48 -07:00
/*
* We used to call pci_device_group here for dev_is_pci(dev)
* devices. However, that causes the root complex device to be
* placed in the same group as endpoint devices (and probably puts
* all endpoint devices in the same group as well), which makes
* things tricky in the DMA layer since we don't actually want to
* attach *everybody* in the group when one client calls attach.
* Instead, we'll just allocate a new group for everybody here.
*/
group = generic_device_group(dev);
if (IS_ERR_OR_NULL(group))
return group;
if (dev_is_pci(dev))
ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
else
ret = arm_smmu_init_platform_device(dev, group);
if (ret) {
iommu_group_put(group);
group = ERR_PTR(ret);
}
return group;
}
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
enum iommu_attr attr, void *data)
{
int ret;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
mutex_lock(&smmu_domain->init_mutex);
switch (attr) {
case DOMAIN_ATTR_NESTING:
*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
ret = 0;
break;
case DOMAIN_ATTR_SECURE_VMID:
*((int *)data) = smmu_domain->secure_vmid;
ret = 0;
break;
case DOMAIN_ATTR_PT_BASE_ADDR:
*((phys_addr_t *)data) =
smmu_domain->pgtbl_cfg.arm_lpae_s1_cfg.ttbr[0];
ret = 0;
break;
case DOMAIN_ATTR_CONTEXT_BANK:
/* context bank index isn't valid until we are attached */
if (smmu_domain->smmu == NULL)
return -ENODEV;
*((unsigned int *) data) = smmu_domain->cfg.cbndx;
ret = 0;
break;
case DOMAIN_ATTR_TTBR0: {
u64 val;
/* not valid until we are attached */
if (smmu_domain->smmu == NULL)
return -ENODEV;
val = smmu_domain->pgtbl_cfg.arm_lpae_s1_cfg.ttbr[0];
if (smmu_domain->cfg.cbar != CBAR_TYPE_S2_TRANS)
val |= (u64)ARM_SMMU_CB_ASID(&smmu_domain->cfg)
<< TTBRn_ASID_SHIFT;
*((u64 *)data) = val;
ret = 0;
break;
}
case DOMAIN_ATTR_CONTEXTIDR:
/* not valid until attached */
if (smmu_domain->smmu == NULL)
return -ENODEV;
*((u32 *)data) = smmu_domain->cfg.procid;
ret = 0;
break;
case DOMAIN_ATTR_PROCID:
*((u32 *)data) = smmu_domain->cfg.procid;
ret = 0;
break;
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
case DOMAIN_ATTR_DYNAMIC:
*((int *)data) = !!(smmu_domain->attributes
& (1 << DOMAIN_ATTR_DYNAMIC));
ret = 0;
break;
case DOMAIN_ATTR_NON_FATAL_FAULTS:
*((int *)data) = !!(smmu_domain->attributes
& (1 << DOMAIN_ATTR_NON_FATAL_FAULTS));
ret = 0;
break;
case DOMAIN_ATTR_S1_BYPASS:
*((int *)data) = !!(smmu_domain->attributes
& (1 << DOMAIN_ATTR_S1_BYPASS));
ret = 0;
break;
case DOMAIN_ATTR_FAST:
*((int *)data) = !!(smmu_domain->attributes
& (1 << DOMAIN_ATTR_FAST));
ret = 0;
break;
case DOMAIN_ATTR_PGTBL_INFO: {
struct iommu_pgtbl_info *info = data;
if (!(smmu_domain->attributes & (1 << DOMAIN_ATTR_FAST))) {
ret = -ENODEV;
break;
}
info->pmds = smmu_domain->pgtbl_cfg.av8l_fast_cfg.pmds;
ret = 0;
break;
}
case DOMAIN_ATTR_EARLY_MAP:
*((int *)data) = !!(smmu_domain->attributes
& (1 << DOMAIN_ATTR_EARLY_MAP));
ret = 0;
break;
case DOMAIN_ATTR_PAGE_TABLE_IS_COHERENT:
if (!smmu_domain->smmu)
return -ENODEV;
*((int *)data) = is_iommu_pt_coherent(smmu_domain);
ret = 0;
break;
case DOMAIN_ATTR_PAGE_TABLE_FORCE_COHERENT:
*((int *)data) = !!(smmu_domain->attributes
& (1 << DOMAIN_ATTR_PAGE_TABLE_FORCE_COHERENT));
ret = 0;
break;
case DOMAIN_ATTR_ENABLE_TTBR1:
*((int *)data) = !!(smmu_domain->attributes
& (1 << DOMAIN_ATTR_ENABLE_TTBR1));
ret = 0;
break;
case DOMAIN_ATTR_CB_STALL_DISABLE:
*((int *)data) = !!(smmu_domain->attributes
& (1 << DOMAIN_ATTR_CB_STALL_DISABLE));
ret = 0;
break;
default:
ret = -ENODEV;
break;
}
mutex_unlock(&smmu_domain->init_mutex);
return ret;
}
static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
enum iommu_attr attr, void *data)
{
int ret = 0;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
mutex_lock(&smmu_domain->init_mutex);
switch (attr) {
case DOMAIN_ATTR_NESTING:
if (smmu_domain->smmu) {
ret = -EPERM;
goto out_unlock;
}
if (*(int *)data)
smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
else
smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
break;
case DOMAIN_ATTR_SECURE_VMID:
BUG_ON(smmu_domain->secure_vmid != VMID_INVAL);
smmu_domain->secure_vmid = *((int *)data);
break;
case DOMAIN_ATTR_ATOMIC:
{
int atomic_ctx = *((int *)data);
if (atomic_ctx)
smmu_domain->attributes |= (1 << DOMAIN_ATTR_ATOMIC);
else
smmu_domain->attributes &= ~(1 << DOMAIN_ATTR_ATOMIC);
break;
}
case DOMAIN_ATTR_PROCID:
if (smmu_domain->smmu != NULL) {
dev_err(smmu_domain->smmu->dev,
"cannot change procid attribute while attached\n");
ret = -EBUSY;
break;
}
smmu_domain->cfg.procid = *((u32 *)data);
ret = 0;
break;
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
case DOMAIN_ATTR_DYNAMIC: {
int dynamic = *((int *)data);
if (smmu_domain->smmu != NULL) {
dev_err(smmu_domain->smmu->dev,
"cannot change dynamic attribute while attached\n");
ret = -EBUSY;
break;
}
if (dynamic)
smmu_domain->attributes |= 1 << DOMAIN_ATTR_DYNAMIC;
else
smmu_domain->attributes &= ~(1 << DOMAIN_ATTR_DYNAMIC);
ret = 0;
break;
}
case DOMAIN_ATTR_CONTEXT_BANK:
/* context bank can't be set while attached */
if (smmu_domain->smmu != NULL) {
ret = -EBUSY;
break;
}
/* ... and it can only be set for dynamic contexts. */
if (!(smmu_domain->attributes & (1 << DOMAIN_ATTR_DYNAMIC))) {
ret = -EINVAL;
break;
}
/* this will be validated during attach */
smmu_domain->cfg.cbndx = *((unsigned int *)data);
ret = 0;
break;
case DOMAIN_ATTR_NON_FATAL_FAULTS:
smmu_domain->non_fatal_faults = *((int *)data);
ret = 0;
break;
case DOMAIN_ATTR_S1_BYPASS: {
int bypass = *((int *)data);
if (bypass)
smmu_domain->attributes |= 1 << DOMAIN_ATTR_S1_BYPASS;
else
smmu_domain->attributes &=
~(1 << DOMAIN_ATTR_S1_BYPASS);
ret = 0;
break;
}
case DOMAIN_ATTR_FAST:
if (*((int *)data))
smmu_domain->attributes |= 1 << DOMAIN_ATTR_FAST;
ret = 0;
break;
case DOMAIN_ATTR_EARLY_MAP: {
int early_map = *((int *)data);
ret = 0;
if (early_map) {
smmu_domain->attributes |=
1 << DOMAIN_ATTR_EARLY_MAP;
} else {
if (smmu_domain->smmu)
ret = arm_smmu_enable_s1_translations(
smmu_domain);
if (!ret)
smmu_domain->attributes &=
~(1 << DOMAIN_ATTR_EARLY_MAP);
}
break;
}
case DOMAIN_ATTR_PAGE_TABLE_FORCE_COHERENT: {
int force_coherent = *((int *)data);
if (smmu_domain->smmu != NULL) {
dev_err(smmu_domain->smmu->dev,
"cannot change force coherent attribute while attached\n");
ret = -EBUSY;
break;
}
if (force_coherent)
smmu_domain->attributes |=
1 << DOMAIN_ATTR_PAGE_TABLE_FORCE_COHERENT;
else
smmu_domain->attributes &=
~(1 << DOMAIN_ATTR_PAGE_TABLE_FORCE_COHERENT);
ret = 0;
break;
}
case DOMAIN_ATTR_ENABLE_TTBR1:
if (*((int *)data))
smmu_domain->attributes |=
1 << DOMAIN_ATTR_ENABLE_TTBR1;
ret = 0;
break;
case DOMAIN_ATTR_GEOMETRY: {
struct iommu_domain_geometry *geometry =
(struct iommu_domain_geometry *)data;
if (smmu_domain->smmu != NULL) {
dev_err(smmu_domain->smmu->dev,
"cannot set geometry attribute while attached\n");
ret = -EBUSY;
break;
}
if (geometry->aperture_start >= SZ_1G * 4ULL ||
geometry->aperture_end >= SZ_1G * 4ULL) {
pr_err("fastmap does not support IOVAs >= 4GB\n");
ret = -EINVAL;
break;
}
if (smmu_domain->attributes
& (1 << DOMAIN_ATTR_GEOMETRY)) {
if (geometry->aperture_start
< domain->geometry.aperture_start)
domain->geometry.aperture_start =
geometry->aperture_start;
if (geometry->aperture_end
> domain->geometry.aperture_end)
domain->geometry.aperture_end =
geometry->aperture_end;
} else {
smmu_domain->attributes |= 1 << DOMAIN_ATTR_GEOMETRY;
domain->geometry.aperture_start =
geometry->aperture_start;
domain->geometry.aperture_end = geometry->aperture_end;
}
ret = 0;
break;
}
case DOMAIN_ATTR_CB_STALL_DISABLE:
if (*((int *)data))
smmu_domain->attributes |=
1 << DOMAIN_ATTR_CB_STALL_DISABLE;
ret = 0;
break;
default:
ret = -ENODEV;
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
break;
}
out_unlock:
mutex_unlock(&smmu_domain->init_mutex);
return ret;
}
static int arm_smmu_enable_s1_translations(struct arm_smmu_domain *smmu_domain)
{
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu = smmu_domain->smmu;
void __iomem *cb_base;
u32 reg;
int ret;
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
ret = arm_smmu_enable_clocks(smmu);
if (ret)
return ret;
reg = readl_relaxed(cb_base + ARM_SMMU_CB_SCTLR);
reg |= SCTLR_M;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
arm_smmu_disable_clocks(smmu);
return ret;
}
static int arm_smmu_dma_supported(struct iommu_domain *domain,
struct device *dev, u64 mask)
{
struct arm_smmu_device *smmu;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
int ret;
mutex_lock(&smmu_domain->init_mutex);
smmu = smmu_domain->smmu;
if (!smmu) {
dev_err(dev,
"Can't call dma_supported on an unattached domain\n");
mutex_unlock(&smmu_domain->init_mutex);
return 0;
}
ret = ((1ULL << smmu->va_size) - 1) <= mask ? 0 : 1;
mutex_unlock(&smmu_domain->init_mutex);
return ret;
}
static unsigned long arm_smmu_get_pgsize_bitmap(struct iommu_domain *domain)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
/*
* if someone is calling map before attach just return the
* supported page sizes for the hardware itself.
*/
if (!smmu_domain->pgtbl_cfg.pgsize_bitmap)
return arm_smmu_ops.pgsize_bitmap;
/*
* otherwise return the page sizes supported by this specific page
* table configuration
*/
return smmu_domain->pgtbl_cfg.pgsize_bitmap;
}
static struct iommu_ops arm_smmu_ops = {
.capable = arm_smmu_capable,
.domain_alloc = arm_smmu_domain_alloc,
.domain_free = arm_smmu_domain_free,
.attach_dev = arm_smmu_attach_dev,
.detach_dev = arm_smmu_detach_dev,
.map = arm_smmu_map,
.unmap = arm_smmu_unmap,
.map_sg = arm_smmu_map_sg,
.iova_to_phys = arm_smmu_iova_to_phys,
.iova_to_phys_hard = arm_smmu_iova_to_phys_hard,
.add_device = arm_smmu_add_device,
.remove_device = arm_smmu_remove_device,
.device_group = arm_smmu_device_group,
.domain_get_attr = arm_smmu_domain_get_attr,
.domain_set_attr = arm_smmu_domain_set_attr,
.pgsize_bitmap = -1UL, /* Restricted during device attach */
.get_pgsize_bitmap = arm_smmu_get_pgsize_bitmap,
.dma_supported = arm_smmu_dma_supported,
.trigger_fault = arm_smmu_trigger_fault,
.reg_read = arm_smmu_reg_read,
.reg_write = arm_smmu_reg_write,
.tlbi_domain = arm_smmu_tlbi_domain,
.enable_config_clocks = arm_smmu_enable_config_clocks,
.disable_config_clocks = arm_smmu_disable_config_clocks,
.is_iova_coherent = arm_smmu_is_iova_coherent,
.iova_to_pte = arm_smmu_iova_to_pte,
};
static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
void __iomem *cb_base;
int i = 0;
u32 reg;
/* clear global FSR */
reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
if (!(smmu->options & ARM_SMMU_OPT_SKIP_INIT)) {
/* Mark all SMRn as invalid and all S2CRn as bypass */
for (i = 0; i < smmu->num_mapping_groups; ++i) {
writel_relaxed(0,
gr0_base + ARM_SMMU_GR0_SMR(i));
writel_relaxed(S2CR_TYPE_BYPASS,
gr0_base + ARM_SMMU_GR0_S2CR(i));
}
/* Make sure all context banks are disabled and clear CB_FSR */
for (i = 0; i < smmu->num_context_banks; ++i) {
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
}
}
/* Invalidate the TLB, just in case */
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
/* Enable fault reporting */
reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
/* Disable TLB broadcasting. */
reg |= (sCR0_VMIDPNE | sCR0_PTM);
/* Enable client access */
reg &= ~sCR0_CLIENTPD;
/* Raise an unidentified stream fault on unmapped access */
reg |= sCR0_USFCFG;
/* Disable forced broadcasting */
reg &= ~sCR0_FB;
/* Don't upgrade barriers */
reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
/* Push the button */
__arm_smmu_tlb_sync(smmu);
writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
}
static int arm_smmu_id_size_to_bits(int size)
{
switch (size) {
case 0:
return 32;
case 1:
return 36;
case 2:
return 40;
case 3:
return 42;
case 4:
return 44;
case 5:
default:
return 48;
}
}
static int regulator_notifier(struct notifier_block *nb,
unsigned long event, void *data)
{
int ret = 0;
struct arm_smmu_device *smmu = container_of(nb,
struct arm_smmu_device, regulator_nb);
/* Ignore EVENT DISABLE as no clocks could be turned on
* at this notification.
*/
if (event != REGULATOR_EVENT_PRE_DISABLE &&
event != REGULATOR_EVENT_ENABLE)
return NOTIFY_OK;
ret = arm_smmu_prepare_clocks(smmu);
if (ret)
goto out;
ret = arm_smmu_enable_clocks_atomic(smmu);
if (ret)
goto unprepare_clock;
if (event == REGULATOR_EVENT_PRE_DISABLE)
arm_smmu_halt(smmu);
else if (event == REGULATOR_EVENT_ENABLE)
arm_smmu_resume(smmu);
arm_smmu_disable_clocks_atomic(smmu);
unprepare_clock:
arm_smmu_unprepare_clocks(smmu);
out:
return NOTIFY_OK;
}
static int register_regulator_notifier(struct arm_smmu_device *smmu)
{
struct device *dev = smmu->dev;
int ret = 0;
if (smmu->options & ARM_SMMU_OPT_HALT) {
smmu->regulator_nb.notifier_call = regulator_notifier;
ret = regulator_register_notifier(smmu->gdsc,
&smmu->regulator_nb);
if (ret)
dev_err(dev, "Regulator notifier request failed\n");
}
return ret;
}
static int arm_smmu_init_regulators(struct arm_smmu_device *smmu)
{
struct device *dev = smmu->dev;
if (!of_get_property(dev->of_node, "vdd-supply", NULL))
return 0;
if (!of_property_read_u32(dev->of_node,
"qcom,deferred-regulator-disable-delay",
&(smmu->regulator_defer)))
dev_info(dev, "regulator defer delay %d\n",
smmu->regulator_defer);
smmu->gdsc = devm_regulator_get(dev, "vdd");
if (IS_ERR(smmu->gdsc))
return PTR_ERR(smmu->gdsc);
return 0;
}
static int arm_smmu_init_clocks(struct arm_smmu_device *smmu)
{
const char *cname;
struct property *prop;
int i;
struct device *dev = smmu->dev;
smmu->num_clocks =
of_property_count_strings(dev->of_node, "clock-names");
if (smmu->num_clocks < 1) {
smmu->num_clocks = 0;
return 0;
}
smmu->clocks = devm_kzalloc(
dev, sizeof(*smmu->clocks) * smmu->num_clocks,
GFP_KERNEL);
if (!smmu->clocks) {
dev_err(dev,
"Failed to allocate memory for clocks\n");
return -ENODEV;
}
i = 0;
of_property_for_each_string(dev->of_node, "clock-names",
prop, cname) {
struct clk *c = devm_clk_get(dev, cname);
if (IS_ERR(c)) {
dev_err(dev, "Couldn't get clock: %s",
cname);
return PTR_ERR(c);
}
if (clk_get_rate(c) == 0) {
long rate = clk_round_rate(c, 1000);
clk_set_rate(c, rate);
}
smmu->clocks[i] = c;
++i;
}
return 0;
}
static int arm_smmu_init_bus_scaling(struct platform_device *pdev,
struct arm_smmu_device *smmu)
{
if (!of_find_property(pdev->dev.of_node, "qcom,msm-bus,name", NULL)) {
dev_dbg(&pdev->dev, "No bus scaling info\n");
return 0;
}
smmu->bus_pdata = msm_bus_cl_get_pdata(pdev);
if (!smmu->bus_pdata) {
dev_err(&pdev->dev, "Unable to read bus-scaling from DT\n");
return -EINVAL;
}
smmu->bus_client = msm_bus_scale_register_client(smmu->bus_pdata);
if (!smmu->bus_client) {
dev_err(&pdev->dev, "Bus client registration failed\n");
return -EINVAL;
}
return 0;
}
static void arm_smmu_exit_bus_scaling(struct arm_smmu_device *smmu)
{
if (smmu->bus_client)
msm_bus_scale_unregister_client(smmu->bus_client);
if (smmu->bus_pdata)
msm_bus_cl_clear_pdata(smmu->bus_pdata);
smmu->bus_client = 0;
smmu->bus_pdata = NULL;
}
static int arm_smmu_parse_impl_def_registers(struct arm_smmu_device *smmu)
{
struct device *dev = smmu->dev;
int i, ntuples, ret;
u32 *tuples;
struct arm_smmu_impl_def_reg *regs, *regit;
if (!of_find_property(dev->of_node, "attach-impl-defs", &ntuples))
return 0;
ntuples /= sizeof(u32);
if (ntuples % 2) {
dev_err(dev,
"Invalid number of attach-impl-defs registers: %d\n",
ntuples);
return -EINVAL;
}
regs = devm_kmalloc(
dev, sizeof(*smmu->impl_def_attach_registers) * ntuples,
GFP_KERNEL);
if (!regs)
return -ENOMEM;
tuples = devm_kmalloc(dev, sizeof(u32) * ntuples * 2, GFP_KERNEL);
if (!tuples)
return -ENOMEM;
ret = of_property_read_u32_array(dev->of_node, "attach-impl-defs",
tuples, ntuples);
if (ret)
return ret;
for (i = 0, regit = regs; i < ntuples; i += 2, ++regit) {
regit->offset = tuples[i];
regit->value = tuples[i + 1];
}
devm_kfree(dev, tuples);
smmu->impl_def_attach_registers = regs;
smmu->num_impl_def_attach_registers = ntuples / 2;
return 0;
}
static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
unsigned long size;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
u32 id;
bool cttw_dt, cttw_reg;
if (arm_smmu_restore_sec_cfg(smmu))
return -ENODEV;
dev_dbg(smmu->dev, "probing hardware configuration...\n");
dev_dbg(smmu->dev, "SMMUv%d with:\n", smmu->version);
/* ID0 */
id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
/* Restrict available stages based on module parameter */
if (force_stage == 1)
id &= ~(ID0_S2TS | ID0_NTS);
else if (force_stage == 2)
id &= ~(ID0_S1TS | ID0_NTS);
if (id & ID0_S1TS) {
smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
dev_dbg(smmu->dev, "\tstage 1 translation\n");
}
if (id & ID0_S2TS) {
smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
dev_dbg(smmu->dev, "\tstage 2 translation\n");
}
if (id & ID0_NTS) {
smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
dev_dbg(smmu->dev, "\tnested translation\n");
}
if (!(smmu->features &
(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
dev_err(smmu->dev, "\tno translation support (id0=%x)!\n", id);
return -ENODEV;
}
if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
dev_dbg(smmu->dev, "\taddress translation ops\n");
}
/*
* In order for DMA API calls to work properly, we must defer to what
* the DT says about coherency, regardless of what the hardware claims.
* Fortunately, this also opens up a workaround for systems where the
* ID register value has ended up configured incorrectly.
*/
cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
cttw_reg = !!(id & ID0_CTTW);
if (cttw_dt)
smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
if (cttw_dt || cttw_reg)
dev_dbg(smmu->dev, "\t%scoherent table walk\n",
cttw_dt ? "" : "non-");
if (cttw_dt != cttw_reg)
dev_dbg(smmu->dev,
"\t(IDR0.CTTW overridden by dma-coherent property)\n");
if (id & ID0_SMS) {
u32 smr, sid, mask = 0;
smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
ID0_NUMSMRG_MASK;
if (smmu->num_mapping_groups == 0) {
dev_err(smmu->dev,
"stream-matching supported, but no SMRs present!\n");
return -ENODEV;
}
if (!(smmu->options & ARM_SMMU_OPT_NO_SMR_CHECK)) {
smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
if ((mask & sid) != sid) {
dev_err(smmu->dev,
"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
mask, sid);
return -ENODEV;
}
}
dev_dbg(smmu->dev,
"\tstream matching with %u register groups, mask 0x%x",
smmu->num_mapping_groups, mask);
} else {
smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
ID0_NUMSIDB_MASK;
}
/* ID1 */
id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
/* Check for size mismatch of SMMU address space from mapped region */
size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
size *= 2 << smmu->pgshift;
if (smmu->size != size)
dev_warn(smmu->dev,
"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
size, smmu->size);
smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
if (smmu->num_s2_context_banks > smmu->num_context_banks) {
dev_err(smmu->dev, "impossible number of S2 context banks!\n");
return -ENODEV;
}
dev_dbg(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
smmu->num_context_banks, smmu->num_s2_context_banks);
/* ID2 */
id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
smmu->ipa_size = size;
/* The output mask is also applied for bypass */
size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
smmu->pa_size = size;
/*
* What the page table walker can address actually depends on which
* descriptor format is in use, but since a) we don't know that yet,
* and b) it can vary per context bank, this will have to do...
*/
if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
dev_warn(smmu->dev,
"failed to set DMA mask for table walker\n");
if (smmu->version == ARM_SMMU_V1) {
smmu->va_size = smmu->ipa_size;
size = SZ_4K | SZ_2M | SZ_1G;
} else {
iommu/arm-smmu: Correctly calculate and use the TTBR1 pagetable Due to an egregious misunderstanding of the specification it was thought that to do the TTBR1 matching correctly the sign extension bit needed to match the input address space. This is incorrect - the TTBR1 range is determined by the size of the TTBR1 space (in our case, the same as the input address space). For example if the input address size is 36, the effective range of the pagetables are: TTBR0: 0x00000000_00000000 - 0x0000000f_ffffffff TTBR1: 0xfffffff0_00000000 - 0xffffffff_ffffffff For its part the sign extension bit needs should be set based on the upstream bus size. If the device has a UBS of 49 then the sign extension bit is assumed by design to be 48 otherwise the driver needs to pick the highest available bit and reduce the input address space by 1. Because the client driver shouldn't need to know the upstream bus size, convention is to use a fully sign extended unsigned long address for TTBR1 mappings. If the sign extension bit is set lower than the upstream bus size some implementations assume that bits above the sign extension bit need to be zero and breaks the convention. Setting the sign extension bit correctly for the upstream bus size ensures that sign extension always works. The hardware will match an address to the TTBR1 if all the bits between the sign extension bit and the input address size are set to 1. We emulate this behavior in software when looking up a pagetable for a software operation. Change-Id: Ic0dedbad80c72f11bc8a7e6792f0e3c2f58bc674 Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org>
2017-05-10 15:22:09 -06:00
smmu->ubs = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
smmu->va_size = arm_smmu_id_size_to_bits(smmu->ubs);
#ifndef CONFIG_64BIT
smmu->va_size = min(32UL, smmu->va_size);
#endif
smmu->va_size = min(39UL, smmu->va_size);
size = 0;
if (id & ID2_PTFS_4K)
size |= SZ_4K | SZ_2M | SZ_1G;
if (id & ID2_PTFS_16K)
size |= SZ_16K | SZ_32M;
if (id & ID2_PTFS_64K)
size |= SZ_64K | SZ_512M;
}
arm_smmu_ops.pgsize_bitmap &= size;
dev_dbg(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);
if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
dev_dbg(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
smmu->va_size, smmu->ipa_size);
if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
dev_dbg(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
smmu->ipa_size, smmu->pa_size);
return 0;
}
static int arm_smmu_add_static_cbndx(struct arm_smmu_device *smmu, int sid,
int smr_idx)
{
void __iomem *gr0_base;
u32 s2cr_reg;
struct static_cbndx_entry *entry;
entry = devm_kzalloc(smmu->dev, sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
gr0_base = ARM_SMMU_GR0(smmu);
s2cr_reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_S2CR(smr_idx));
entry->type = (s2cr_reg >> S2CR_TYPE_SHIFT) & S2CR_TYPE_MASK;
entry->smr_idx = smr_idx;
entry->sid = sid;
if (entry->type == TYPE_TRANS) {
entry->cbndx = (s2cr_reg >> S2CR_CBNDX_SHIFT) &
S2CR_CBNDX_MASK;
__arm_smmu_set_bitmap(smmu->context_map, entry->cbndx);
pr_debug("Static context bank: smr:%d, sid:%d, cbndx:%d\n",
smr_idx, sid, entry->cbndx);
}
__arm_smmu_set_bitmap(smmu->smr_map, smr_idx);
list_add(&entry->list, &smmu->static_cbndx_list);
return 0;
}
static int arm_smmu_init_static_cbndx_list(struct arm_smmu_device *smmu)
{
int i, ret = 0;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
for (i = 0; i < smmu->num_mapping_groups; ++i) {
u32 smr_reg, sid;
smr_reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(i));
if (smr_reg & SMR_VALID) {
u32 smr_mask = (smr_reg >> SMR_MASK_SHIFT) &
SMR_MASK_MASK;
if (smr_mask != 0)
dev_warn(smmu->dev,
"Static smr mask not supported\n");
sid = ((smr_reg >> SMR_ID_SHIFT) & SMR_ID_MASK);
ret = arm_smmu_add_static_cbndx(smmu, sid, i);
if (ret)
break;
}
}
return ret;
}
static const struct of_device_id arm_smmu_of_match[] = {
{ .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
{ .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
{ .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
{ .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
{ .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
{ .compatible = "qcom,smmu-v2", .data = (void *)ARM_SMMU_V2 },
{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
const struct of_device_id *of_id;
struct resource *res;
struct arm_smmu_device *smmu;
struct device *dev = &pdev->dev;
struct rb_node *node;
int num_irqs, i, err;
smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
if (!smmu) {
dev_err(dev, "failed to allocate arm_smmu_device\n");
return -ENOMEM;
}
smmu->dev = dev;
mutex_init(&smmu->attach_lock);
mutex_init(&smmu->power_lock);
spin_lock_init(&smmu->atos_lock);
spin_lock_init(&smmu->clock_refs_lock);
INIT_LIST_HEAD(&smmu->static_cbndx_list);
of_id = of_match_node(arm_smmu_of_match, dev->of_node);
if (!of_id)
return -ENODEV;
smmu->version = (enum arm_smmu_arch_version)of_id->data;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
smmu->phys_addr = res->start;
smmu->base = devm_ioremap_resource(dev, res);
if (IS_ERR(smmu->base))
return PTR_ERR(smmu->base);
smmu->size = resource_size(res);
if (of_property_read_u32(dev->of_node, "#global-interrupts",
&smmu->num_global_irqs)) {
dev_err(dev, "missing #global-interrupts property\n");
return -ENODEV;
}
num_irqs = 0;
while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
num_irqs++;
if (num_irqs > smmu->num_global_irqs)
smmu->num_context_irqs++;
}
if (!smmu->num_context_irqs) {
dev_err(dev, "found %d interrupts but expected at least %d\n",
num_irqs, smmu->num_global_irqs + 1);
return -ENODEV;
}
smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
GFP_KERNEL);
if (!smmu->irqs) {
dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
return -ENOMEM;
}
for (i = 0; i < num_irqs; ++i) {
int irq = platform_get_irq(pdev, i);
if (irq < 0) {
dev_err(dev, "failed to get irq index %d\n", i);
return -ENODEV;
}
smmu->irqs[i] = irq;
}
i = 0;
err = arm_smmu_parse_impl_def_registers(smmu);
if (err)
goto out;
err = arm_smmu_init_regulators(smmu);
if (err)
goto out;
err = arm_smmu_init_clocks(smmu);
if (err)
goto out;
err = arm_smmu_init_bus_scaling(pdev, smmu);
if (err)
goto out;
parse_driver_options(smmu);
err = arm_smmu_enable_clocks(smmu);
if (err)
goto out;
/* No probe deferral occurred! Proceed with iommu property parsing. */
smmu->masters = RB_ROOT;
err = arm_smmu_parse_iommus_properties(smmu);
if (err)
goto out_put_masters;
smmu->sec_id = msm_dev_to_device_id(dev);
err = arm_smmu_device_cfg_probe(smmu);
if (!err)
err = arm_smmu_init_static_cbndx_list(smmu);
arm_smmu_disable_clocks(smmu);
if (err)
goto out_put_masters;
if (of_device_is_compatible(dev->of_node, "qcom,smmu-v2"))
smmu->model = SMMU_MODEL_QCOM_V2;
if (smmu->version > ARM_SMMU_V1 &&
smmu->num_context_banks != smmu->num_context_irqs) {
dev_err(dev,
"found %d context interrupt(s) but have %d context banks. assuming %d context interrupts.\n",
smmu->num_context_irqs, smmu->num_context_banks,
smmu->num_context_banks);
smmu->num_context_irqs = smmu->num_context_banks;
}
for (i = 0; i < smmu->num_global_irqs; ++i) {
err = request_threaded_irq(smmu->irqs[i],
NULL, arm_smmu_global_fault,
IRQF_ONESHOT | IRQF_SHARED,
"arm-smmu global fault", smmu);
if (err) {
dev_err(dev, "failed to request global IRQ %d (%u)\n",
i, smmu->irqs[i]);
goto out_free_irqs;
}
}
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
idr_init(&smmu->asid_idr);
platform_set_drvdata(pdev, smmu);
err = register_regulator_notifier(smmu);
if (err)
goto out_free_irqs;
INIT_LIST_HEAD(&smmu->list);
spin_lock(&arm_smmu_devices_lock);
list_add(&smmu->list, &arm_smmu_devices);
spin_unlock(&arm_smmu_devices_lock);
return 0;
out_free_irqs:
while (i--)
free_irq(smmu->irqs[i], smmu);
out_put_masters:
arm_smmu_exit_bus_scaling(smmu);
for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
struct arm_smmu_master *master
= container_of(node, struct arm_smmu_master, node);
of_node_put(master->of_node);
}
out:
return err;
}
static int arm_smmu_device_remove(struct platform_device *pdev)
{
int i;
struct device *dev = &pdev->dev;
struct arm_smmu_device *curr, *smmu = NULL;
struct rb_node *node;
spin_lock(&arm_smmu_devices_lock);
list_for_each_entry(curr, &arm_smmu_devices, list) {
if (curr->dev == dev) {
smmu = curr;
list_del(&smmu->list);
break;
}
}
spin_unlock(&arm_smmu_devices_lock);
if (!smmu)
return -ENODEV;
for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
struct arm_smmu_master *master
= container_of(node, struct arm_smmu_master, node);
of_node_put(master->of_node);
}
if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
dev_err(dev, "removing device with active domains!\n");
for (i = 0; i < smmu->num_global_irqs; ++i)
free_irq(smmu->irqs[i], smmu);
mutex_lock(&smmu->attach_lock);
iommu/arm-smmu: add support for DOMAIN_ATTR_DYNAMIC Implement support for dynamic domain switching. This feature is only enabled when the qcom,dynamic device tree attribute for an smmu instance. In order to use dynamic domains, a non-dynamic domain must first be created and attached. This non-dynamic domain must remain attached while the device is in use. All domains must be attached before calling any mapping functions, such as iommu_map(). This allows the pagetable setup to be set up during attach based on the hardware configuration for the smmu. Before attaching a dynamic domain, the DOMAIN_ATTR_CONTEXT_BANK must be set to indicate which context bank registers should be used for any register programming. Attaching dynamic domain doesn't cause hardware register programming, but mapping operations may cause TLBI operations. Additionally, the upstream driver or hardware may do other register programming. Because the arm-smmu driver assigns context banks dynamically, the upstream driver should query DOMAIN_ATTR_CONTEXT_BANK on its non-dynamic domain, to ensure the correct value is used for all dynamic domains created. To switch domains dynamically, the upstream driver or hardware must program the TTBR0 and CONTEXTIDR registers with the values from the DOMAIN_ATTR_TTBR0 and DOMAIN_ATTR_CONTEXTIDR attributes for the desired domain. The upstream driver may also need to do other hardware specific register programming to properly synchronize the domain switch. It must ensure that all register state, except for CONTEXTIDR and TTBR0 registers, is restored at the end of the domain switch operation. DOMAIN_ATTR_PROCID may be set to any value for each domain before it is attached. This value is part of the CONTEXTIDR register, but it is not used by the SMMU hardware. Setting a unique value for this attribute in every domain can be useful for debugging. Change-Id: Ib92d06db06832700bdf56265b169ccddfb192698 Signed-off-by: Jeremy Gebben <jgebben@codeaurora.org>
2015-07-10 16:43:23 -06:00
idr_destroy(&smmu->asid_idr);
/*
* If all devices weren't detached for some reason, we're
* still powered on. Power off now.
*/
if (smmu->attach_count)
arm_smmu_power_off(smmu);
mutex_unlock(&smmu->attach_lock);
arm_smmu_exit_bus_scaling(smmu);
return 0;
}
static void arm_smmu_free_master_nodes(void)
{
struct arm_iommus_node *node, *nex;
struct arm_iommus_spec *entry, *n;
list_for_each_entry_safe(node, nex, &iommus_nodes, list) {
list_for_each_entry_safe(entry, n,
&node->iommuspec_list, list) {
list_del(&entry->list);
kfree(entry);
}
list_del(&node->list);
kfree(node);
}
}
static int arm_smmu_get_master_nodes(void)
{
struct arm_iommus_node *node;
struct device_node *master;
struct of_phandle_args iommuspec;
struct arm_iommus_spec *entry;
for_each_node_with_property(master, "iommus") {
int arg_ind = 0;
node = kzalloc(sizeof(*node), GFP_KERNEL);
if (!node)
goto release_memory;
node->master = master;
list_add(&node->list, &iommus_nodes);
INIT_LIST_HEAD(&node->iommuspec_list);
while (!of_parse_phandle_with_args(master, "iommus",
"#iommu-cells", arg_ind, &iommuspec)) {
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
goto release_memory;
entry->iommu_spec = iommuspec;
list_add(&entry->list, &node->iommuspec_list);
arg_ind++;
}
}
return 0;
release_memory:
arm_smmu_free_master_nodes();
return -ENOMEM;
}
#if CONFIG_PM
static int arm_smmu_pm_suspend(struct device *dev)
{
struct arm_smmu_device *smmu = dev_get_drvdata(dev);
u64 *regs, *reg_global;
int j, k = 0;
u32 cb_count = 0;
void __iomem *base, *gr0_base, *gr1_base;
if (!smmu)
return -ENODEV;
if (!smmu->attach_count)
return 0;
if (arm_smmu_enable_clocks(smmu)) {
dev_err(smmu->dev, "failed to enable clocks for smmu");
return -EINVAL;
}
regs = &smmu->regs[0];
reg_global = &smmu->reg_global[0];
cb_count = smmu->num_context_banks;
gr0_base = ARM_SMMU_GR0(smmu);
gr1_base = ARM_SMMU_GR1(smmu);
for (j = 0; j < cb_count; j++) {
base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, j);
regs[k++] = readl_relaxed(base + ARM_SMMU_CB_SCTLR);
regs[k++] = readl_relaxed(base + ARM_SMMU_CB_ACTLR);
regs[k++] = readl_relaxed(base + ARM_SMMU_CB_TTBCR2);
regs[k++] = readq_relaxed(base + ARM_SMMU_CB_TTBR0);
regs[k++] = readq_relaxed(base + ARM_SMMU_CB_TTBR1);
regs[k++] = readl_relaxed(base + ARM_SMMU_CB_TTBCR);
regs[k++] = readl_relaxed(base + ARM_SMMU_CB_CONTEXTIDR);
regs[k++] = readl_relaxed(base + ARM_SMMU_CB_S1_MAIR0);
regs[k++] = readl_relaxed(base + ARM_SMMU_CB_S1_MAIR1);
regs[k++] = readl_relaxed(gr1_base + ARM_SMMU_GR1_CBA2R(j));
regs[k++] = readl_relaxed(gr1_base + ARM_SMMU_GR1_CBAR(j));
}
for (j = 0, k = 0; j < smmu->num_mapping_groups; j++) {
reg_global[k++] = readl_relaxed(
gr0_base + ARM_SMMU_GR0_S2CR(j));
reg_global[k++] = readl_relaxed(
gr0_base + ARM_SMMU_GR0_SMR(j));
}
reg_global[k++] = readl_relaxed(ARM_SMMU_GR0_NS(smmu)
+ ARM_SMMU_GR0_sCR0);
arm_smmu_disable_clocks(smmu);
return 0;
}
static int arm_smmu_pm_resume(struct device *dev)
{
struct arm_smmu_device *smmu = dev_get_drvdata(dev);
u64 *regs, *reg_global;
int j, k = 0;
u32 cb_count = 0;
void __iomem *base, *gr0_base, *gr1_base;
if (!smmu)
return -ENODEV;
if (!smmu->attach_count)
return 0;
if (arm_smmu_enable_clocks(smmu)) {
dev_err(smmu->dev, "failed to enable clocks for smmu");
return -EINVAL;
}
regs = &smmu->regs[0];
reg_global = &smmu->reg_global[0];
cb_count = smmu->num_context_banks;
gr0_base = ARM_SMMU_GR0(smmu);
gr1_base = ARM_SMMU_GR1(smmu);
for (j = 0; j < cb_count; j++) {
base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, j);
writel_relaxed(regs[k++], base + ARM_SMMU_CB_SCTLR);
writel_relaxed(regs[k++], base + ARM_SMMU_CB_ACTLR);
writel_relaxed(regs[k++], base + ARM_SMMU_CB_TTBCR2);
writeq_relaxed(regs[k++], base + ARM_SMMU_CB_TTBR0);
writeq_relaxed(regs[k++], base + ARM_SMMU_CB_TTBR1);
writel_relaxed(regs[k++], base + ARM_SMMU_CB_TTBCR);
writel_relaxed(regs[k++], base + ARM_SMMU_CB_CONTEXTIDR);
writel_relaxed(regs[k++], base + ARM_SMMU_CB_S1_MAIR0);
writel_relaxed(regs[k++], base + ARM_SMMU_CB_S1_MAIR1);
writel_relaxed(regs[k++], gr1_base + ARM_SMMU_GR1_CBA2R(j));
writel_relaxed(regs[k++], gr1_base + ARM_SMMU_GR1_CBAR(j));
}
for (j = 0, k = 0; j < smmu->num_mapping_groups; j++) {
writel_relaxed(reg_global[k++],
gr0_base + ARM_SMMU_GR0_S2CR(j));
writel_relaxed(reg_global[k++],
gr0_base + ARM_SMMU_GR0_SMR(j));
}
writel_relaxed(reg_global[k++],
ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
/* Do a tlb flush */
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
__arm_smmu_tlb_sync(smmu);
arm_smmu_disable_clocks(smmu);
return 0;
}
#else
static inline int arm_smmu_pm_suspend(struct device *dev)
{
return 0;
}
static inline int arm_smmu_pm_resume(struct device *dev)
{
return 0;
}
#endif
static const struct dev_pm_ops arm_smmu_pm_ops = {
#ifdef CONFIG_PM
.freeze_late = arm_smmu_pm_suspend,
.thaw_early = arm_smmu_pm_resume,
.restore_early = arm_smmu_pm_resume,
#endif
};
static struct platform_driver arm_smmu_driver = {
.driver = {
.name = "arm-smmu",
.of_match_table = of_match_ptr(arm_smmu_of_match),
.pm = &arm_smmu_pm_ops,
},
.probe = arm_smmu_device_dt_probe,
.remove = arm_smmu_device_remove,
};
static int __init arm_smmu_init(void)
{
struct device_node *np;
int ret;
/*
* Play nice with systems that don't have an ARM SMMU by checking that
* an ARM SMMU exists in the system before proceeding with the driver
* and IOMMU bus operation registration.
*/
np = of_find_matching_node(NULL, arm_smmu_of_match);
if (!np)
return 0;
of_node_put(np);
ret = arm_smmu_get_master_nodes();
if (ret)
return ret;
ret = platform_driver_register(&arm_smmu_driver);
if (ret) {
arm_smmu_free_master_nodes();
return ret;
}
/* Oh, for a proper bus abstraction */
if (!iommu_present(&platform_bus_type))
bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
#ifdef CONFIG_ARM_AMBA
if (!iommu_present(&amba_bustype))
bus_set_iommu(&amba_bustype, &arm_smmu_ops);
#endif
#ifdef CONFIG_PCI
if (!iommu_present(&pci_bus_type))
bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif
return 0;
}
static void __exit arm_smmu_exit(void)
{
return platform_driver_unregister(&arm_smmu_driver);
}
subsys_initcall(arm_smmu_init);
module_exit(arm_smmu_exit);
MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");